
1

15 Concurrency control 15 Concurrency control
15.1 Serializability and Concurrency Control
15.2 Locking

15.2.1 Lock protocols
15.2.2 Two phase locking
15.2.3 Strict transactional protocols
15.2.4 Lock conflicts and Deadlocks
15.2.5 Lock modes
15.2.6 Deadlock detection, resolution, avoidance

15.3 Nonlocking concurrency control
15.3.1 Multiversion cc
15.3.2 Optimistic cc: forward / backward oriented
15.3.3 Time stamp ordering

15.4 Synchronizing index structures
15.4 Distributed transactions: Two Phase Commit (short)

Lit.: Eickler/ Kemper chap 11.6-11.13, Elmasri /Navathe chap. 20, Garcia-Molina, Ullman, Widom: chap. 18

HS / DBS05-19-CC 2

Concurrency control Concurrency control …and …and serializabilityserializability
Wanted:

effective real-time scheduling of operations with
guaranteed serializability of the resulting execution
sequence.

Transaction
manager Scheduler

Reads / writes (in principle)
TA 1

TA n Controls
transactions

(Begin,
Commit,..)

Controls
execution of
DB calls

2

HS / DBS05-19-CC 3

Concurrency controlConcurrency control

Concurrency control in DBS
• methods for scheduling the operations of

database transactions in a way which
guarantees serializability of all transactions
("between system start and shutdown")

• Primary concurrency control methods
– Locking (most important)
– Optimistic concurrency control
– Time stamps
– Multiversion CC

HS / DBS05-19-CC 4

Concurrency controlConcurrency control

• No explicit locking in application programs
- error prone,
- responsibility of scheduler (and lock manager)

In most DBS also explicit locking allowed in addition to
implicit locking by scheduler. Use with care!

• Not considered here: transaction independent
locking, e.g. writing a page p to disk requires a
short term lock on p

3

HS / DBS05-19-CC 5

Optimistic vs. pessimistic Optimistic vs. pessimistic

• Locking is pessimistic
– Assumption: during operation op [x] of TA1 a (potentially)

conflicting operation op'[x] of TA2 will access the same
object x

– This has to be avoided by locking x before accessing x

S: r1[y], r3[u], r2[y], w1[y], w2[x], w1[x], w2[z], c2, w3[x]

• An optimistic strategy would be:
– Perform all operations on a copy of the data. Check at the

end – before commit – if there were any conflicts.
– If no: commit, else abort (rollback) - more or less

TA1 read x, must wait until TA2 has committed

Note: call sequence and execution sequence different

HS / DBS05-19-CC 6

15.2.1 15.2.1 Lock Lock protocolsprotocols

Simple object locking
Lock each object before writing / writing,
unlock when operation finished

schedule will not be serializable (why?)

Example
l1(x) r1(x) ul1(x) l2(x) w2(x) ul2(x) l1(x) w1(x) ul(x)

lost update useless

4

HS / DBS05-19-CC 7

Lock protocolsLock protocols

• Preclaiming
• Acquire all locks needed before performing an

operation
• release, if you do not get all of them. Try again.

race condition, transaction could starve!
• Execute transaction
• Release locks

Begin TA End TA (commit or abort)

Lock aquisition phase

Work phase

locks

time

Preclaiming serializable?

Why (not) ?

Bad: objects to be
processed may not
be known in
advance.

Not used in DBS.

HS / DBS05-19-CC 8

12.3 Two phase locking (2PL)12.3 Two phase locking (2PL)

The 2PL protocol
1. Each object referenced by TAi has to be locked

before usage
2. Existing locks of other TA's will be respected
3. No lock is requested by a TAi , if a lock has been

released by the same transaction TAi
("no lock after unlock")

4. Locks are released at least at commit time
5. A requests of a lock by a TA which it already holds,

has no effect.

…

5

HS / DBS05-19-CC 9

Concurrency controlConcurrency control2PL2PL

• Locked objects may be read / written already in
lock aquisition phase

Begin TA
End TA (commit or abort)

Lock aquisition phase

Release (shrinking) phase
NO LOCK AFTER UNLOCK

locks

time

HS / DBS05-19-CC 10

Concurrency controlConcurrency control2PL2PL

• Why no lock after unlock?
• Example:

lock1(x), r1[x], x=x*10, ulock1(x)
lock2(x), r1[x], x:=x+1, w2[x] ulock2(x)
lock1(x), w1(x), ulock1(x)

results in a lost update

⇒ Rule 3 is essential

TA1

time

1 Lock profil of TA1 is NOT 2PL

6

HS / DBS05-19-CC 11

ConcurrencyConcurrency controlcontrol 2PL2PL
2-Phase locking theorem

• Proof sketch:
– Suppose a resulting schedule is not serializable.

when using 2PL ⇒ conflict graph contains a cycle
⇒ there are transactions TA1 and TA2 with
conflict pairs (p,q) and (q', p'),
p, p' atomic operations of TA1, q,q' of TA2, p,q
access the same object x, and q', p' an object y
(assuming a cycle of length 1, induction for the general case)

If all transactions follow the 2-phase locking protocol, the
resulting schedule is serializable

HS / DBS05-19-CC 12

ConcurrencyConcurrency controlcontrol 2PL2PL
Let e.g. (p,q) = (r1[x], w2[x]),

(q', p') = (w2[y], w1[y])
Analyze all of the possible execution sequences:

p, q, q', p
p, q', q, p'
q', p, q, p'
q', p, p', q
q', p', p, q

Same holds for the other possible sequences ⇒ Theorem

Note: serializability does not imply 2PL, i.e. there are
serializable schedules which do not result from a 2PL scheduler

T2: Lock y, T1: Lock x, T2: Lock x, T1: Lock y

T1 must have released lock on x and
acquired one on y (or T2 must have
acquired after release)
Violates 2-phase rule! Contradiction to
assumption that all follow TAs use 2PL protocol

7

HS / DBS05-19-CC 13

15.2.3 Strict concurrency protocols15.2.3 Strict concurrency protocols
Locking protocol is strict if locks are released at

commit / abort.

• A different transaction TA2 could have used an object x
which was unlocked by TA1 in the release phase
- no problem, if TA1 commits
- if TA1 aborts, TA2 has used a wrong state of x

TA2 has to be aborted by the system

• May happen recursively: cascading abort, bad ...
• Strict 2PL: Release all locks at commit point.

Begin TA

Release phase

abort

locks

time

Release all
locks at commit

time
Strict 2PL protocal

TA1 TA2

HS / DBS05-19-CC 14

15.2.4 Lock conflicts and deadlocks 15.2.4 Lock conflicts and deadlocks
• Lock conflict

– Two or more processes request an exclusive lock for
the same object

• Deadlock
– Locking: threat of deadlock

• No preemption
• No lock release in case of lock conflicts

Two-Phase locking may cause deadlocks
Li[x] = Transaction i requests lock on x
Ui[x] = Transaction i releases lock on x
Lock sequence: L1[x] , L2[y], ..., L1[y], L2[x] causes deadlock

How to deal with deadlocks? --> see below

8

HS / DBS05-19-CC 15

15.2.5 Lock 15.2.5 Lock modesmodes

• Primary goal
– no harmful effects (lost update, ...)

• Secondary goal
– Degree of parallelism should be as high as possible,

even when locking is used
– Low deadlock probability, if any

• Ways to increase parallelism
– Compatible locks (read versus write semantics)
– Different lock granularity
– Application semantics
– No locks, optimistic cc

HS / DBS05-19-CC 16

Lock modesLock modes
Lock modes and lock compatibility

RX – model: read (R) and eXclusive(X) locks
(or: write locks)

• Lock compatibility in the RX model:

– Objects locked in R-mode may be locked in
R- mode by other transactions(+)

– Objects locked in X-mode may not be locked by
any other transaction in any mode.
Lock conflict: requesting TA has to wait

--X
-+R
XR

requester

holder

Lock compatibility matrix

R-lock same as
Shared (S) lock

9

HS / DBS05-19-CC 17

Reduce deadlock threatReduce deadlock threat
Deadlocks caused by typical read / write sequences

TA1: read account_record x; incr(x.balance); write account_record
TA2: read account_record x; incr(x.balance); write account_record

• Read-Update-Exclusive Model (RUX)

RL1[x]

R1[x]
RL2[x]

XL1[x] R2[x]

XL2[x]W1[x]

W2[x]

Wait for release
of R-lock

Wait for release
of R-lock RL[x] Read lock

XL[x] Write lock

HS / DBS05-19-CC 18

Lock modes: RUXLock modes: RUX
RUX Lock protocol

– Transactions which read and subsequently update an
object y request a U-lock, upgrade to X-lock before
write

– Read locks cannot be upgraded
– U-locks incompatible with U-locks

⇒ deadlock-thread avoided
– U / R-lock compatibility asymmetric, why?

---X
--+ U
--+R
XUR

requester

holder

How does DBS know, that update is intended?

10

HS / DBS05-19-CC 19

Lock modesLock modes

Hierarchical locking
– One single lock granularity (e.g. records) insufficient,

large overhead when many rows have to be locked

– Most DBS have at least two lock granularities:
row locks and table locks

Issue: TAi wants to lock table R

• some rows of R locked by different transactions

different lock conflict as before: TAi is waiting for
release of all record locks

• No other TA should be able to lock a record,
otherwise TAi could starve

HS / DBS05-19-CC 20

Concurrency controlConcurrency control

Locks of different granularity

Lock held by other
transactionsn

Lock request
for D

D

Lock request: must not be
granted until lock on D
is released

Efficient implementation of this type of situation??

11

HS / DBS05-19-CC 21

Lock modes: Hierarchical lockingLock modes: Hierarchical locking
Intention locks

• Feature of intention locks for hierarchical locking:
for each lock mode, there is an intention lock, e.g. for RX-
lock modes: IR and IX

• Semantics:
A TA holds a IM-lock on an object D on level i, if and only
if it holds an M-lock on an object D' on level j > i
subordinate to D

DB

row k

table R table S

row j row i row m row n row o row p

Object hierachy
(example)

Level 0

Level 1

Level 2

HS / DBS05-19-CC 22

Concurrency controlConcurrency controlLock modesLock modes
Hierarchical locking

– An object O on level i contains all objects x on level i+1
– Locks of O lock all subordinate objects x
– If a subordinate object x (level i+1) is locked, this is

indicated by an intention lock on level i

DB

row k

table R table S

row j row i row m row n row o row p

IX2

X2

IS1

R1

X3

IX3

IX2 IX3

Lock escalation
If too many objects x on level i+1 are locked by a
transaction, it may be converted into one lock on level i

12

HS / DBS05-19-CC 23

Lock modesLock modes
Hierarchical locking (cont)

– Advantage: one lookup is sufficient to check if a lock
on higher level (say on a table) can be granted

– Protocol: if a TA wants to lock an object on level i in
mode <M> (X or R), lock all objects on higher level
(on the path to root) in I<M> – mode

– Easy to check, if the locks on all subordinate objects
are released: implement I<M>-lock as a counter

----X

-+-+R

--++IX

-+++IR

XRIXIR
Compatibility matrix

requester

holder

How to combine
with U-lock mode?

HS / DBS05-19-CC 24

15.2.6 Deadlock detection, resolution, avoidance15.2.6 Deadlock detection, resolution, avoidance

Deadlocks
... can happen with 2PL protocol (see above)
– Release of a lock could break rule 4

XL1[x] , XL2[y], XL1[y] -> TA1: WAIT for XU2[y] , XL2[x] -> TA2:
WAIT for XU1[x]

– Note: deadlocks very different from lock conflicts:

.... XL1[x] , XL2[y], XL1[y] -> TA1: WAIT for XU2[y] XL2[z], w2[y], w2[z],
XU2[y],...

Lock conflict, y is locked by TA2, TA1 waits for unlock

Lock conflict resolved by XUnlock2[x], TA1 proceeds

Not schedules, but call sequences
including lock / unlock operations by the scheduler

13

HS / DBS05-19-CC 25

DeadlockDeadlock

Detection and resolving deadlocks
– Cycle check in Wait-for-graph

• Waiting of TA1 for release of lock on x by TA2 is
indicated by an arc from TA1 to TA2 labeled "x"

• Cycles indicate deadlock
• In a distributed environment, deadlocks may involve

different systems. How to detect cycles?
• One of the waiting transaction ("victim") is rolled back
• Which one??

– Timeout
• If TA has been waiting longer than the time limit, it is

aborted.
• Efficient but may roll back innocent victims (deadlock does

not exist)

Oracle: WF-graph in central DB, timeout in distributed

HS / DBS05-19-CC 26

Deadlock avoidanceDeadlock avoidance
Avoiding deadlocks

– Deadlocks only occur, if no preemption
– Force preemption by the lock manager
– TA t is preempted forced to rollback
– Preemption no deadlocks, but living transactions

may be killed
• Wait/Die - Wound/Wait : Basic idea

– Solve lock conflicts by rollback of one of the
conflicting transactions….

– …. but not always
– Rollback dependent on the relative age of the

transactions
– Time stamp for each transaction

14

HS / DBS05-19-CC 27

• Wound/Wait – Wait / Die methods
– Each transaction Tai has an initial timestamp TS(TAi)
– If TA2 requests a lock on x and there is a lock conflict

with TA1, one of them may be aborted

TA2 requests lock which TA1 holds:
– WOUND / WAIT
if ts(TA1) < ts(TA2) then TA2.WAIT else TA1.ABORT

Abort lock holding TA if younger than requesting, else wait

– WAIT / DIE
if ts(TA1) < ts(TA2) then TA2.ABORT else TA2.WAIT

Abort requesting TA if younger, else wait

Deadlock avoidanceDeadlock avoidance

HS / DBS05-19-CC 28

Deadlock avoidanceDeadlock avoidance

Wound / Wait

TA1
TA2

wait

If TS(TA1) < TS(TA2) then TA2.wait else TA1.abort

Younger TA
may wait for
older TA

TA1

TA2

abort

olderTA
preempts
younger TA

15

HS / DBS05-19-CC 29

Deadlock avoidanceDeadlock avoidance

If TS(TA1) < TS(TA2) then TA2.abort else TA2.wait

TA1
TA2

abort

TA1

wait

TA2

No deadlocks! Why?

Aborted transaction restarts with old timestamp
in order to avoid starvation

Wait / Die

older TA
waits for
younger one

HS / DBS05-19-CC 30

15.3 Non15.3 Non--locking protocols (more or less)locking protocols (more or less)

• 15.3.1 Multiversion CC:
r1[x] w1[x] r2[x] w2[y] r1[y] w1[z] c1 w2[a] c2
not serializable.
If r1[y] had arrived at the scheduler before
w2[y] the schedule would have been serializable.

• Main idea of multiversion concurrency control : Reads
should see a consistent (and committed) state, which
might be older than the current object state.

• Necessary: Different version of an object
• Read and write locks compatible (!)
• In the example: TA2 must not write its version of y

before TA1 has released lock on y
• Particular important in practice: 2 versions

Arrows from
TA2-ops to
conflicting TA1-ops

16

HS / DBS05-19-CC 31

MultiversionMultiversion concurrencyconcurrency
Lock based MVCC ("MV2PL")

– Read locks always granted,
write lock if object not write locked
=>
two versions: consistent one and writable private copy

– When TA wants to write modified copy of x into DB it
has to wait until all readers of x have released read lock

– write is delayed to ensure consistent read using a
certify lock

---C
--+W
-++R
CWR C = Certify

HS / DBS05-19-CC 32

MultiversionMultiversion concurrencyconcurrency

• Two-version-2PL MVCC
– has only one uncommitted version, one consistent

("current") version because writes are incompatible
– Readers benefit, not writers
– may be generalized to more than one uncommittted
– is most important in practice

Correctness? Deadlocks? Read locks needed?

Scheduler:
rl (x) : set read lock immediately on consistent version of x
wl(x) : if not write locked, set write lock on x to produce a

new uncommitted version
cl (x) : if neither read-locked nor write-locked cl(x) is granted

and x will be written as the new consistent version by
the TA

17

HS / DBS05-19-CC 33

MVCC for Read only TransactionsMVCC for Read only Transactions

• Read-only transactions always read the last
consistent state

• Last consistent state for Read only TA R: last
committed value(s) before R starts

• Idea:
– Each TA has a timestamp ("begin TA")
– Update transactions with TS t makes a new version of

updated data x,y,.. at commit, version of x,y,.. is t
– Read TA with timestamp t' read only those values

the version t of which is less than t'
• Update TA use conventional 2PL protocol with

S and X locks

HS / DBS05-19-CC 34

MVCC / Read Only TAs: ExampleMVCC / Read Only TAs: Example
call sequence: TA1, TA4 and TA5 are RO
R1(x) r2(x)w2(x)r3(x)r2(y)R4(z)w2(y)c2R4(x)c4w3(x)R5(z)c3R1(y)c1R5(x)c5

R1(x0)__R1(y0)c1

r2(x0)w2(x0)__r2(y0)____w2(y)c2

r3(x).......blocked..........r3(x2)__w3(x3)c3

R4(z0)____ R4(x0)c4

R5(z0)_________R5(x2)c5

R1(y0): there exists a newer version y2, but RO_TA1 is older
R5(x2): reads x2 since TA3 which produces x3, commits after TA 5 begins
R4(x0): same with TA2, which produces x2
TA3 has been blocked, since TA2 holds lock on x, r3(x2) after TA2 commited

18

HS / DBS05-19-CC 35

MVCC: How to implement versions MVCC: How to implement versions

• Read Only Multiple version CC (used in Oracle)

No read locks needed for consistent read,
S2PL write locks"system

change number
10023"
-> statement

SCN

Read those items with SCN' < SCN of statement
reconstruct all others from log records

Data have to be temporari-
ly stored anyway: System
has to be prepared for
Rollback"

… or transaction
commit time for
transaction
level read
consistency

15 Concurrency control 15 Concurrency control
15.1 Serializability and Concurrency Control
15.2 Locking

15.2.1 Lock protocols
15.2.2 Two phase locking
15.2.3 Strict transactional protocols
15.2.4 Lock conflicts and Deadlocks
15.2.5 Lock modes
15.2.6 Deadlock detection, resolution, avoidance

15.3 Nonlocking concurrency control
15.3.1 Multiversion cc

15.3.2 Optimistic cc: forward / backward oriented
15.3.3 Time stamp ordering

15.4 Synchronizing index structures
15.4 Distributed transactions: Two Phase Commit (short)

Lit.: Eickler/ Kemper chap 11.6-11.13, Elmasri /Navathe chap. 20, Garcia-Molina, Ullman, Widom: chap. 18

19

HS / DBS05-19-CC 37

Optimistic CCOptimistic CC

15.3.2 Optimistic concurrency control
– Locks are expensive
– Few conflicts retrospective check for conflicts

cheaper
– Basis idea: all transactions work on copies,

check for conflicts before write into DB
– if conflict: abort else commit

'Read' phase:
All data used are
copied to private
workspace and used
by the application

BOT

Validation phase:
any conflicts?
if yes: resolve

Commit phase:
write all (changed)
data into DB

EOT

HS / DBS05-19-CC 38

Optimistic CC: BOCCOptimistic CC: BOCC
Backward oriented concurreny control (BOCC)

r[y]
TA2

TA1

TA3

EOT

EOT

Commit or rollback?
r[x]

w[x] w[y]

w[z]

• ReadSet R(T) = data, transaction T has read in read phase
• WriteSet W (T) = data (copies!), T has changed in read phase

Assumption: W(T) ⊆ R(T) - necessary?
Example above: x,y ∈ R(T2), x,y ∈ W(T3), z ∈ W(T1)

Conflict? Let x ∈ R(T) . T wants to validate.
If a different TA read x, but did not commit no problem
If a different TA committed after BOT(T): DB state of

x max be different from x at BOT(T) conflict

still activeTA4
r4[a]

w4[x]

20

HS / DBS05-19-CC 39

Optimistic CC: BOCCOptimistic CC: BOCC
BOCC_validate(T) :

if for all transactions T' which committed after BOT(T) :
R(T) ∩ W(T') = ∅ then T.commit // successful validation

else T.abort

TA2

TA1

TA3

EOT

EOT

Commit or rollback?
r[a]

w[x] w[y]

r[y]

w[z]

Validation: what happens, if more than one TA validates?

Shown: when they are needed! Consequence: More aborts than necessary :

R(TA2) ∩ W(TA3) != ∅ . No abort when locking, not even a lock conflict.

w4[x]
still active

HS / DBS05-19-CC 40

Optimistic CC: FOCCOptimistic CC: FOCC

Forward oriented optimistic Concurrency control
(FOCC)
– Forward looking validation phase:

if there is a running transaction T' which read data
written by the validating transaction T then solve the
conflict (e.g. kill T'), else commit

TA2

TA1

TA3

EOT

EOT

Commit or solve conflict?

r[a]

r[x] w[x] r[y] w[y]

r[y]

r[z] ..w[z]

21

HS / DBS05-19-CC 41

Concurrency: Optimistic CCConcurrency: Optimistic CC

FOCC_validate(T) : if for all running transactions (T')
R(T') ∩ W(T) = ∅

then T.commit // successful validation
else solve_conflict (T, T')

R(T'): Read set of T' at validation time of T (current read set)

TA2

TA3 EOT Commit or solve conflict?

r[a]

r[x] w[x] r[y] w[y]

r[y]

HS / DBS05-19-CC 42

Concurrency controlConcurrency control Optimistic CCOptimistic CC

• Validation of read only transactions T:
FOCC guarantees successful validation !

• FOCC has greater flexibility
Validating TA may decide on victims!

•Issues for both approaches:
fast validation – only one TA can validate at a time.
Fast and atomic commit processing,

•Useful in situation with few expected conflicts

TA2

TA3 EOT solve conflict:
abort TA3 or TA2

r[x]

r[x] w[x] r[y] w[y]

r[y]

22

HS / DBS05-19-CC 43

Implementation of Read / Write setsImplementation of Read / Write sets

• Possible implementation of Read / Write sets:
attach to each object x timestamp ts(x) of last
write.

• Validating TA (T) checks if ts(x) changed since
BOT(T)

• Important detail: timestamp of data item on disk?
Access many disk records to validate?
Expensive!

• "Records on disk are older than or equal to the
records in buffer"

HS / DBS05-19-CC 44

Optimistic CCOptimistic CC & & LockingLocking
• Combining locks with optimism

– Example: high traffic reservation system

– typical TA: check "seats_avail >0 ?" //seats_avail is hot
spot

if yes, do this and that;
write seats_avail-1

– seats_avail is a hot spot object

– Not the state per se is important but the
predicate "seats_avail >0 ?"

– Optimism: if pred is true at BOT then it will be true
with high probability at EOT

– But if not: abort

23

HS / DBS05-19-CC 45

Optimistic CCOptimistic CC & & LockingLocking
– Additional operations Verify and Modify:

Verify P : check predicate P ("seats_avail >0"?)
//like read phase

put "seats_avail-1" into to_do list
rest of TA
EOT:
Modify : for all operations on to_do list

{ lock; verify once more;
if 'false' rollback else write updates;}
unlock all;

– Short locks, more parallelism
– If only decrement / increment operations: concurrent

writing possible without producing inconsistencies
– Enhancement: Escrow locks – system guarantees

that predicate still holds. Only ordered sets and inc /
dec operations

HS / DBS05-19-CC 46

15.3. 3 Time stamp ordering15.3. 3 Time stamp ordering

Time stamp ordering
Basic idea:
- assign timestamp when transaction starts
- if ts(t1) < ts(t2) … < ts(tn), then scheduler has to

produce history equivalent to t1,t2,t3,t4, ... tn

Timestamp ordering rule:

If pi[x] and qj[x] are conflicting operations,
then pi[x] is executed before qj[x] (pi[x] < qj[x])
iff ts(ti) < ts(tj)

24

HS / DBS05-19-CC 47

Timestamp orderingTimestamp ordering

• TO concurrency control guarantees conflict-
serializable schedules:

If not: cycle in conflict graph
cycle of length 2: ts(t1) < ts(t2) ∧ ts(t2) < ts(t1)
#
induction over length of cycle => #

=> No cycle in conflict graph

HS / DBS05-19-CC 48

TO SchedulerTO Scheduler

• Basic principle:
Abort transaction if its operation is "too late“
Remember timestamp of last write of x: maxW[x]
and last read maxR[x]

Transaction i: ti with timestamp ts(ti)

Operations: ri(x) / wi(x) - ti wants to read / write x

Scheduler state: maxR[x] / maxW[x]
timestamp of youngest TA
which read x / has written x

25

HS / DBS05-19-CC 49

TO Scheduler: readTO Scheduler: read

Read: TA ti with timestamp ts(ti) wants to read x : ri(x)
maxW[x] > ts(ti):

there is a younger TA wich has written x
contradicts timestamp ordering:

ti reads too late
abort TA ti , restart ti

maxW[x] < ts(ti) maxR[x] = ts(ti), go ahead
Example: ------|------|----------- >

wj(x) ri(x) ts(ti) < ts(tj)

What would happen in a locking scheduler?

HS / DBS05-19-CC 50

TO Scheduler: writeTO Scheduler: write
Write: TA ti with timestamp ts(ti) wants to write x : wi(x)
maxW[x] > ts(ti) ∨ maxR[x] > ts(ti) :

/* but x has been written or read by younger
transaction:
contradicts timestamp ordering
abort TA ti

otherwise: schedule wi(x) for execution

Why abort ?

wi(x) rj(x) abort(i) ts(ti) < ts(tj)

Dirty read! Solution: scheduler delays rj until TA committed
TA: the TA which was the last writer.

26

HS / DBS05-19-CC 51

Thomas Write RuleThomas Write Rule

• Idea: younger write overwrites older write
without changing effect of timestamp ordering

maxR[x] maxW[x]

maxW[x] > ts(Ti)

ti wants to write x

Rules for Writer T with timestamp ts(T):
1. maxR[x] > ts(T) abort T
2. maxW[x] > ts(T) skip write // Thomas write rule
3. otherwise write(x), maxW[x] = TS(T)

HS / DBS05-19-CC 52

15.4. 15.4. SynchronizationSynchronization of of IndexstructuresIndexstructures

2
D2

3
D3

5
D5

5

7
D7

9
D9

11
D11

20 40

50 60

......

. . .

25 35

15
D15

15

. . .

Neighbor pointers
B+-tree

cf Kemper / Eickler

Page 2

Page 4

27

HS / DBS05-19-CC 53

SynchronisationSynchronisation of index structuresof index structures

• Basic idea:
– Index structures are redundant, no reason to put them

into transactional brackets
– Concurrent operation on B+-tree: short page locks
Sufficient??
Scenario: TA1 searches for rec 15

has processed page 2 and found pointer to p4

TA2 inserts rec 14: page split!
TA1 will not find rec 15

Solution: TA1 find rec in a right neighbor

HS / DBS05-19-CC 54

SynchronizationSynchronization of of IndexstructuresIndexstructures

7
D7

9
D9

11
D11

2
D2

3
D3

5
D5

5 11

20 40

50 60

......

...

. . .

25 35

14
D14

15
D15

15

. . .

28

HS / DBS05-19-CC 55

15.5 Distributed Transactions15.5 Distributed Transactions Intermezzo Intermezzo

• Configuration •Different resource managers
involved in the transaction
e.g: database systems, mail server,
file system, message queues,...
•Asynchronous and independent
•One transaction coordinator
can be a resource manager or not
•One or more participants

Coordinator

Examples: Transfer of money/shares / ... from Bank A to B
ECommerce systems
All kinds of processing in decentralized systems

Frequently used in multi-tier architectures: middle tier
accesses different databases.

HS / DBS05-19-CC 56

Distributed TransactionsDistributed Transactions Intermezzo Intermezzo
• Problems

– No problem ... if all systems work reliable
– Deadlock? Difficult to detect: use optimistic locking
– Obvious inconsistencies, if one participant commits,

another crashes:
x := x+2

x := x-2
Coordinator: COMMIT
P1 commits
P2 crashes, undo??
Introduces global
inconsistency

P1 P2

•Assumptions

• Each resource manager has a transactional recovery system
(log operations, commit, rollback)
• There is exactly one commit coordinator, which issues commit for
a transaction exactly once
• A transaction has stopped processing at each site before commit is
issued

29

HS / DBS05-19-CC 57

Distributed TransactionsDistributed Transactions
• The Two Phase Commit protocol (2PC)

• After prepare phase: participants are ready to commit or
to abort; they still hold locks

• If one of the participants does not reply or is not able to
commit for some reason, the global transaction has to be
aborted.

• Problem: if coordinator is unavailable after the prepare
phase, resources may be locked for a long time

Request_to_prepare

Prepared

commit

done

1. Coordinator asks for preparing
commit of a transaction

2. If (all participants answer
'prepared')

3. Coordinator asks for commit

else asks for abort
4. Participants send 'done'

Uncertain
period

HS / DBS05-19-CC 58

Distributed TransactionsDistributed Transactions
Transaction managers: the X/Open transaction model

– Independent systems which coordinate transactions
involving multiple resource managers as a service for
application programs

Application program

Transaction manager

Resource mgr

Application programming
interface

TX- interface (StartTrans,
commit, Rollback..)
Microsoft: OLE transactional
interface

two-phase-commit
two-phase-commit, non-local transactions,
other transaction managers

30

HS / DBS05-19-CC 59

Summary: Transactions and concurrencySummary: Transactions and concurrency

• Transactions: Very import concept
• Model for consistent, isolated execution of TAs
• Scheduler has to decide on interleaving of

operations
• Serializability: correctness criterion
• Implementation of serializability:

– 2-phase-locking
– hierarchical locks
– variation in order to avoid deadlocks :

wound / wait, wait / die
– optimistic concurrency control
– multiversion cc

