
 1

16.070 Introduction to Computers and Programming

March 14 Recitation 6 Spring 2002

Topics:

• Quick review of PS4 issues
• Fundamental Data types
• ASCII / Arithmetic Conversion

• Number Systems / Logical Operation
• Data Representation
• Sampling

Common Programming Mistakes

At office hours and while grading a number of mistakes have surfaced repeatedly.
Here are a few:

1. Pointer variables should be initialized to the constant NULL.

2. The address a pointer points to is incremented by pointer arithmetic according to the size
of the variable type that the pointer is declared as.

3. Constants (#define and const) should be all uppercase.

3. Function prototypes specified in homework should be used without modification.

Fundamental Data Types

The fact is that data types are platform specific. IBM, SGI, Sun and other manufacturers

all adhere to their own standards regarding the amount of memory assigned for different data
types. ANSI-C does provide a minimum standard, indicating at least how many bytes should be
assigned to each standard data type.

Variable Type Keyword Bytes Required Range

Character char 1 -27 to 27-1
Integer int 2 -215 to 215 -1

Short Integer short 2 -215 to 215 -1

Long Integer long 4 -231 to 231 -1
Unsigned Character unsigned char 1 0 to 28 -1

Unsigned Integer unsigned int 2 0 to 216 -1
Unsigned Short Integer unsigned short 2 0 to 216 -1

Unsigned Long Integer unsigned long 4 0 to 232 -1
Single-Precision Floating-Point* float 4 -1038 to 1038

Double-Precision Floating-Point** double 8 -10308 to 10308

* Approximate precision to 7 digits
** Approximate precision to 19 digits

Table 1 ANSI-C minimum memory requirements for standard data types

 2

How do we know how much memory is allotted for each data type on your specific platform?
Programming languages have a sizeof(), or equivalent, statement. It is always good style to use
sizeof() in C when you rely on the amount of memory used by your program. This statement
returns the size of any data type e.g.

int a = 0;
a=sizeof(int);
printf(“integers have size: %d bytes”,a);

Output:
integers have size: 4 bytes
Press any key to continue

You will notice that integers on the PC platform, running MS Windows, consume more memory
than the minimum ANSI specification of 2 bytes.

ASCII Character Table

You may have noticed that the above table specifies a variable of type char to have a range from
0 to 255. How can a character correspond to a number?
The ASCII (“American Standard Code for Information Interchange”) codes are used to represent
characters as one byte integers. The first 128 of them (0 " 127) are the standard ASCII
characters, while the next 128 (128 " 255) are the extended ASCII characters (symbols,
accented letters, Greek letters, etc...).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL
Table 2 Hex-indexed ASCII table

Some examples…

Character Decimal Hex Octal Binary

space 32 20 40 0010 0000

! 33 21 41 0010 0001

" 34 22 42 0010 0010

35 23 43 0010 0011

$ 36 24 44 0010 0100

A 65 41 101 0100 0001

B 66 42 102 0100 0010

 3

Control Codes

NUL (null)
SOH (start of heading)
STX (start of text)
ETX (end of text)
EOT (end of transmission) - Not the same

as ETB
ENQ (enquiry)
ACK (acknowledge)
BEL (bell) - Caused teletype machines to

ring a bell. Causes a beep in many
common terminals and terminal
emulation programs.

BS (backspace) - Moves the cursor (or
print head) move backwards (left) one
space.

TAB (horizontal tab) - Moves the cursor
(or print head) right to the next tab
stop. The spacing of tab stops is
dependent on the output device, but
is often either 8 or 10.

LF (NL line feed, new line) - Moves the
cursor (or print head) to a new line.
On Unix systems, moves to a new line
AND all the way to the left.

VT (vertical tab)
FF (form feed) - Advances paper to the

top of the next page (if the output
device is a printer).

CR (carriage return) - Moves the
cursor all the way to the left,
but does not advance to the next
line.

SO (shift out) - Switches output
device to alternate character set.

SI (shift in) - Switches output device
back to default character set.

DLE (data link escape)
DC1 (device control 1)
DC2 (device control 2)
DC3 (device control 3)
DC4 (device control 4)
NAK (negative acknowledge)
SYN (synchronous idle)
ETB (end of transmission block) - Not

the same as EOT
CAN (cancel)
EM (end of medium)
SUB (substitute)
ESC (escape)
FS (file separator)
GS (group separator)
RS (record separator)
US (unit separator)

Type Casting

Sometimes we don’t like the standard rules of arithmetic conversion to be applied to us. In such
cases we may decide to cast variables or results of arithmetic into specific types. Lets look at an
example:

double Velocity, Time_Elapsed;
Distance = Velocity*Time_Elapsed;

We would usually need to define Distance as being of data type double. A compiler like Visual C
would even compile the code if Distance was defined as int, but it would issue a warning
message. This is not necessarily true for all compilers! Other C compilers, such as Interactive C,
which we will use when programming the Handy Boards, are more strict about types. Many
compilers don’t even hold with the arithmetic conversion rules that you have learned. The safest
bet is to make use of a process called type casting. The correct way to cast a variable of one
data type into another would be:

/* variable declaration */
int Distance = 0;
double Velocity = 10.0;
double Time_Elapsed = 100.0;

/* Type casting */
Distance = (int)(Velocity*Time_Elapsed);

 4

Arithmetic Conversions

Sometimes equations in your code will contain variables of different types, and all in the same
equation. What should the type of the answer to such an equation be? Standard C compiler rules
exist that deal with such cases:

1. C temporarily converts the value of the “lower” type to that of the “higher” type, and
then performs the operation, producing a value of the “higher” type (see hierarchy
table on page 4).

2. Characters and short ints are converted to int before operations are performed.
3. You can use casts to force the conversion of one data type to another. The use of a

cast overrides the standard rules for type conversions. The cast operator does not
change the value stored n the variable.

4. Casting is done by explicit type conversions immediately before an expression. Place
the type in parentheses immediately in front of the variable you want to change.

5. Unsigned property does not necessarily propagate from lower to higher. Do not mix
unsigned and signed data types in operations; use casts. The reason is that the
storage of unsigned types varies from computer to computer and hence if you do not
use casts, you may end up with unwanted results.

6. All decimal numbers without a declared type default to double.

Conversion Hierarchy Table

Hierarchy of Signed Data Types Hierarchy of Unsigned Data Types
long double unsigned long
double
float unsigned
long int unsigned short
int unsigned char
short int
char

The above table indicates that the long double data type is at the top of the hierarchy, with char
being at the bottom.

Examples:
1. int a = 0;
 double b = 0.0;
 c = a + b; /* c would need to be of type double (Rule 1) */

2. int a = 0;
 c = a + 5; /* c would need to be of type integer (Rule 2) */

 5

Number Systems

In everyday situations, we are used to using a decimal (base 10) number system. It has digits 0
through 9 and each digit’s position in a number is ten raised to the power of the position multiplied
by the number:
thus, 123 = (1 * 102) + (2 * 103) + (3 * 100)

Three different number systems are commonly used in software engineering: binary (base 2),
octal (base 8), and hexadecimal (base 16). In binary, the only digits available are 0 and 1. In
octal the only digits available are 0 through 7. In hexadecimal, 0 through 9 are used, plus 5
additional digits (A,B,C,D,E,F) are used to represent (10,11,12,13,14,15).

Example: The same numbers are written below is several different number systems.

Decimal Binary Octal Hexadecimal
129 10000001 201 71

Often times (especially when you’re learning) writing the powers of two above a binary number
will make it easier to read:

27 = 128 26 = 64 25 = 32 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1
1 0 0 0 0 0 0 1

Converting between binary, octal, and hexadecimal number systems only involves regrouping
digits. A hex number can be created from a binary number by putting the binary digits into groups
of four starting from the least significant bit (rightmost bit) and then allowing each group of four
digits represent a hex digit. Likewise, an octal number is created from a binary number using the
same approach, but putting bits into groups of 3.

Example: The same numbers are converted from binary to octal and from binary to
hexadecimal.

Binary Octal Binary Hexadecimal
10 000 001 201 1000 0001 81
 1 010 100 124 101 0100 54

Converting binary, octal, or hexadecimal numbers to decimal numbers is accomplished by
multiplying each digit by the base raised to the position of the digit in the manner described at the
beginning of this section. (129 = 1*128 + 1*1 = 2*64 + 1*1 = 7*16 + 1*1)
 binary octal hex

Converting decimal numbers to binary, octal, or hexadecimal is not as elegant a process. Start
with the highest power of the base (2, 8, or 16) that can be subtracted out of the decimal number
and subtract the highest multiple of that power possible. The multiple of that power is the digit
corresponding to that power in the new base. Repeat this operation on each result until the
number being converted is 0.

Example: The number 12910 will be converted to octal.

129 – 64*2 = 1 è digit corresponding to 82 is 2
1 – 1*1 = 0 è digit corresponding to 80 is 1
Thus 12910 == 2018

 6

Number System Operations

Just as it is possible to perform a variety operations such as addition, subtraction, multiplication,
and division for decimal numbers, it is also possible to perform these operations on binary, octal
and decimal numbers.

For instance: FEED16 + FACE16 = ?

 FEED16
+ FACE16
 1F9BB16

An interesting similarity between number systems occurs when you multiply or divide a number
by its base. Multiplying a base 10 number by 10 will add a zero to the right end of the number
(3410*1010=34010). Likewise, multiplying a base 2 number by 2 will add a zero to the right end of
the number (10012 * 210 = 100102). This property holds when an octal number is multiplied by 8
and when a hexadecimal number is multiplied by 16.

A similar property exists for dividing by a number’s base. Just as when 340 is divided by 10 the
result is 34, when 10102 is divided by 210 the result is 1012. Likewise, when a hexadecimal
number 14016 is divided by 1610, the result is 1416.

The process of multiplying or dividing a binary number by two shifts the bits in that number to the
left (multiplying by 2) or to the right (dividing by 2). Another way to shift bytes left and right is
using the shift operators in C: >> and <<

For instance the C expression:

int x = 8 << 2;
will shift the binary representation of 8 left two bits and assign the result to x.
Thus, 810 == 10002 , 10002 << 2 == 1000002 == 3210 == 8*2*2

Consequently 8 >> 2 == 2 , because 10002 >> 2 === 102

Shift operates by manipulating the binary bit representation of a number.
There is also a set of logical bitwise operations:

Operation name C operator Function
bitwise and & Bitwise and will AND each bit of the binary representation

of a number individually and produce an output number
composed of the results of the individual ands

bitwise or | Like bitwise and, but instead will OR each bit of the
binary representation of a number

bitwise xor ^ Like bitwise and, but instead will XOR each bit of the
binary representation of a number

bitwise not ~ Like bitwise and, but instead will NOT each bit of the
binary representation of a number

An example of bitwise operation would be: 6 ^ 4 == 2

 1102
xor 1002
 0102

An excellent combined use of shift and bitwise operations would be to ascertain the configuration
of a particular set of bits. This could be accomplished by first ANDing all other bits with 0 and
then shifting the number right until the bits in question are the list significant and the only bits
remaining. Then, their values can
For instance, to find out what value is indicated by the two leftmost bits in a 7 bit number, bitwise
AND that number with 96 (11000002) and then rightshift 5. The result will be 3 indicating both bits
bits in question are 1.

 7

Data Representation

Negative Numbers

There are a number of ways to represent the sign of a number, even when that number is
represented by a series of bits in the computer. One of the simplest ways is to reserve one bit to
hold a number’s sign. Using the most significant bit for the sign (0 = positive, 1 = negative) and
the remaining 7 bits for the number, the range of an 8 bit number would go from –127 to +127.
This method is call signed magnitude.
If our convention were that a 1 in the sign bit indicated a negative number,
-2 would be: 100000102

Signed magnitude is generally considered inefficient and confusing, because two possible
representations exist for 0.

Another approach to representing negative numbers is called two’s complement.
To use the two’s complement approach, creating a negative number is accomplished by inverting
each bit of the corresponding positive number (like the bitwise “not” operation described on the
previous page) and then adding 1. It turns out that inverting 0 with this method yields 0, thereby
eliminating the problem of dual representation. The range of possible values using an 8 bit
integer with the two’s complement system is –128 to +127.

For instance, negative 2 in an 8 bit two’s complement system would be found by taking the binary
representation of 2: 0000 00102 , inverting the bits to get 1111 11012 and then adding 1 to get:
1111 11102

Verifying Authenticity – Parity Checking

Often times, when transferring data from one location to another, that data will become altered in
some way. Many different methods for ensuring data integrity (and even restoring corrupted
data) currently exist. One simple method that can identify single bit changes in a number is
called parity checking. With parity checking, one bit in a number is reserved as the parity bit.
The value of this bit is determined by summing the number of bits set to “1”. If the convention
being used is even parity, the sum of the bits in the number should add up to an even number.
Thus, if they don’t, the parity bit will be set to 1 to ensure that the bits do add up to an even
number.

Example: using an even parity convention with the parity bit being the most significant bit, the
number 76 is to be transferred

7610 == 010011002

the sum of the digits = 1+0+0+1+1+0+0 = 3

because 3 is an odd number, the parity bit must be set to 1 to make the data transferred have
even parity… thus, the resulting number is:
110011002 == 20410

 8

Sampling

The process of converting naturally occurring measurements in the real world into values in a
computer that may be analyzed or acted upon is the process of converting continuous analog
data into digital data. Analog data has many advantages in that it is easy for humans to process
and it occurs naturally with virtually infinite detail. Conversely, digital data has the advantage of
being easy for computers to process, is perfectly reproducible, and is quantitative. Examples of
analog data are photographs, cassettes, and human memory. Examples of digital data are
compact discs, floppy disks, and DSL lines.

In the picture below, data are converted from a continuous curve to a series of discrete point
measurements. This is done through a process known as sampling, whereby data is measured
at a regular interval.

One of the pitfalls of sampling is encountered when the frequency of the continuous data being
measured is higher than that of the sampling itself. In the picture below, two separate
frequencies are present, but if sampling only occurred every 0.1 seconds, a person trying to
analyze the data would not know which was the frequency present. This problem is known as
aliasing and can be prevented by sampling at more than twice the highest frequency of interest
(known as the Nyquist Criterion) and filtering out all frequencies higher than that.

