15. Chemistry ofBenzene: ElectrophilicAromatic Substitution

Based on McMurry's Organic Chemistry, 7th edition

Substitution Reactions of Benzene and Its Derivatives

- Benzene is aromatic: a cyclic conjugated compound with 6 π electrons
- Reactions of benzene lead to the retention of the aromatic center

Why this Chapter?

- Continuation of coverage of aromatic compounds in preceding chapter...focus shift to understanding reactions
- Study relationship between aromatic structure and reactivity
- To understanding of how biological molecules/pharmaceutical agents are synthesized

16.1 Electrophilic Aromatic Substitution Reactions: Bromination

- Benzene's π electrons play a part as a Lewis base in reactions with Lewis acids
- The product is formed by loss of a proton, which is replaced by bromine
- FeBr₃ is added as a catalyst to polarize the bromine reagent

Addition Intermediate in Bromination

- The addition of bromine occurs in two steps
- In the first step the π electrons act as a nucleophile toward Br₂ (in a complex with FeBr₃) make the Br₂ more electrophilic by polarizing it.
- The polarized Br₂ reacts with the nuclephilic benzene ring
- This forms a cationic addition intermediate from benzene and a bromine cation
- The intermediate is not aromatic carbocation intermediate has three resonance forms.

Formation of Product from Intermediate

- The cationic addition intermediate transfers a proton to FeBr₄⁻ (from Br⁻ and FeBr₃)
 - The reaction occure in two steps and involves a resonance-stabilized carbocation intermediate
 - The addition occur after the carbocation intermediate has formed.

© 2007 Thomson Higher Education

16.2 Other Aromatic Substitutions

- Chlorine and iodine (but not fluorine, which is too reactive) can produce aromatic substitution with the addition of other reagents to promote the reaction
- Chlorination requires FeCl₃

Indine must be oxidized to form a more powerful I+ species (with Cu⁺ or peroxide) $I_2 + 2 Cu^{2+} \rightarrow 2I^+ + 2 Cu^+$

© 2007 Thomson Higher Education

Iodobenzene (65%)

Aromatic Nitration

- Aromatic rings can be nitrated by reaction with a mixture of concentrated nitric and sulfuric acids
- The combination of nitric acid and sulfuric acid produces NO₂⁺ (nitronium ion)
- The reaction with benzene produces nitrobenzene

© 2007 Thomson Higher Education

The nitro-substituted product can be reduced by reagent such as iron, tin or SnCl2 to yield an arylamine.

Aromatic Sulfonation

- Aromatic ring can be sulfonated by Substitution of H by SO₃
- Reaction with a mixture of sulfuric acid and sulfur trioxide SO₃
- Reactive species is sulfur trioxide or its conjugate acid

16.3 Alkylation of Aromatic Rings: The Friedel–Crafts Reaction

- Alkylation among most useful electrophilic aromatic subsitution reactions
- Aromatic substitution of R⁺ for H⁺
- Aluminum chloride catalyzes the reaction by the formation of the carbocation

Limitations of the Friedel-Crafts Alkylation

- Only alky/ halides can be used (F, Cl, I, Br)
- Ary/ halides and vinylic halides do not react (their carbocations are too hard to form)

 $(-NH_2, -NHR, -NR_2)$

Control Problems

- Multiple alkylations (polyalkylation)can occur because the first alkylation is activating
- Reaction of benzene with 2-chloro -2methylpropane, yields p-di-tert-butylbenzene ,tert-buty benzene and benzene.

Carbocation Rearrangements During Alkylation

- Similar to those that occur during electrophilic additions to alkenes
- Can involve H in
- (1-chlorobutane) or alkyl in
- (1-chloro,2,2dimethulpropane) shifts

Acylation of Aromatic Rings

- Reaction of an acid chloride (RCOCI) and an aromatic ring in the presence of AICl₃ introduces acyl group, —COR
 - Benzene with acetyl chloride yields acetophenone

Mechanism of Friedel-Crafts Acylation

- Similar to alkylation
- Reactive electrophile: resonance-stabilized acyl cation
- An acyl cation is stabilized, no carbocation rearrangement occurs during acylation.

16.4 Substituent Effects in Aromatic Rings

Substituents can cause a compound to be (much) more or (much) less reactive than benzene

- The nature of the substituent already present on the benzene ring determines the position of the second substitution.
- ortho- and para-directing activators, ortho- and paradirecting deactivators, and meta-directing deactivators (Table 16.1)

Table 16.1 Orientation of Nitration in Substituted Benzenes

M

_

-

_

_

	Product (%)				Product (%)		
	Ortho	Meta	Para		Ortho	Meta	Para
eta-directi	ng deacti	vators		Ortho- and pa	ra-directio	ng deacti	vators
, N(CH ₃) ₃	2	87	11	-F	13	1	86
NO ₂	7	91	2	-CI	35	1	64
CO₂H	22	76	2	-Br	43	1	56
CN	17	81	2	-I	45	1	54
CO ₂ CH ₃	28	66	6	Ortho- and para-directing activators			
COCH3	26	72	2	$-CH_3$	63	3	34
СНО	19	72	9	-OH	50	0	50
				-NHCOCH ₃	19	2	79

١٨

Origins of Substituent Effects

- An interplay of *inductive effects* and *resonance* effects
- Inductive effect withdrawal or donation of electrons through a σ bond due to electronegativily.OH-,X-,CO-CN-,NO2-
- Alkyl groups, inductively donate electrons.
- Resonance effect withdrawal or donation of electrons through a π bond due to the overlap of a p orbital on the substituent with a p orbital on the aromatic ring

Inductive Effects

- Controlled by electronegativity and the polarity of bonds in functional groups
- Halogens, C=O, CN, and NO₂ withdraw electrons through σ bond connected to ring
- Alkyl groups donate electrons

Inductive electron withdrawal

Inductive electron donation

Resonance Effects – Electron Withdrawal

- C=O, CN, NO₂ substituents withdraw electrons from the aromatic ring by resonance
- π electrons flow from the rings to the substituents

Resonance electronwithdrawing group

Resonance Effects – Electron Donation

- Halogen, OH, alkoxyl (OR), and amino substituents donate electrons
- π electrons flow from the substituents to the ring
- Effect is greatest at ortho and para

Predicting the product of an Electrophilic aromatic subsitution reaction

The sulfonation of toluene will give primarily amixture of O-toluenesulfonic acid and ptoluenesulfonic acid. (–CH3 Ortho- and para –directing activators)

16.5 An Explanation of Substituent Effects

- Activating groups donate electrons to the ring, stabilizing the intermediate (carbocation)
 - Deactivating groups withdraw electrons from the ring, destabilizing the intermediate

Y withdraws electrons; carbocation intermediate is less stable, and ring is less reactive.

Carbonyl,cyano ,nitro goups.

© 2007 Thomson Higher Education

Y donates electrons; carbocation intermediate is more stable, and ring is more reactive.

Halogen, OH, alkoxyl (OR), and amino

Ortho- and Para-Directing Activators: Alkyl Groups

- Alkyl groups activate: direct more substitution to positions ortho and para to themselves
- Alkyl group is most effective in the ortho and para positions

10

Ortho- and Para-Directing Activators: OH and NH₂

- Alkoxyl, and amino groups have a strong, electrondonating resonance effect
- Most pronounced at the ortho and para positions

Ortho- and Para-Directing Deactivators: Halogens

- Electron-withdrawing inductive effect outweighs weaker electron-donating resonance effect
- Resonance effect is only at the ortho and para positions, stabilizing carbocation intermediate

Meta-Directing Deactivators

- Inductive and resonance effects add force to each other
- Ortho and para intermediates destabilized by deactivation of carbocation intermediate
- Resonance cannot produce stabilization

۲۸

Summary Table: Effect of Substituents in Aromatic Substitution

Table 16.2	Substituent Effects in Electrophilic Aromatic Substitution							
Substituent		Reactivity	Orienting effect	Inductive effect	Resonance effect			
-CH3		Activating	Ortho, para	Weak donating	-			
–OH, –NH ₂		Activating	Ortho, para	Weak withdrawing	Strong donating			
–F, –Cl –Br, –I	}	Deactivating	Ortho, para	Strong withdrawing	Weak donating			
-NO ₂ , -CN -CHO, -CO -COR, -CO	$\left. \begin{array}{c} , \\ p_{2}R \\ p_{2}H \end{array} \right\}$	Deactivating	Meta	Strong withdrawing	Strong withdrawing			
© 2007 Thomson H	Higher Educatio	'n						

16.6 Trisubstituted Benzenes: Additivity of Effects

If the directing effects of the two groups are the same, the result is additive

Substituents with Opposite Effects

- If the directing effects of two groups oppose each other, the more powerful activating group decides the principal outcome
- Usually gives mixtures of products

Meta-Disubstituted Compounds

- The reaction site is too hindered
- To make aromatic rings with three adjacent substituents, it is best to start with an orthodisubstituted compound

m-Chlorotoluene

3,4-Dichlorotoluene

2,5-Dichlorotoluene

NOT formed

But:

o-Nitrotoluene

2-Chloro-6-nitrotoluene

16.7 Nucleophilic Aromatic Substitution

Nucleophilic Aromatic Substitution occurs only if the aromatic ring has an electron-withdrawing substituent in position or the or para to the leaving group.

P-cloronitrobenzene and 0-chloronitrobenzene react with hydroxide ion at 130 c^o to yield substitution products, but m-chloronitrobenzene is inert to OH

02N

NO₂

NO₂

CI

16.7 Nucleophilic Aromatic Substitution

Ortho

CI

-0^{×N}+≈0

OH

Para

Meta

© 2007 Thomson Higher Education

show all electron flow with arrows for the nucleophilic aromatic subsitution reaction of *p-nitrochlorobenzene with KOH?*

The differences between electrophilic and nucleophilic aromatic substitution

- The electrophilic substitutions are favored by electron-donating substituents which stabilize the carbocation intermediate. and replace hydrogen on the ring.
- The nucleophilic substitutions are favored by electron-withdrawing substitutions, which stabilize a carbanion intermediate.
 - and replace a leaving group, usually halide ion.

16.8 Benzyne

- Phenol is prepared on an industrial scale by treatment of chlorobenzene with dilute aqueous NaOH at 340°C under high pressure
- The reaction involves an elimination reaction that gives a triple bond
- The intermediate in the elimination-addition mechanism of nucleophilic aromatic substitution is called benzyne

© 2007 Thomson Higher Educati

Structure of Benzyne

- Benzyne is a highly distorted alkyne
- The triple bond uses sp²-hybridized carbons, not the usual sp
- The triple bond has one π bond formed by p-p overlap and another by weak sp²-sp² overlap

16.9 Oxidation of Aromatic Compounds

- Alkyl side chains can be oxidized to —CO₂H by strong reagents such as KMnO₄ and Na₂Cr₂O₇ if they have a C-H next to the ring
- Converts an alkylbenzene into a benzoic acid, Ar—R $\rightarrow Ar CO_2H$

Bromination of Alkylbenzene Side Chains

Reaction of an alkylbenzene with N-bromosuccinimide (NBS) and benzoyl peroxide (radical initiator) introduces Br into the side chain

© 2007 Thomson Higher Education

Mechanism of NBS (Radical) Reaction

- Abstraction of a benzylic hydrogen atom generates an intermediate benzylic radical
- Reacts with Br₂ to yield product
- Br· radical cycles back into reaction to carry chain

16.10 Reduction of Aromatic Compounds

- Aromatic rings are inert to catalytic hydrogenation under conditions that reduce alkene double bonds
- Can selectively reduce an alkene double bond in the presence of an aromatic ring
- Reduction of an aromatic ring requires more powerful reducing conditions (high pressure or anather catalysts)

Reduction of Aryl Alkyl Ketones

- Aromatic ring activates neighboring carbonyl group toward reduction
- Ketone is converted into an alkylbenzene by catalytic hydrogenation over Pd catalyst

16.11 Synthesis of Trisubstituted Benzenes

- These syntheses require planning and consideration of alternative routes
- Ability to plan a sequence of reactions in right order is valuable to synthesis of substituted aromatic rings

Synthesizie 4-bromo-2nitrotoluene from benzene.

o-Nitrotoluene This ring will give a mixture of isomers on bromination.

m-Bromonitrobenzene

This deactivated ring will not undergo a Friedel–Crafts reaction.

p-Bromotoluene

This ring will give only the desired isomer on nitration.

4-Bromo-2-nitrotoluene

© 2007 Thomson Higher Education

Synthesize 4-chloro-2propylbenzenesulfonic acid from benzene.

4-Chloro-2-propylbenzenesulfonic acid

The -NH2 group is listed in our textbook as the strongest *o,p-directing activator in electrophilic aromatic* substitution reactions.

However, when aniline is subjected to standard nitration conditions poor yields of *m-nitroaniline*

