Curves & Surfaces

MIT EECS 6.837, Durand and Cutler

Last Time:

- Expected value and variance
- Monte-Carlo in graphics
- Importance sampling
- Stratified sampling
- Path Tracing
- Irradiance Cache
- Photon Mapping

Questions?

MIT EECS 6.837, Durand and Cutler

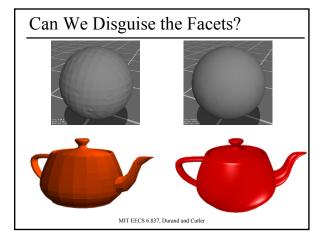
Today

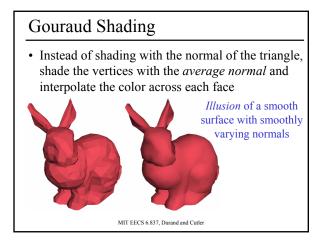
- Motivation
 - Limitations of Polygonal Models
 - Gouraud Shading & Phong Normal Interpolation
 - Some Modeling Tools & Definitions
- Curves
- Surfaces / Patches
- Subdivision Surfaces

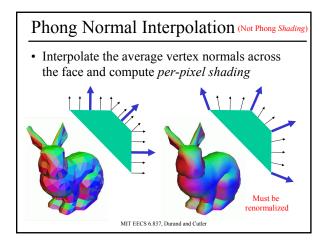
MIT EECS 6.837, Durand and Cutler

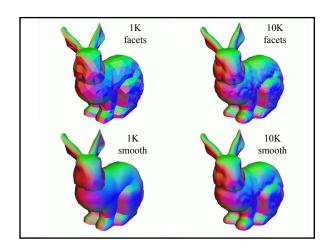
Limitations of Polygonal Meshes

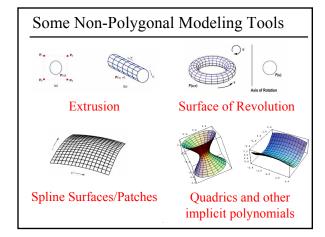
- Planar facets (& silhouettes)
- Fixed resolution
- Deformation is difficult
- No natural parameterization (for texture mapping)

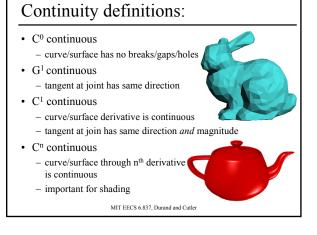












Questions?

MIT EECS 6.837, Durand and Cutler

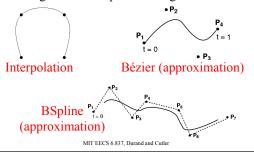
Today

- Motivation
- Curves
 - What's a Spline?
 - Linear Interpolation
 - Interpolation Curves vs. Approximation Curves
 - Bézier
 - BSpline (NURBS)
- · Surfaces / Patches
- · Subdivision Surfaces

MIT EECS 6.837, Durand and Cutler

Definition: What's a Spline?

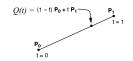
- Smooth curve defined by some control points
- Moving the control points changes the curve



Interpolation Curves / Splines

Linear Interpolation

• Simplest "curve" between two points



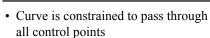
Spline Basis Functions a.k.a. Blending

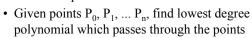
$$Q(t) = \begin{pmatrix} Q_x(t) \\ Q_y(t) \\ Q_z(t) \end{pmatrix} = \left(\begin{array}{cc} (P_0) & (P_1) \end{array} \right) \left(\begin{array}{cc} -1 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{cc} t \\ 1 \end{array} \right)$$

 $Q(t) = \mathbf{GBT(t)} = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$

MIT EECS 6.837, Durand and Cutler

Interpolation Curves

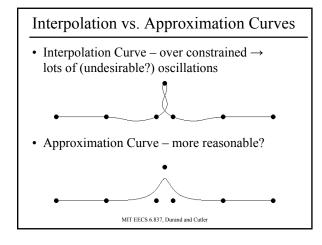




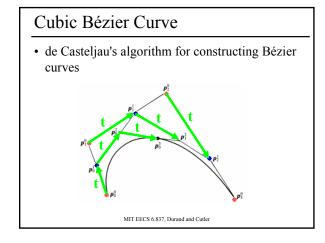
$$\begin{aligned} x(t) &= a_{n-1}t^{n-1} + \ldots + a_2t^2 + a_1t + a_0 \\ y(t) &= b_{n-1}t^{n-1} + \ldots + b_2t^2 + b_1t + b_0 \end{aligned}$$

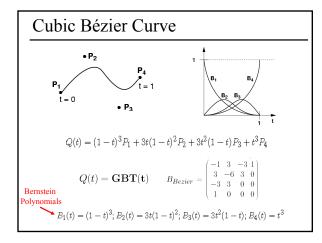
 $Q(t) = \mathbf{GBT(t)} = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$

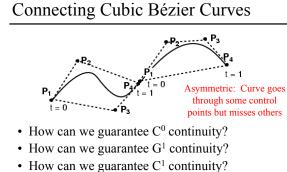
Interpolation vs. Approximation Curves Interpolation Approximation curve must pass curve is influenced by control points MIT EECS 6.837, Durand and Cutler



Cubic Bézier Curve • 4 control points • Curve passes through first & last control point • Curve is tangent at P₀ to (P₀-P₁) and at P₄ to (P₄-P₃) • P₁ • P₂ • P₃ • P₄ • P₃ • P₄ • P₄

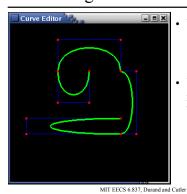






• Can't guarantee higher C² or higher continuity

Connecting Cubic Bézier Curves



- Where is this curve
 - C⁰ continuous?
 - G1 continuous?
 - C¹ continuous?
- What's the relationship between:
 - the # of control points, and
 - the # of cubic Bézier subcurves?

Higher-Order Bézier Curves

- > 4 control points
- Bernstein Polynomials as the basis functions

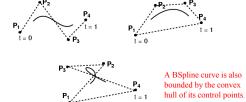
$$B_i^n(t) = \frac{n!}{i!(n-i)!}t^i(1-t)^{n-i}, \qquad 0 \le i \le n$$

- Every control point affects the entire curve
 - Not simply a local effect
 - More difficult to control for modeling

MIT EECS 6.837, Durand and Cutler

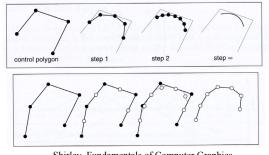
Cubic BSplines

- ≥ 4 control points
- · Locally cubic
- Curve is not constrained to pass through any control points



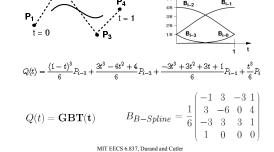
Cubic BSplines

• Iterative method for constructing BSplines



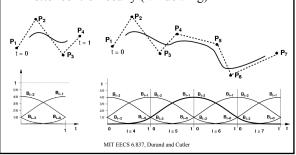
Shirley, Fundamentals of Computer Graphics

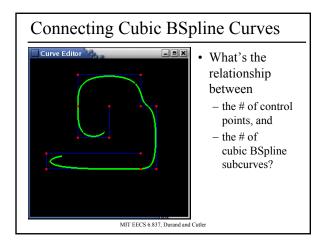
Cubic BSplines

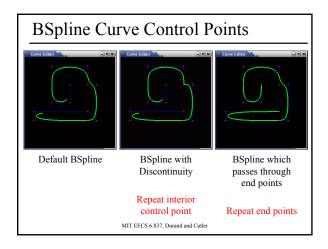


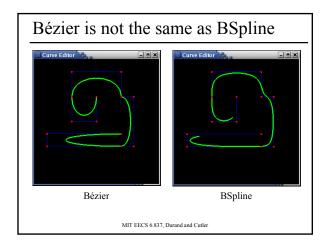
Cubic BSplines

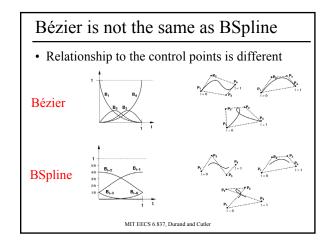
- · Can be chained together
- Better control locally (windowing)

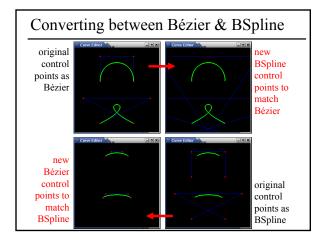












Converting between Bézier & BSpline • Using the basis functions: $B_{Bezier} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ $B_{B-Spline} = \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 0 & 4 \\ -3 & 3 & 3 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ $Q(t) = \mathbf{GBT(t)} = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$ MIT EECS 6.837, Durand and Cutler

NURBS (generalized BSplines)

- BSpline: uniform cubic BSpline
- NURBS: Non-Uniform Rational BSpline
 - non-uniform = different spacing between the blending functions, a.k.a. knots
 - rational = ratio of polynomials (instead of cubic)

MIT EECS 6.837, Durand and Cutler

Questions?

MIT EECS 6.837, Durand and Cutler

Today

- Motivation
- Spline Curves
- Spline Surfaces / Patches
 - Tensor Product
 - Bilinear Patches
 - Bezier Patches
- · Subdivision Surfaces

MIT EECS 6.837. Durand and Cutler

Tensor Product

• Of two vectors:

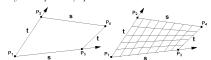
$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \otimes \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_2b_1 & a_3b_1 \\ a_1b_2 & a_2b_2 & a_3b_2 \\ a_1b_3 & a_2b_3 & a_3b_3 \\ a_1b_4 & a_2b_4 & a_3b_4 \end{bmatrix}$$

• Similarly, we can define a surface as the tensor product of two curves....

Computer Aided Geometric Design

Bilinear Patch

Bi-lerp a (typically non-planar) quadrilateral



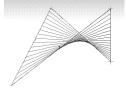
Notation: $\mathbf{L}(P_1, P_2, \alpha) \equiv (1 - \alpha)P_1 + \alpha P_2$

$$Q(s,t) = \mathbf{L}(\mathbf{L}(P_1, P_2, t), L(P_3, P_4, t), s)$$

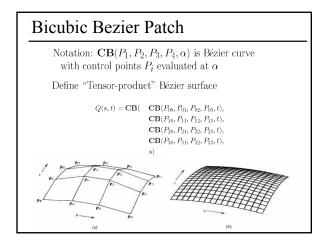
MIT EECS 6.837, Durand and Cutler

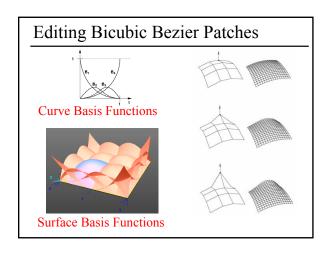
Bilinear Patch

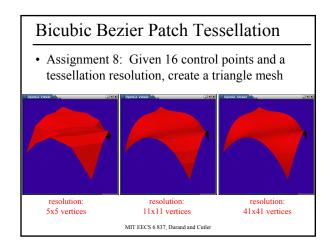
· Smooth version of quadrilateral with non-planar vertices...

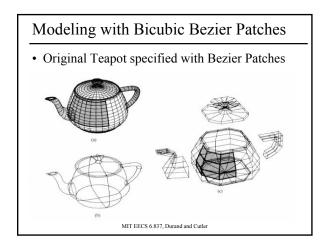


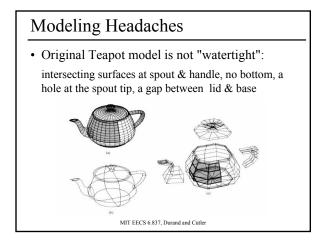
- But will this help us model smooth surfaces?
- Do we have control of the derivative at the edges?

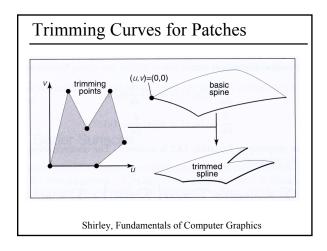


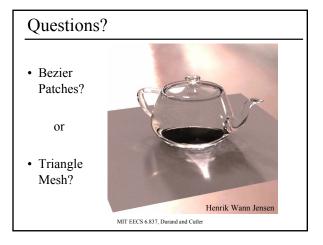












Today

- Review
- Motivation
- Spline Curves
- Spline Surfaces / Patches
- Subdivision Surfaces

