SOLUTION
Q1. Find the total voltage across the load resistor. Also draw the phasor diagram.

Solution:
Total voltage $=34.47-\mathrm{j} 12.89 \mathrm{~V}$

$$
=36.8 \angle-20.5^{\circ}
$$

Q2.An ac circuit consisting of a pure resistance of 10Ω is connected to an ac supply of $230 \mathrm{~V}, 50 \mathrm{~Hz}$. Calculate the (i) current (ii) power consumed and (iii) equations for voltage and current. Solution:

$$
\left\{\begin{array}{ll}
& (\text { i }) I=\frac{V}{R}=\frac{230}{10}=23 \mathrm{~A} \\
R_{i}- & (\text { ii) } P=V I=230 \times 23=5260 \mathrm{~W} \\
10 \mathrm{n}
\end{array}\right\} \begin{aligned}
& \text { (iii) } V_{m}=\sqrt{2} V=325.27 \mathrm{~V} \\
& I_{m}=\sqrt{2} I=32.52 \mathrm{~A} \\
& \omega=2 \pi f=314 \mathrm{rad} / \mathrm{sec} \\
& \omega=325.25 \sin 314 t \\
& v=32.52 \sin 314 t \\
& i=
\end{aligned}
$$

Q3. A pure inductive coil allows a current of 10 A to flow from a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find (i) inductance of the coil (ii) power absorbed, and (iii) equations for voltage and current. Also draw the phasor diagram. Solution:

$$
\begin{array}{ll}
\text { (i) } X_{L}=\frac{V}{I}=\frac{230}{10}=23 \Omega & \text { (iii) } V_{m}=\sqrt{2} V=325.27 \mathrm{~V} \\
X_{L}=2 \pi f L & I_{m}=\sqrt{2} I=14.14 \mathrm{~A} \\
L=\frac{X_{L}}{2 \pi f}=0.073 \mathrm{H} & \omega=2 \pi f=314 \mathrm{rad} / \mathrm{sec} \\
\text { (ii) } P=0 & v=325.25 \sin 314 t \\
& i=14.14 \sin (314 t-\pi / 2)
\end{array}
$$

SOLUTION
Q4. A $318 \mu \mathrm{~F}$ capacitor is connected across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ system. Find (i) the capacitive reactance (ii) rms value of current and (iii) equations for voltage and current.
Solution:

$$
\begin{aligned}
& \text { (i) } X_{C}=\frac{1}{2 \pi f C}=10 \Omega \\
& \text { (ii) } I=\frac{V}{X_{C}}=23 \mathrm{~A} \\
& \text { (iii) } V_{m}=\sqrt{2} V=325.27 \mathrm{~V} \\
& I_{m}=\sqrt{2} I=32.53 \mathrm{~A} \\
& \omega=2 \pi f=314 \mathrm{rad} / \mathrm{sec} \\
& v=325.25 \sin 314 t \\
& i=32.53 \sin (314 t+\pi / 2)
\end{aligned}
$$

Q5. Calculate the total impedance of the circuit shown below. Solution:

$$
\begin{aligned}
\begin{aligned}
\mathrm{X}_{\mathrm{L}} & =2 \pi \mathrm{fL} \\
& =(2)(\pi)(60 \mathrm{~Hz})(650 \mathrm{mH}) \\
& =245.04 \Omega \\
\mathrm{X}_{\mathrm{C}} & =\frac{1}{2 \pi \mathrm{fC}}=\frac{1}{(2)(\pi)(60 \mathrm{~Hz})(1.5 \mu \mathrm{~F})} \\
\mathrm{X}_{\mathrm{C}} & =1.7684 \mathrm{k} \Omega \\
\mathrm{Z}_{\mathrm{R}} & =250+\mathrm{j} 0 \Omega \text { or } 250 \Omega \angle 0^{\circ} \\
\mathrm{Z}_{\mathrm{L}} & =0+\mathrm{j} 245.04 \Omega \text { or } 245.04 \Omega \angle 90^{\circ} \\
\mathrm{Z}_{\mathrm{C}} & =0-\mathrm{j} 1.7684 \mathrm{k} \Omega \text { or } 1.7684 \mathrm{k} \Omega \angle-90^{\circ} \\
\mathrm{Z}_{\text {total }} & =(250+\mathrm{j} 0 \Omega)+(0+\mathrm{j} 245.04 \Omega)+(0-\mathrm{j} 1.7684 \mathrm{k} \Omega) \\
\mathrm{Z}_{\text {total }} & =250-\mathrm{j} 1.5233 \mathrm{k} \Omega \text { or } 1.5437 \mathrm{k} \Omega \angle-80.680^{\circ}
\end{aligned}
\end{aligned}
$$

Q6.A coil having a resistance of 7Ω and an inductance of 31.8 mH is connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) the circuit current (ii) phase angle (iii) power factor (iv) power consumed, (v) reactive power and (vi) apparent power. Also draw the phasor diagram.
Solution:
$X_{L}=2 \pi y L=2 \times 3.14 \times 50 \times 31.8 \times 10^{-3}=10 \Omega$
$Z=\sqrt{R^{2}+X_{L}^{2}}=\sqrt{7^{2}+10^{2}}=12.2 \Omega$
(i) $I=\frac{V}{Z}=\frac{230}{12.2}=18.85 \mathrm{~A}$
(ii) $\phi=\tan ^{-1}\left(\frac{X_{L}}{R}\right)=\tan ^{-1}\left(\frac{10}{7}\right)=55^{\circ}$ lag

(iii) $P F=\cos \Phi=\cos \left(55^{\circ}\right)=0.573$ lag
(iv) $P=V I \cos \Phi=230 \times 18.85 \times 0.573=2484.24 W$
v) Reactive power $\mathrm{Q}=\mathrm{VI} \sin \phi=230 \times 18.85 \times 0.795=3.46 \mathrm{kVAR}$
vi) Apparent power $=4.25 \mathrm{kVA}$

SOLUTION

Q7. A $200 \mathrm{~V}, 50 \mathrm{~Hz}$, inductive circuit takes a current of 10A, lagging 30 degree. Find (i) the resistance reactance (iii) inductance of the coil.
Solution:

$$
Z=\frac{V}{I}=\frac{200}{10}=20 \Omega
$$

(i) $R=Z \cos \phi=20 \times \cos 30^{\circ}=17.32 \Omega$
(ii) $X_{L}=Z \sin \phi=20 \times \sin 30^{\circ}=10 \Omega$
(iii) $L=\frac{X_{L}}{2 \pi f}=\frac{10}{2 \times 3.14 \times 50}=0.0318 H$

Q8. A Capacitor of capacitance $79.5 \mu \mathrm{~F}$ is connected in series with a non-inductive resistance of 30Ω across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find (i) impedance (ii) current (iii) phase angle (iv) equation for the instantaneous value of current. Also draw the phasor diagram.
Solution:

$$
\begin{aligned}
& X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \times 3.14 \times 50 \times 79.5 \times 10^{-6}}=40 \Omega \\
& \text { (i) } Z=\sqrt{R^{2}+X_{C}^{2}}=\sqrt{30^{2}+40^{2}}=50 \Omega \\
& \text { (ii) } I=\frac{V}{Z}=\frac{100}{50}=2 A \\
& \text { (iii) } \Phi=\tan ^{-1}\left(\frac{X_{C}}{R}\right)=\tan ^{-1}\left(\frac{40}{30}\right)=53^{\circ} \text { lead } \\
& \text { (iv) } I_{m}=\sqrt{2} I=\sqrt{2} \times 2=2.828 \mathrm{~A} \\
& \omega=2 \pi f=2 \times 3.14 \times 50=314 \mathrm{rad} / \mathrm{sec} \\
& i=2.828 \sin \left(314 t+53^{\circ}\right)
\end{aligned}
$$

Q9. A $230 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply is applied to a coil of 0.06 H inductance and 2.5Ω resistance connected in series with a $6.8 \mu \mathrm{~F}$ capacitor. Calculate (i) Impedance (ii) Current (iii) Phase angle between current and voltage (iv) power factor (v) power consumed Solution:

$$
\begin{aligned}
& X_{L}=2 \pi f L=2 \times 3.14 \times 50 \times 0.06=18.84 \Omega \\
& X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \times 3.14 \times 50 \times 6.8 \times 10^{-6}}=468 \Omega \\
& \text { (i) } Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{2.5^{2}+(18.84-468)^{2}}=449.2 \Omega \\
& \text { (ii) } I=\frac{V}{Z}=\frac{230}{449.2}=0.512 \mathrm{~A} \\
& \text { (iii) } \Phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\tan ^{-1}\left(\frac{18.84-468}{30}\right)=-89.7^{\circ} \\
& \text { (iv) } p f=\cos \Phi=\cos 89.7=0.0056 \text { lead } \\
& \text { (v) } P=V I \cos \Phi=230 \times 0.512 \times 0.0056=0.66 \mathrm{~W}
\end{aligned}
$$

SOLUTION

Q10. A resistance R, an inductance $L=0.01 \mathrm{H}$ and a capacitance C are connected in series. When an alternating voltage $v=400 \operatorname{Sin}\left(3000 t-20^{\circ}\right)$ is applied to the series combination, the current flowing is $10 \sqrt{ } 2 \operatorname{Sin}\left(3000 t-65^{\circ}\right)$. Find the values of R and C .
Solution:

$$
\begin{array}{ll}
\Phi=65^{\circ}-20^{\circ}=45^{\circ} \mathrm{lag} & Z=\frac{V_{m}}{I_{m}}=\frac{400}{10 \sqrt{2}}=28.3 \Omega Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{R^{2}+R^{2}} \\
X_{L}=\omega L=3000 \times 0.01=30 \Omega & \sqrt{2} R=28.3 \\
\tan \Phi=\tan 45^{\circ}=1 & R=20 \Omega \\
\tan \Phi=\frac{X_{L}-X_{C}}{R}=1 & X_{L}-X_{C}=20 \Omega \\
R=X_{L}-X_{C} & X_{C}=30-20=10 \Omega \\
& C=\frac{1}{\omega X_{C}}=\frac{1}{3000 \times 10}=33.3 \mu F
\end{array}
$$

Q11. A coil of pf 0.6 is in series with a $100 \mu \mathrm{~F}$ capacitor. When connected to a 50 Hz supply, the potential difference across the coil is equal to the potential difference across the capacitor. Find the resistance and inductance of the coil.
Solution:

$$
\begin{aligned}
& X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \times 3.14 \times 50 \times 100 \times 10^{-6}}=31.83 \Omega \\
& V_{\text {coll }}=V_{c} \\
& I Z_{\text {coll }}=I X_{C} \\
& Z_{\text {coll }}=X_{C}=31.83 \Omega \\
& R=Z_{\text {coil }} \cos \Phi_{\text {coll }}=31.83 \times 0.6=19.09 \Omega \\
& X_{L}=\sqrt{Z_{\text {coil }}^{2}-R^{2}}=\sqrt{31.83^{2}-19.09^{2}}=25.46 \Omega \\
& L=\frac{1}{2 \pi f L}=\frac{1}{2 \times 3.14 \times 50 \times 25.46}=0.081 \mathrm{H}
\end{aligned}
$$

Q12. A current of (120-j50)A flows through a circuit when the applied voltage is $(8+j 12) \mathrm{V}$. Determine impedance (ii) power factor (iii) power consumed and reactive power.

Solution:

$$
\begin{array}{ll}
\bar{V}=8+j 12 & \text { (ii) } p f=\cos \Phi=\cos 79.7^{\circ}=0.179 \text { lag } \\
\bar{I}=120-j 50 & \text { (iii) } S=V I^{*}=(8+j 12) \times(120+j 50)=360+j 1840 \\
\left(\overline{\text { i }} \bar{Z}=\frac{\bar{V}}{\bar{I}}=\frac{8+j 12}{120-j 50}=0.02+j 0.11=0.11 \angle 79.7^{\circ}\right. & S=P+j Q \\
Z=0.11 \Omega & P=360 \mathrm{~W} \\
\Phi=79.7^{\circ} & Q=1840 \mathrm{VAR}
\end{array}
$$

Q13. The complex Volt Amperes in a series circuit are (4330-j2500) and the current is ($25+\mathrm{j} 43.3$)A. Find the applied voltage.
Solution:

$$
\begin{aligned}
& \bar{S}=4330+j 2500 \\
& \bar{I}=25+j 43.3 \\
& \bar{V}=\frac{\bar{S}}{\overline{I^{*}}}=\frac{4330+j 2500}{25-j 43.3}=86.6+j 50
\end{aligned}
$$

SOLUTION

Q14. Calculate the total impedance of the circuit.

Solution:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=2 \pi f \mathrm{~L}=2 \pi .60 .142 \times 10^{-3}=53.54 \Omega \\
& \mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}=\frac{1}{2 \pi f \mathrm{C}}=\frac{1}{2 \pi .60 .160 \times 10^{-6}}=16.58 \Omega \\
& \mathrm{Z}=\frac{1}{\sqrt{\left(\frac{1}{\mathrm{R}}\right)^{2}+\left(\frac{1}{\mathrm{X}}-\frac{1}{\left.\mathrm{X}_{\mathrm{C}}\right)^{2}}\right.}=\frac{1}{\sqrt{\left(\frac{1}{1000}\right)^{2}+\left(\frac{1}{53.54}-\frac{1}{16.58}\right)^{2}}}} \\
& \mathrm{Z}=\frac{1}{\sqrt{1.0 \times 10^{-6}+1.734 \times 10^{-3}}}=\frac{1}{0.0417}=24.0 \Omega
\end{aligned}
$$

Q15. Find the impedance across the terminals a-b. Consider the supply frequency as 50 Hz .

Solution:
$\mathrm{Z}_{\mathrm{ab}}=16-\mathrm{j} 1.99 \Omega$

Q16. A parallel circuit comprises of a resistor of 20Ω in series with an inductive reactance 15Ω in one branch and a resistor of 30Ω in series with a capacitive reactance of 20Ω in the other branch. Determine the current and power dissipated in each branch if the total current drawn by the parallel circuit is $10 \angle-30^{\circ} \mathrm{A}$.
Solution:

$$
\begin{aligned}
& Z_{1}=20+j 15 \\
& Z_{2}=30-j 20 \\
& I=10 \angle-30^{\circ}=8.66-j 5 \\
& I_{1}=I \frac{Z_{2}}{Z_{1}+Z_{2}}=(8.66-j 5) \times \frac{(30-j 20)}{(20+j 15)+(30-j 20)} \\
& I_{1}=3.8-j 6.08=7.17 \angle-60^{\circ} \\
& I_{2}=I-I_{1}=(8.66-j 5)-(3.8-j 6.08) \\
& I_{2}=4.86+j 1.08=4.98 \angle-12.5^{\circ} \\
& P_{1}=I_{1}^{2} R_{1}=7.17^{2} \times 20=1028.2 \mathrm{~W} \\
& P_{1}=I_{2}^{2} R_{2}=4.98^{2} \times 30=744 W
\end{aligned}
$$

Q17. An impedance coil in parallel with a $100 \mu \mathrm{~F}$ capacitor is connected across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The coil takes a current of 4 A and the power loss in the coil is 600 W . Calculate (i) the resistance of the coil (ii) the inductance of the coil (iii) the power factor of the entire circuit.
Solution:

$$
\begin{aligned}
& Z_{\text {coil }}=\frac{V}{I}=\frac{200}{4}=50 \Omega \\
& P=I^{2} R=600 \mathrm{~W} \\
& R=\frac{600}{I^{2}}=\frac{600}{4^{2}}=37.5 \Omega \\
& X_{L}=\sqrt{Z_{\text {coil }}{ }^{2}-R^{2}}=\sqrt{50^{2}-37.5^{2}}=33.07 \Omega
\end{aligned}
$$

SOLUTION

$$
\begin{array}{ll}
L=\frac{X_{L}}{2 \pi f}=\frac{33.07}{2 \times 3.14 \times 50}=0.105 H & Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}=\frac{(37.5+j 33.07)(-j 31.83)}{(37.5+j 33.07)+(-j 31.83)} \\
X_{c}=\frac{1}{2 \pi f C}=\frac{1}{2 \times 3.14 \times 50 \times 100 \times 10^{-6}}=31.83 \Omega & Z=27-j 32.72=42.42 \angle-50.5^{\circ} \\
Z_{1}=R+j X_{L}=37.5+j 33.07 & \Phi=-50.5^{\circ} \\
Z_{2}=-j X_{C}=-j 31.83 & p f=\cos \Phi=\cos \left(-50.5^{\circ}\right)=0.6365
\end{array}
$$

Q18. A circuit having a resistance of 20Ω and inductance of 0.07 H is connected in parallel with a series combination of 50Ω resistance and $60 \mu \mathrm{~F}$ capacitance. Calculate the total current, when the parallel combination is connected across $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.
Solution:

$$
\begin{aligned}
& X_{L}=2 \pi f L=2 \times 3.14 \times 50 \times 0.07=22 \Omega \\
& X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \times 3.14 \times 50 \times 60 \times 10^{-6}}=53 \Omega \\
& Z_{1}=20+j 22 \\
& Z_{2}=50-j 53 \\
& Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}=\frac{(20+j 22)(50-j 53)}{(20+j 22)+(50-j 53)}=25.7+\mathrm{j} 11.9 \\
& I=\frac{V}{Z}=\frac{230}{Z}=7.4-\mathrm{j} 3.4=8.13 \angle-24.9^{\circ}
\end{aligned}
$$

Q19. Two impedances $Z_{1}=12-\mathrm{j} 10$ and $Z_{2}=10+j 12$ are connected in parallel across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate the equivalent impedance, current, power factor and power consumed.

Solution:

$$
\begin{aligned}
& \mathrm{Z}_{1}=12-\mathrm{j} 10=15.62 \angle-40 \mathrm{ohms} \\
& \mathrm{Z}_{2}=10+\mathrm{j} 12=15.62 \angle 50 \mathrm{ohms} \\
& \mathrm{Z}=11.12 \angle 15 \text { ohms } \\
& \mathrm{Current}, \mathrm{I}=20.68 \angle-15 \mathrm{~A} \\
& \mathrm{Pf}=0.96 \text { lagging } \\
& \text { Power }=\mathrm{VI} \cos \phi=4.566 \mathrm{~kW}
\end{aligned}
$$

Q20. Three impedances Z_{1}, Z_{2}, Z_{3} are connected in parallel across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The values are $Z_{1}=12 \angle 30^{\circ} Z_{2}=8 \angle-30^{\circ}$ and $Z_{3}=10 \angle 60^{\circ}$. Calculate the total impedance, total current, power factor and power consumed by the whole circuit.
Solution:
Total impedance, $Z=4.25 \angle 14^{\circ} \Omega$
Total current, $\mathrm{I}=54.05 \angle-14^{\circ} \mathrm{A}$
Power factor $=0.97$ lagging
Power, $\mathrm{P}=12.058 \mathrm{~kW}$

