
DRAFT

Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Daniel Jurafsky & James H. Martin.
Copyright c© 2007, All rights reserved. Draft of July 13, 2007. Do not cite without
permission.

16
FEATURES AND
UNIFICATION

FRIAR FRANCIS: If either of you know any inward impedi-
ment why you should not be conjoined, charge you, on your
souls, to utter it.

William Shakespeare,Much Ado About Nothing

From a reductionist perspective, the history of the naturalsciences over the last few
hundred years can be seen as an attempt to explain the behavior of larger structures
by the combined action of smaller primitives. In biology, the properties of inheritance
have been explained by the action of genes, and then again theproperties of genes
have been explained by the action of DNA. In physics, matter was reduced to atoms
and then again to subatomic particles. The appeal of reductionism has not escaped
computational linguistics. In this chapter we introduce the idea that grammatical cat-
egories likeVPto, Sthat, Non3sgAux, or 3sgNP, as well as the grammatical rules like
S→ NP VPthat make use of them, should be thought of asobjectsthat can have com-
plex sets ofpropertiesassociated with them. The information in these properties is
represented byconstraints, and so these kinds of models are often calledconstraint-
based formalisms.CONSTRAINTBASED

FORMALISMS

Why do we need a more fine-grained way of representing and placing constraints on
grammatical categories? One problem arose in Ch. 12, where we saw that naive models
of grammatical phenomena such as agreement and subcategorization can lead to over-
generation problems. For example, in order to avoid ungrammatical noun phrases such
asthis flightsand verb phrases likedisappeared a flight, we were forced to create a huge
proliferation of primitive grammatical categories such asNon3sgVPto, NPmass, 3sgNP
andNon3sgAux. These new categories led, in turn, to an explosion in the number of
grammar rules and a corresponding loss of generality in the grammar. A constraint-
based representation scheme will allow us to represent fine-grained information about
number and person, agreement, subcategorization, as well as semantic categories like
mass/count.

Constraint-based formalisms have other advantages that wewill not cover in this
chapter, such as the ability to model more complex phenomenathan context-free gram-
mars, and the ability to efficiently and conveniently compute semantics for syntactic
representations.



DRAFT

2 Chapter 16. Features and Unification

Consider briefly how this approach might work in the case of grammatical number.
As we saw in Ch. 12, noun phrases likethis flightandthose flightscan be distinguished
based on whether they are singular or plural. This distinction can be captured if we
associate a property calledNUMBER that can have the value singular or plural, with
appropriate members of theNP category. Given this ability, we can say thatthis flight
is a member of theNPcategory and, in addition, has the value singular for itsNUMBER

property. This same property can be used in the same way to distinguish singular and
plural members of theVPcategory such asserves lunchandserve lunch.

Of course, simply associating these properties with various words and phrases does
not solve any of our overgeneration problems. To make these properties useful, we
need the ability to perform simple operations, such as equality tests, on them. By
pairing such tests with our core grammar rules, we can add various constraints to help
ensure that only grammatical strings are generated by the grammar. For example, we
might want to ask whether or not a given noun phrase and verb phrase have the same
values for their respective number properties. Such a test is illustrated by the following
kind of rule.

S→ NP VP

Only if the number of the NP is equal to the number of the VP.

The remainder of this chapter provides the details of one computational implemen-
tation of a constraint-based formalism, based onfeature structures andunification.
The next section describesfeature structures, the representation used to capture the
kind of grammatical properties we have in mind. Section 16.2then introduces the
unification operator that is used to implement basic operations over feature struc-
tures. Section 16.3 then covers the integration of these structures into a grammatical
formalism. Section 16.4 then introduces the unification algorithm and its required data
structures. Next, Section 16.5 describes how feature structures and the unification oper-
ator can be integrated into a parser. Finally, Section 16.6 discusses the most significant
extension to this constraint-based formalism, the use oftypesandinheritance, as well
as other extensions.

16.1 FEATURE STRUCTURES

One of the simplest ways to encode the kind of properties thatwe have in mind is
through the use offeature structures. These are simply sets of feature-value pairs,FEATURE

STRUCTURES

where features are unanalyzable atomic symbols drawn from some finite set, and values
are either atomic symbols or feature structures. Such feature structures are traditionally
illustrated with the following kind of matrix-like diagram, called anattribute-value
matrix or AVM :ATTRIBUTEVALUE

MATRIX

AVM












FEATURE1 VALUE 1

FEATURE2 VALUE 2

...
FEATUREn VALUE n















DRAFT
Section 16.1. Feature Structures 3

To be concrete, let us consider the number property discussed above. To capture
this property, we will use the symbolNUMBER to designate this grammatical attribute,
and the symbolsSG andPL (introduced in Ch. 3) to designate the possible values it can
take on in English. A simple feature structure consisting ofthis single feature would
then be illustrated as follows:

[

NUMBER SG
]

Adding an additional feature-value pair to capture the grammatical notion of person
leads to the following feature structure:

[

NUMBER SG

PERSON 3

]

Next we can encode the grammatical category of the constituent that this structure
corresponds to through the use of theCAT feature. For example, we can indicate that
these features are associated with a noun phrase by using thefollowing structure:







CAT NP

NUMBER SG

PERSON 3







This structure can be used to represent the3sgNPcategory introduced in Ch. 12 to
capture a restricted subcategory of noun phrases. The corresponding plural version of
this structure would be captured as follows:







CAT NP

NUMBER PL

PERSON 3







Note that the value of theCAT and PERSONfeatures remains the same for these last
two structures. This illustrates how the use of feature structures allows us to both
preserve the core set of grammatical categories and draw distinctions among members
of a single category.

As mentioned earlier in the definition of feature structures, features are not limited
to atomic symbols as their values; they can also have other feature structures as their
values. This is particularly useful when we wish to bundle a set of feature-value pairs
together for similar treatment. As an example of this, consider that theNUMBER and
PERSONfeatures are often lumped together since grammatical subjects must agree with
their predicates in both their number and person properties. This lumping together
can be captured by introducing anAGREEMENT feature that takes a feature structure
consisting of theNUMBER andPERSONfeature-value pairs as its value. Introducing
this feature into our third person singular noun phrase yields the following kind of
structure.









CAT NP

AGREEMENT

[

NUMBER SG

PERSON 3

]











DRAFT

4 Chapter 16. Features and Unification

CAT NP

AGREEMENT

NUMBER

PERSON

SG

3

Figure 16.1 A directed graph notation for feature structures.

Given this kind of arrangement, we can test for the equality of the values for both the
NUMBER andPERSONfeatures of two constituents by testing for the equality of their
AGREEMENT features.

This ability to use feature structures as values leads fairly directly to the notion
of a feature path. A feature path is nothing more than a list of features through aFEATURE PATH

feature structure leading to a particular value. For example, in the last feature structure,
we can say that the〈AGREEMENT NUMBER〉 path leads to the valueSG, while the
〈AGREEMENT PERSON〉 path leads to the value 3. This notion of a path leads naturally
to an alternative graphical way of illustrating feature structures, shown in Figure 16.1,
which as we will see in Section 16.4 is suggestive of how they will be implemented. In
these diagrams, feature structures are depicted as directed graphs where features appear
as labeled edges and values as nodes.

Although this notion of paths will prove useful in a number ofsettings, we intro-
duce it here to help explain an additional important kind of feature structure: those
that contain features that actually share some feature structure as a value. Such feature
structures will be referred to asreentrant structures. What we have in mind here isREENTRANT

not the simple idea that two features might have equal values, but rather that they share
precisely the same feature structure (or node in the graph).These two cases can be dis-
tinguished clearly if we think in terms of paths through a graph. In the case of simple
equality, two paths lead to distinct nodes in the graph that anchor identical, but distinct
structures. In the case of a reentrant structure, two feature paths actually lead to the
same node in the structure.

Figure 16.2 illustrates a simple example of reentrancy. In this structure, the〈HEAD

SUBJECT AGREEMENT〉 path and the〈HEAD AGREEMENT〉 path lead to the same lo-
cation. Shared structures like this will be denoted in our matrix diagrams by adding
numerical indexes that signal the values to be shared. The matrix version of the fea-
ture structure from Figure 16.2 would be denoted as follows,using the notation of the
PATR-II system (Shieber, 1986), based on Kay (1979):



DRAFT
Section 16.2. Unification of Feature Structures 5

NUMBER

PERSON

SG

3
AGREEMENT

SUBJECT

AGREEMENT

HEAD

CAT S

Figure 16.2 A feature structure with shared values. The location (value) found by fol-
lowing the〈HEAD SUBJECT AGREEMENT〉 path is the same as that found via the〈HEAD

AGREEMENT〉 path.

















CAT S

HEAD











AGREEMENT 1

[

NUMBER SG

PERSON 3

]

SUBJECT
[

AGREEMENT 1

]



























As we will see, these simple structures give us the ability toexpress linguistic
generalizations in surprisingly compact and elegant ways.

16.2 UNIFICATION OF FEATURE STRUCTURES

As noted earlier, feature structures would be of little use without our being able to
perform reasonably efficient and powerful operations on them. As we will show, the
two principal operations we need to perform are merging the information content of two
structures and rejecting the merger of structures that are incompatible. Fortunately, a
single computational technique, calledunification, suffices for both of these purposes.UNIFICATION

The bulk of this section will illustrate through a series of examples how unification
instantiates these notions of merger and compatibility. Discussion of the unification
algorithm and its implementation will be deferred to Section 16.4.

We begin with the following simple application of the unification operator.
[

NUMBER SG
]

⊔
[

NUMBER SG
]

=
[

NUMBER SG
]

As this equation illustrates, unification is implemented asa binary operator (repre-



DRAFT

6 Chapter 16. Features and Unification

sented here as⊔) that accepts two feature structures as arguments and returns a feature
structure when it succeeds. In this example, unification is being used to perform a
simple equality check. The unification succeeds because thecorrespondingNUMBER

features in each structure agree as to their values. In this case, since the original struc-
tures are identical, the output is the same as the input. The following similar kind of
check fails since theNUMBER features in the two structures have incompatible values.

[

NUMBER SG
]

⊔
[

NUMBER PL
]

Fails!

This next unification illustrates an important aspect of thenotion of compatibility
in unification.

[

NUMBER SG
]

⊔
[

NUMBER []
]

=
[

NUMBER SG
]

In this situation, these features structures are taken to becompatible, and are hence
capable of being merged, despite the fact that the given values for the respectiveNUM-
BER features are different. The [] value in the second structureindicates that the value
has been left unspecified. A feature with such a [] value can besuccessfully matched
to any value in a corresponding feature in another structure. Therefore, in this case,
the valueSG from the first structure can match the [] value from the second, and as is
indicated by the output shown, the result of this type of unification is a structure with
the value provided by the more specific, non-null, value.

The next example illustrates another of the merger aspects of unification.
[

NUMBER SG
]

⊔
[

PERSON 3
]

=
[

NUMBER SG

PERSON 3

]

Here the result of the unification is a merger of the original two structures into one
larger structure. This larger structure contains the unionof all the information stored
in each of the original structures. Although this is a simpleexample, it is important to
understand why these structures are judged to be compatible: they are compatible be-
cause they contain no features that are explicitly incompatible. The fact that they each
contain a feature-value pair that the other does not is not a reason for the unification to
fail.

We will now consider a series of cases involving the unification of somewhat more
complex reentrant structures. The following example illustrates an equality check com-
plicated by the presence of a reentrant structure in the firstargument.











AGREEMENT 1

[

NUMBER SG

PERSON 3

]

SUBJECT
[

AGREEMENT 1

]











⊔


SUBJECT



AGREEMENT

[

PERSON 3
NUMBER SG

]









=










AGREEMENT 1

[

NUMBER SG

PERSON 3

]

SUBJECT
[

AGREEMENT 1

]













DRAFT
Section 16.2. Unification of Feature Structures 7

The important elements in this example are theSUBJECT features in the two input
structures. The unification of these features succeeds because the values found in the
first argument by following the1 numerical index, match those that are directly present
in the second argument. Note that, by itself, the value of theAGREEMENT feature in
the first argument would have no bearing on the success of unification since the sec-
ond argument lacks anAGREEMENT feature at the top level. It only becomes relevant
because the value of theAGREEMENT feature is shared with theSUBJECTfeature.

The following example illustrates the copying capabilities of unification.

(16.1)




AGREEMENT 1

SUBJECT

[

AGREEMENT 1

]





⊔


SUBJECT



AGREEMENT

[

PERSON 3
NUMBER SG

]









=










AGREEMENT 1

SUBJECT



AGREEMENT 1

[

PERSON 3
NUMBER SG

]















Here the value found via the second argument’s〈SUBJECT AGREEMENT〉 feature is
copied over to the corresponding place in the first argument.In addition, theAGREE-
MENT feature of the first argument receives a value as a side-effect of the index linking
it to the end of〈SUBJECT AGREEMENT〉 feature.

The next example demonstrates the important difference between features that ac-
tually share values versus those that merely have similar values.

(16.2)








AGREEMENT
[

NUMBER SG
]

SUBJECT

[

AGREEMENT
[

NUMBER SG
]

]









⊔


SUBJECT



AGREEMENT

[

PERSON 3
NUMBER SG

]









=












AGREEMENT
[

NUMBER SG
]

SUBJECT



AGREEMENT

[

NUMBER SG

PERSON 3

]

















The values at the end of the〈SUBJECT AGREEMENT〉 path and the〈AGREEMENT〉 path
are the same, but not shared, in the first argument. The unification of the SUBJECT

features of the two arguments adds thePERSONinformation from the second argument
to the result. However, since there is no index linking theAGREEMENT feature to
the〈SUBJECT AGREEMENT〉 feature, this information is not added to the value of the
AGREEMENT feature.

Finally, consider the following example of a failure to unify.



DRAFT

8 Chapter 16. Features and Unification











AGREEMENT 1

[

NUMBER SG

PERSON 3

]

SUBJECT
[

AGREEMENT 1
]











⊔
















AGREEMENT

[

NUMBER SG

PERSON 3

]

SUBJECT



AGREEMENT

[

NUMBER PL

PERSON 3

]





















Fails!

Proceeding through the features in order, we first find that the AGREEMENT features in
these examples successfully match. However, when we move onto theSUBJECTfea-
tures, we find that the values found at the end of the respective〈 SUBJECT AGREEMENT

NUMBER 〉 paths differ, causing a unification failure.
Feature structures are a way of representing partial information about some linguis-

tic object or placing informational constraints on what theobject can be. Unification
can be seen as a way of merging the information in each featurestructure, or describing
objects which satisfy both sets of constraints. Intuitively, unifying two feature struc-
tures produces a new feature structure which is more specific(has more information)
than, or is identical to, either of the input feature structures. We say that a less specific
(more abstract) feature structuresubsumesan equally or more specific one. Subsump-SUBSUMES

tion is represented by the operator⊑. A feature structureF subsumes a feature structure
G (F ⊑G) if and only if:

1. For every featurex in F , F(x) ⊑ G(x) (whereF(x) means “the value of the
featurex of feature structureF”).

2. For all pathsp andq in F such thatF(p) = F(q), it is also the case thatG(p) =
G(q).

For example, consider these feature structures:

(16.3)
[

NUMBER SG
]

(16.4)
[

PERSON 3
]

(16.5)
[

NUMBER SG

PERSON 3

]

(16.6)








CAT VP

AGREEMENT 1

SUBJECT
[

AGREEMENT 1
]











DRAFT
Section 16.2. Unification of Feature Structures 9

(16.7)














CAT VP

AGREEMENT 1

SUBJECT



AGREEMENT

[

PERSON 3
NUMBER SG

]



















(16.8)














CAT VP

AGREEMENT 1

SUBJECT



AGREEMENT 1

[

PERSON 3
NUMBER SG

]



















The following subsumption relations hold among them:

16.3⊑ 16.5

16.4⊑ 16.5

16.6⊑ 16.7⊑ 16.8

Subsumption is a partial ordering; there are pairs of feature structures that neither
subsume nor are subsumed by each other:

16.3 6⊑ 16.4

16.4 6⊑ 16.3

Since every feature structure is subsumed by the empty structure [], the relation
among feature structures can be defined as asemilattice. The semilattice is often rep-SEMILATTICE

resented pictorially with the most general feature [] at thetop and the subsumption
relation represented by lines between feature structures.Unification can be defined in
terms of the subsumption semilattice. Given two feature structuresF andG, F ⊔G is
defined as the most general feature structureH such thatF ⊑ H andG⊑ H. Since
the information ordering defined by unification is a semilattice, the unification oper-
ation ismonotonic (Pereira and Shieber, 1984; Rounds and Kasper, 1986; Moshier,MONOTONIC

1988). This means that if some description is true of a feature structure, unifying it
with another feature structure results in a feature structure that still satisfies the orig-
inal description. The unification operation is therefore order-independent; given a set
of feature structures to unify, we can check them in any orderand get the same result.
Thus in the above example we could instead have chosen to check the AGREEMENT

attribute first and the unification still would have failed.
To summarize, unification is a way of implementing the integration of knowledge

from different constraints. Given two compatible feature structures as input, it produces
the most general feature structure which nonetheless contains all the information in the
inputs. Given two incompatible feature structures, it fails.



DRAFT

10 Chapter 16. Features and Unification

16.3 FEATURES STRUCTURES IN THEGRAMMAR

Our primary purpose in introducing feature structures and unification has been to pro-
vide a way to elegantly express syntactic constraints that would be difficult to express
using the mechanisms of context-free grammars alone. Our next step, therefore, is to
specify a way to integrate feature structures and unification operations into the speci-
fication of a grammar. This can be accomplished byaugmentingthe rules of ordinary
context-free grammars with attachments that specify feature structures for the con-
stituents of the rules, along with appropriate unification operations that express con-
straints on those constituents. From a grammatical point ofview, these attachments
will be used to accomplish the following goals:

• to associate complex feature structures with both lexical items and instances of
grammatical categories

• to guide the composition of feature structures for larger grammatical constituents
based on the feature structures of their component parts

• to enforce compatibility constraints between specified parts of grammatical con-
structions

We will use the following notation to denote the grammar augmentations that will
allow us to accomplish all of these goals, based on the PATR-II system described in
Shieber (1986):

β0 → β1 · · ·βn

{set o f constraints}

The specified constraints have one of the following forms.

〈βi f eature path〉 = Atomic value

〈βi f eature path〉 = 〈β j f eature path〉

The notation〈βi feature path〉 denotes a feature path through the feature structure as-
sociated with theβi component of the context-free part of the rule. The first style of
constraint specifies that the value found at the end of the given path must unify with
the specified atomic value. The second form specifies that thevalues found at the end
of the two given paths must be unifiable.

To illustrate the use of these constraints, let us return to the informal solution to the
number agreement problem proposed at the beginning of this chapter.

S→ NP VP

Only if the number of the NP is equal to the number of the VP.

Using the new notation, this rule can now be expressed as follows.

S→ NP VP

〈NP NUMBER〉 = 〈VP NUMBER〉



DRAFT
Section 16.3. Features Structures in the Grammar 11

Note that in cases where there are two or more constituents ofthe same syntactic
category in a rule, we will subscript the constituents to keep them straight, as in
VP→ V NP1 NP2.

Taking a step back from the notation, it is important to note that in this approach
the simple generative nature of context-free rules has beenfundamentally changed by
this augmentation. Ordinary context-free rules are based on the simple notion of con-
catenation; anNP followed by aVP is anS, or generatively, to produce anS all we
need to do is concatenate anNP to aVP. In the new scheme, this concatenation must
be accompanied by a successful unification operation. This leads naturally to questions
about the computational complexity of the unification operation and its effect on the
generative power of this new grammar. These issues will be discussed in Ch. 15.

To review, there are two fundamental components to this approach.

• The elements of context-free grammar rules will have feature-based constraints
associated with them. This reflects a shift from atomic grammatical categories
to more complex categories with properties.
• The constraints associated with individual rules can referto, and manipulate, the

feature structures associated with the parts of the rule to which they are attached.

The following sections present applications of unificationconstraints to four in-
teresting linguistic phenomena: agreement, grammatical heads, subcategorization, and
long-distance dependencies.

16.3.1 Agreement

As discussed in Ch. 12, agreement phenomena show up in a number of different places
in English. This section illustrates how unification can be used to capture the two
main types of English agreement phenomena: subject-verb agreement and determiner-
nominal agreement. We will use the following ATIS sentencesas examples throughout
this discussion to illustrate these phenomena.

(16.9) This flight serves breakfast.
(16.10) Does this flight serve breakfast?
(16.11) Do these flights serve breakfast?

Notice that the constraint used to enforceSUBJECT-VERB agreement given above is
deficient in that it ignores thePERSONfeature. The following constraint which makes
use of theAGREEMENT feature takes care of this problem.

S→ NP VP

〈NP AGREEMENT〉 = 〈VP AGREEMENT〉

Examples 16.10 and 16.11 illustrate a minor variation onSUBJECT-VERB agree-
ment. In these yes-no-questions, the subjectNP must agree with the auxiliary verb,
rather than the main verb of the sentence, which appears in a non-finite form. This
agreement constraint can be handled by the following rule.

S→ Aux NP VP

〈AuxAGREEMENT〉 = 〈NP AGREEMENT〉



DRAFT

12 Chapter 16. Features and Unification

Agreement between determiners and nominals in noun phrasesis handled in a sim-
ilar fashion. The basic task is to allow the forms given above, but block the unwanted
*this flightsand*those flightforms where the determiners and nominals clash in their
NUMBER feature. Again, the logical place to enforce this constraint is in the grammar
rule that brings the parts together.

NP → Det Nominal

〈Det AGREEMENT〉 = 〈NominalAGREEMENT〉

〈NP AGREEMENT〉 = 〈NominalAGREEMENT〉

This rule states that theAGREEMENT feature of theDetmust unify with theAGREE-
MENT feature of theNominal, and moreover, that theAGREEMENT feature of theNP
is constrained to be the same as that of theNominal.

Having expressed the constraints needed to enforce subject-verb and determiner-
nominal agreement, we must now fill in the rest of the machinery needed to make these
constraints work. Specifically, we must consider how the various constituents that take
part in these constraints (theAux, VP, NP, Det, andNominal) acquire values for their
various agreement features.

We can begin by noting that our constraints involve both lexical and non-lexical
constituents. The simpler lexical constituents,Aux andDet, receive values for their
respective agreement features directly from the lexicon asin the following rules.

Aux→ do

〈AuxAGREEMENT NUMBER〉 = PL

〈AuxAGREEMENT PERSON〉 = 3

Aux→ does

〈AuxAGREEMENT NUMBER〉 = SG

〈AuxAGREEMENT PERSON〉 = 3

Determiner→ this

〈DeterminerAGREEMENT NUMBER〉 = SG

Determiner→ these

〈DeterminerAGREEMENT NUMBER〉 = PL

Returning to our firstS rule, let us first consider theAGREEMENT feature for the
VPconstituent. The constituent structure for thisVP is specified by the following rule.

VP → Verb NP

It seems clear that the agreement constraint for this constituent must be based on
its constituent verb. This verb, as with the previous lexical entries, can acquire its
agreement feature values directly from lexicon as in the following rules.

Verb→ serve

〈VerbAGREEMENT NUMBER〉 = PL



DRAFT
Section 16.3. Features Structures in the Grammar 13

Verb→ serves

〈VerbAGREEMENT NUMBER〉 = SG

〈VerbAGREEMENT PERSON〉 = 3

All that remains is to stipulate that the agreement feature of the parentVP is constrained
to be the same as its verb constituent.

VP → Verb NP

〈VP AGREEMENT〉 = 〈VerbAGREEMENT〉

In other words, non-lexical grammatical constituents can acquire values for at least
some of their features from their component constituents.

The same technique works for the remainingNP and Nominal categories. The
values for the agreement features for these categories are derived from the nounsflight
andflights.

Noun→ flight

〈NounAGREEMENT NUMBER〉 = SG

Noun→ flights

〈NounAGREEMENT NUMBER〉 = PL

Similarly, theNominalfeatures are constrained to have the same values as its con-
stituent noun, as follows.

Nominal→ Noun

〈NominalAGREEMENT〉 = 〈NounAGREEMENT〉

Note that this section has only scratched the surface of the English agreement sys-
tem, and that the agreement system of other languages can be considerably more com-
plex than English.

16.3.2 Head Features

To account for the way compositional grammatical constituents such as noun phrases,
nominals, and verb phrases come to have agreement features,the preceding section in-
troduced the notion of copying needed feature structures from children to their parents.
This use turns out to be a specific instance of a much more general phenomenon in
constraint-based grammars. Specifically, the features formost grammatical categories
are copied fromoneof the children to the parent. The child that provides the features is
called thehead of the phrase, and the features copied are referred to ashead features.HEAD OF THE PHRASE

HEAD FEATURES This idea of heads, first introduced in Sec.??, plays an important role in constraint-
based grammars. Consider the following three rules from thelast section.

VP → Verb NP

〈VP AGREEMENT〉 = 〈VerbAGREEMENT〉



DRAFT

14 Chapter 16. Features and Unification

NP → Det Nominal

〈Det AGREEMENT〉 = 〈NominalAGREEMENT〉

〈NP AGREEMENT〉 = 〈NominalAGREEMENT〉

Nominal→ Noun

〈NominalAGREEMENT〉 = 〈NounAGREEMENT〉

In each of these rules, the constituent providing the agreement feature structure
up to the parent is the head of the phrase. More specifically, the verb is the head
of the verb phrase, the nominal is the head of the noun phrase,and the noun is the
head of the nominal. In addition, we can say that the agreement feature structure is a
head feature. We can rewrite our rules to reflect these generalizations by placing the
agreement feature structure under aHEAD feature and then copying that feature upward
as in the following constraints.

VP → Verb NP(16.12)

〈VP HEAD〉 = 〈VerbHEAD〉

NP → Det Nominal(16.13)

〈NP HEAD〉 = 〈NominalHEAD〉

〈Det HEAD AGREEMENT〉 = 〈NominalHEAD AGREEMENT〉

Nominal→ Noun(16.14)

〈NominalHEAD〉 = 〈NounHEAD〉

Similarly, the lexical rules that introduce these featuresmust now reflect thisHEAD

notion, as in the following.

Noun→ flights

〈NounHEAD AGREEMENT NUMBER〉 = PL

Verb→ serves

〈VerbHEAD AGREEMENT NUMBER〉 = SG

〈VerbHEAD AGREEMENT PERSON〉 = 3

16.3.3 Subcategorization

Recall that subcategorization is the notion that verbs can be picky about the patterns
of arguments they will allow themselves to appear with. In Ch. 12, to prevent the
generation of ungrammatical sentences with verbs and verb phrases that do not match,
we were forced to split the category of verb into multiple sub-categories. These more



DRAFT
Section 16.3. Features Structures in the Grammar 15

specific verb categories were then used in the definition of the specific verb phrases
that they were allowed to occur with, as in the following rule.

Verb-with-S-comp→ think

VP → Verb-with-S-comp S

Clearly, this approach introduces exactly the same undesirable proliferation of cat-
egories that we saw with the similar approach to solving the number problem. The
proper way to avoid this proliferation is to introduce feature structures to distinguish
among the various members of the verb category. This goal canbe accomplished by
associating an atomic feature calledSUBCAT, with an appropriate value, with each of
the verbs in the lexicon. For example, the transitive version of servescould be assigned
the following feature structure in the lexicon.

Verb→ serves

〈VerbHEAD AGREEMENT NUMBER〉 = SG

〈VerbHEAD SUBCAT〉 = TRANS

The SUBCAT feature is a signal to the rest of the grammar that this verb should only
appear in verb phrases with a single noun phrase argument. This constraint is enforced
by adding corresponding constraints to all the verb phrase rules in the grammar, as in
the following.

VP → Verb

〈VP HEAD〉 = 〈VerbHEAD〉

〈VP HEAD SUBCAT〉 = INTRANS

VP → Verb NP

〈VP HEAD〉 = 〈VerbHEAD〉

〈VP HEAD SUBCAT〉 = TRANS

VP → Verb NP NP

〈VP HEAD〉 = 〈VerbHEAD〉

〈VP HEAD SUBCAT〉 = DITRANS

The first unification constraint in these rules states that the verb phrase receives its
HEAD features from its verb constituent, while the second constraint specifies what the
value of thatSUBCAT feature must be. Any attempt to use a verb with an inappropriate
verb phrase will fail since the value of theSUBCAT feature of theVP will fail to unify
with the atomic symbol given in second constraint. Note thisapproach requires unique
symbols for each of the 50–100 verb phrase frames in English.

This is a somewhat opaque approach since these unanalyzableSUBCAT symbols do
not directly encode either the number or type of the arguments that the verb expects to



DRAFT

16 Chapter 16. Features and Unification

take. To see this, note that one can not simply examine a verb’s entry in the lexicon
and know what its subcategorization frame is. Rather, you must use the value of the
SUBCAT feature indirectly as a pointer to those verb phrase rules inthe grammar that
can accept the verb in question.

A somewhat more elegant solution, which makes better use of the expressive power
of feature structures, allows the verb entries to directly specify the order and category
type of the arguments they require. The following entry forservesis an example of one
such approach, in which the verb’s subcategory feature expresses alist of its objects
and complements.

Verb→ serves

〈VerbHEAD AGREEMENT NUMBER〉 = SG

〈VerbHEAD SUBCAT FIRST CAT〉 = NP

〈VerbHEAD SUBCAT SECOND〉 = END

This entry uses theFIRST feature to state that the first post-verbal argument must
be anNP; the value of theSECOND feature indicates that this verb expects only one
argument. A verb likeleave Boston in the morning, with two arguments, would have
the following kind of entry.

Verb→ leaves

〈VerbHEAD AGREEMENT NUMBER〉 = SG

〈VerbHEAD SUBCAT FIRST CAT〉 = NP

〈VerbHEAD SUBCAT SECOND CAT〉 = PP

〈VerbHEAD SUBCAT THIRD〉 = END

This scheme is, of course, a rather baroque way of encoding a list; it is also possible
to use the idea oftypesdefined in Sec. 16.6 to define a list type more cleanly.

The individual verb phrase rules must now check for the presence of exactly the
elements specified by their verb, as in the following transitive rule.

VP → Verb NP(16.15)

〈VP HEAD〉 = 〈VerbHEAD〉

〈VP HEAD SUBCAT FIRST CAT〉 = 〈NP CAT 〉

〈VP HEAD SUBCAT SECOND〉 = END

The second constraint in this rule’s constraints states that the category of the first
element of the verb’sSUBCAT list must match the category of the constituent immedi-
ately following the verb. The third constraint goes on to state that this verb phrase rule
expects only a single argument.

Our previous examples have shown rather simple subcategorization structures for
verbs. In fact, verbs can subcategorize for quite complexsubcategorization frames,SUBCATEGORIZATION

FRAME

(e.g.,NP PP, NP NP, or NP S) and these frames can be composed of many different
phrasal types. In order to come up with a list of possible subcategorization frames for



DRAFT
Section 16.3. Features Structures in the Grammar 17

English verbs, we first need to have a list of possible phrase types that can make up
these frames. Fig. 16.3 shows one short list of possible phrase types for making up
subcategorization frames for verbs; this list is modified from one used to create verb
subcategorization frames in the FrameNet project (Johnson, 1999; Baker et al., 1998),
and includes phrase types for special subjects of verbs likethereandit, as well as for
objects and complements.

Noun Phrase Types
There nonreferential there There is still much to learn
It nonreferential it It was evident that my ideas
NP noun phrase As he was relatinghis story

Preposition Phrase Types
PP preposition phrase couch their messagein terms
PPing gerundive PP censured himfor not having intervened
PPpart particle turn it off

Verb Phrase Types
VPbrst bare stem VP she coulddiscuss it
VPto to-marked infin. VP Why do you wantto know?
VPwh wh-VP it is worth consideringhow to write
VPing gerundive VP I would considerusing it

Complement Clause types
Finite Clause

Sfin finite clause maintainthat the situation was unsatisfactory
Swh wh-clause it tells uswhere we are
Sif whether/if clause askwhether Aristophanes is depicting a

Nonfinite Clause
Sing gerundive clause seesome attention being given
Sto to-marked clause knowthemselves to be relatively unhealthy
Sforto for-to clause She was waitingfor him to make some reply
Sbrst bare stem clause commandedthat his sermons be published

Other Types
AjP adjective phrase thought itpossible
Quo quotes asked“What was it like?”

Figure 16.3 A small set of potential phrase types which can be combined tocreate a
set of potential subcategorization frames for verbs. Modified from the FrameNet tagset
(Johnson, 1999; Baker et al., 1998). The sample sentence fragments are from the British
National Corpus.

To use the phrase types in Fig. 16.3 in a unification grammar, each phrase type
would have to be described using features. For example the form VPto, which is
subcategorized for bywantmight be expressed as:

Verb→ want

〈VerbHEAD SUBCAT FIRST CAT〉 = VP

〈VerbHEAD SUBCAT FIRST FORM〉 = INFINITIVE

Each of the 50 to 100 possible verb subcategorization framesin English would be
described as a set drawn from these phrase types. For example, here’s an example



DRAFT

18 Chapter 16. Features and Unification

of the two-complementwant. We’ve used this following example to demonstrate two
different notational possibilities. First, lists can be represented via an angle brackets
notation〈 and〉. Second, instead of using a rewrite-rule annotated with path equations,
we can represent the lexical entry as a single feature structure:
















ORTH WANT

CAT VERB

HEAD



SUBCAT 〈
[

CAT NP
]

,





CAT VP

HEAD
[

VFORM INFINITIVE
]



〉





















Combining even a limited set of phrase types results in a verylarge set of possible
subcategorization frames. Furthermore, each verb allows many different subcatego-
rization frames. For example, here are just some of the subcategorization patterns for
the verbask, with examples from the BNC:

Subcat Example
Quo asked [Quo “What was it like?”]
NP asking [NP a question]
Swh asked [Swhwhat trades you’re interested in]
Sto ask [Sto him to tell you]
PP that means asking [PP at home]
Vto asked [Vto to see a girl called Evelyn]
NP Sif asked [NP him] [Sif whether he could make]
NP NP asked [NP myself] [NP a question]
NP Swh asked [NP him] [Swhwhy he took time off]

A number of comprehensive subcategorization-frame tagsets exist, such as the
COMLEX set (Macleod et al., 1998), which includes subcategorization frames for
verbs, adjectives, and nouns, and the ACQUILEX tagset of verb subcategorization
frames (Sanfilippo, 1993). Many subcategorization-frame tagsets add other informa-
tion about the complements, such as specifying the identityof the subject in a lower
verb phrase that has no overt subject; this is calledcontrol information. For exampleCONTROL

Temmy promised Ruth to go(at least in some dialects) implies that Temmy will do the
going, whileTemmy persuaded Ruth to goimplies that Ruth will do the going. Some of
the multiple possible subcategorization frames for a verb can be partially predicted by
the semantics of the verb; for example many verbs of transfer(like give, send, carry)
predictably take the two subcategorization framesNP NPandNP PP:

NP NP sent FAA Administrator James Busey a letter
NP PP sent a letter to the chairman of the Armed Services Committee

These relationships between subcategorization frames across classes of verbs are
called argument-structurealternations, and will be discussed in Ch. 19 when we dis-ALTERNATIONS

cuss the semantics of verbal argument structure. Ch. 14 willintroduce probabilities
for modeling the fact that verbs generally have preferenceseven among the different
subcategorization frames they allow.



DRAFT
Section 16.3. Features Structures in the Grammar 19

Subcategorization in Other Parts of Speech

Although the notion of subcategorization, orvalenceas it is often called, was originallyVALENCE

designed for verbs, more recent work has focused on the fact that many other kinds of
words exhibit forms of valence-like behavior. Consider thefollowing contrasting uses
of the prepositionswhileandduring.

(16.16) Keep your seatbelt fastened whilewe are taking off.
(16.17) *Keep your seatbelt fastened whiletakeoff.
(16.18) Keep your seatbelt fastened duringtakeoff.
(16.19) *Keep your seatbelt fastened duringwe are taking off.

Despite the apparent similarities between these words, they make quite different de-
mands on their arguments. Representing these differences is left as Exercise 16.5 for
the reader.

Many adjectives and nouns also have subcategorization frames. Here are some
examples using the adjectivesapparent, aware, andunimportantand the nounsas-
sumptionandquestion:

It wasapparent [Sfin that the kitchen was the only room. . . ]
It wasapparent [PP from the way she rested her hand over his]
aware [Sfin he may have caused offense]
it is unimportant [Swhethwhether only a little bit is accepted]
theassumption[Sfin that wasteful methods have been employed]
thequestion[Swhethwhether the authorities might have decided]

See Macleod et al. (1998) and Johnson (1999) for descriptions of subcategorization
frames for nouns and adjectives.

Verbs express subcategorization constraints on their subjects as well as their com-
plements. For example, we need to represent the lexical factthat the verbseemcan
take aSfin as its subject (That she was affected seems obvious), while the verbpaint
cannot. TheSUBJECTfeature can be used to express these constraints.

16.3.4 Long-Distance Dependencies

The model of subcategorization we have developed so far has two components. Each
head word has aSUBCAT feature which contains a list of the complements it expects.
Then phrasal rules like theVP rule in (16.16) match up each expected complement
in the SUBCAT list with an actual constituent. This mechanism works fine when the
complements of a verb are in fact to be found in the verb phrase.

Sometimes, however, a constituent subcategorized for by the verb is not locally
instantiated, but is in along-distancerelationship with the predicate. Here are some
examples of suchlong-distance dependencies:LONGDISTANCE

DEPENDENCIES

What cities does Continental service?
What flights do you have from Boston to Baltimore?
What time does that flight leave Atlanta?

In the first example, the constituentwhat citiesis subcategorized for by the verb
service, but because the sentence is an example of awh-non-subject-question, the



DRAFT

20 Chapter 16. Features and Unification

object is located at the front of the sentence. Recall from Ch. 12 that a (simple) phrase-
structure rule for awh-non-subject-questionis something like the following:

S → Wh-NP Aux NP VP

Now that we have features, we’ll be able to augment this phrase-structure rule to
require theAuxand theNP to agree (since theNP is the subject). But we also need some
way to augment the rule to tell it that theWh-NPshould fill some subcategorization slot
in the VP. The representation of such long-distance dependencies isa quite difficult
problem, because the verb whose subcategorization requirement is being filled can be
quite distant from the filler. In the following (made-up) sentence, for example, the
wh-phrasewhich flightmust fill the subcategorization requirements of the verbbook,
despite the fact that there are two other verbs (wantandhave) in between:

Which flight do you want me to have the travel agent book?

Many solutions to representing long-distance dependencies in unification gram-
mars involve keeping a list, often called agap list, implemented as a featureGAP,GAP LIST

which is passed up from phrase to phrase in the parse tree. Thefiller (for exampleFILLER

which flightabove) is put on the gap list, and must eventually be unified with the sub-
categorization frame of some verb. See Sag and Wasow (1999) for an explanation of
such a strategy, together with a discussion of the many othercomplications that must
be modeled in long-distance dependencies.

16.4 IMPLEMENTING UNIFICATION

As discussed, the unification operator takes two feature structures as input and returns
a single merged feature structure if successful, or a failure signal if the two inputs are
not compatible. The input feature structures are represented as directed acyclic graphs
(DAGs), where features are depicted as labels on directed edges, and feature values are
either atomic symbols or DAGs. As we will see, the implementation of the operator
is a relatively straightforward recursive graph matching algorithm, suitably tailored to
accommodate the various requirements of unification. Roughly speaking, the algorithm
loops through the features in one input and attempts to find a corresponding feature in
the other. If all of the features match, then the unification is successful. If any single
feature causes a mismatch then the unification fails. Not surprisingly, the recursion is
motivated by the need to correctly match those features thathave feature structures as
their values.

One somewhat unusual aspect of the algorithm is that rather than construct a new
output feature structure with the unified information from all the information from the
two arguments, it destructively alters the arguments so that in the end they point to
exactly the same information. Thus the result of a successful call to the unification
operator consists of suitably altered versions of the arguments (failed unifications also
result in alterations to the arguments, but more on that later in Section 16.5.) As is dis-
cussed in the next section, the destructive nature of this algorithm necessitates certain
minor extensions to the simple graph version of feature structures as DAGs we have
been assuming.



DRAFT

Section 16.4. Implementing Unification 21

16.4.1 Unification Data Structures

To facilitate the destructive merger aspect of the algorithm, we add a small compli-
cation to the DAGs used to represent the input feature structures; feature structures
are represented using DAGs with additional edges, or fields.Specifically, each feature
structure consists of two fields: a content field and a pointerfield. The content field
may be null or contain an ordinary feature structure. Similarly, the pointer field may
be null or contain a pointer to another feature structure. Ifthe pointer field of the DAG
is null, then the content field of the DAG contains the actual feature structure to be
processed. If, on the other hand, the pointer field is non-null, then the destination of
the pointer represents the actual feature structure to be processed. The merger aspects
of unification will be achieved by altering the pointer field of DAGs during processing.

To make this scheme somewhat more concrete, consider the extended DAG repre-
sentation for the following familiar feature structure.

(16.20)
[

NUMBER SG

PERSON 3

]

The extended DAG representation is illustrated with our textual matrix diagrams by
treating theCONTENT and POINTER fields as ordinary features, as in the following
matrix.

(16.21)




















CONTENT















NUMBER

[

CONTENT SG

POINTER NULL

]

PERSON

[

CONTENT 3
POINTER NULL

]















POINTER NULL





















SG

NULL

3

NULL

NULL

CONTENT

POINTER

NUMBER

PERSON

CONTENT

POINTER

CONTENT

POINTER

Figure 16.4 An extended DAG notation for Examples 16.20 and 16.21.

Figure 16.4 shows this extended representation in its graphical form. Note that the
extended representation contains content and pointer links both for the top-level layer



DRAFT

22 Chapter 16. Features and Unification

of features, as well as for each of the embedded feature structures all the way down to
the atomic values.

Before going on to the details of the unification algorithm, we will illustrate the use
of this extended DAG representation with the following simple example. The original
extended representation of the arguments to this unification are shown in Figure 16.5.

(16.22)
[

NUMBER SG
]

⊔
[

PERSON 3
]

=
[

NUMBER SG

PERSON 3

]

SG

NULL

3

NULL

NULL

NULL

CONTENT

POINTER

CONTENT

POINTER

PERSON

NUMBER

CONTENT

CONTENT

POINTER

POINTER

Figure 16.5 The original arguments to Example 16.22.

At a high level, we would simply say that the unification results in the creation of a
new structure containing the union of the information from the two original arguments.
With the extended notation, we can see how the unification is accomplished by making
some additions to the original arguments and changing some of the pointers from one
structure to the other so that in the end they contain the samecontent. In this example,
this is accomplished by first adding aPERSONfeature to the first argument, and assign-
ing it a value by filling itsPOINTER field with a pointer to the appropriate location in
the second argument, as shown in Figure 16.6.

The process is, however, not yet complete. While it is clear from Figure 16.6
that the first argument now contains all the correct information, the second one does
not; it lacks aNUMBER feature. We could, of course, add aNUMBER feature to this
argument with a pointer to the appropriate place in the first one. This change would
result in the two arguments having all the correct information from this unification.
Unfortunately, this solution is inadequate since it does not meet our requirement that
the two arguments be truly unified. Since the two arguments are not completely unified
at the top level, future unifications involving one of the arguments would not show up
in the other. The solution to this problem is to simply set thePOINTER field of the



DRAFT

Section 16.4. Implementing Unification 23

CONTENT

CONTENT

CONTENT

CONTENT

CONTENT

POINTER

POINTER

POINTER

POINTER

SG

NULL

NULL

3

NULL

NUMBER

PERSON

PERSON

POINTER

NULL

NULL

Figure 16.6 The arguments after assigning the first argument’s newPERSONfeature to
the appropriate value in the second argument.

second argument to point at the first one. When this is done anyfuture change to either
argument will be immediately reflected in both. The result ofthis final change is shown
in Figure 16.7.

16.4.2 The Unification Algorithm

The unification algorithm that we have been leading up to is shown in Figure 16.8.
To review, this algorithm accepts two feature structures represented using the extended
DAG representation. As can be seen from the code, it may return as its return either
one of these arguments. This is, however, somewhat deceptive since the true effect of
this algorithm is the destructive unification of the two inputs.

The first step in this algorithm is to acquire the true contents of both of the argu-



DRAFT

24 Chapter 16. Features and Unification

CONTENT

CONTENT

CONTENT

CONTENT

CONTENT

POINTER

POINTER

POINTER

POINTER

SG

NULL

NULL

3

NULL

NUMBER

PERSON

PERSON

POINTER

NULL

Figure 16.7 The final result of unifying F1 and F2.

ments. Recall that if the pointer field of an extended featurestructure is non-null, then
the real content of that structure is found by following the pointer found in pointer field.
The variablesf1-realandf2-realare the result of this pointer following process, which
is often referred to asdereferencing.DEREFERENCING

As with all recursive algorithms, the next step is to test forthe various base cases
of the recursion before proceeding on to a recursive call involving some part of the
original arguments. In this case, there are three possible base cases:

• One or both of the arguments has a null value.

• The arguments are identical.

• The arguments are non-complex and non-identical.

In the case where either of the arguments is null, the pointerfield for the null argu-
ment is changed to point to the other argument, which is then returned. The result is
that both structures now point at the same value.

If the structures are identical, then the pointer of the firstis set to the second and
the second is returned. It is important to understand why this pointer change is done
in this case. After all, since the arguments are identical, returning either one would
appear to suffice. This might be true for a single unification but recall that we want



DRAFT

Section 16.4. Implementing Unification 25

function UNIFY(f1, f2) returns fstructureor failure

f1-real←Real contents off1
f2-real←Real contents off2

if f1-real is null then
f1.pointer← f2
return f2

else iff2-real is null then
f2.pointer← f1
return f1

else iff1-real andf2-real are identicalthen
f1.pointer← f2
return f2

else ifboth f1-real andf2-real are complex feature structuresthen
f2.pointer← f1
for each featurein f2-real do

other-feature←Find or create
a feature corresponding tofeaturein f1-real

if UNIFY(feature.value,other-feature.value) returns failure then
return failure

return f1
else return failure

Figure 16.8 The unification algorithm.

the two arguments to the unification operator to be truly unified. The pointer change
is necessary since we want the arguments to be truly identical, so that any subsequent
unification that adds information to one will add it to both.

If neither of the preceding tests is true then there are two possibilities: they are
non-identical atomic values, or they are non-identical complex structures. The former
case signals an incompatibility in the arguments that leadsthe algorithm to return a
failure signal. In the latter case, a recursive call is needed to ensure that the component
parts of these complex structures are compatible. In this implementation, the key to the
recursion is a loop over all the features of thesecondargument,f2. This loop attempts
to unify the value of each feature inf2 with the corresponding feature inf1. In this
loop, if a feature is encountered inf2 that is missing fromf1, a feature is added tof1
and given the valueNULL . Processing then continues as if the feature had been there
to begin with. Ifeveryone of these unifications succeeds, then the pointer field off2 is
set tof1 completing the unification of the structures andf1 is returned as the value of
the unification.

We should note that an unfortunate aspect of this algorithm is that it is capable
of producing feature structures containing cycles. This situation can arise when the
algorithm is asked to unify a structure with a second structure that contains the first as
a subpart. The way to avoid this situation is to employ what iscalled anoccur checkOCCUR CHECK

(Robinson, 1965). This check analyzes the input DAGs and returnsfailure when one of



DRAFT

26 Chapter 16. Features and Unification

PTR

PTR

PTR

PTR

PTR

PTR

PTR

PTR

PTR

CT

CT

CT

CT

CT

CT

CT

CT

CT
AGR

NUM

SG

NULL

NULL

NULL

NULL

NULL NULL

NULL

NULL

NULL

SUBJECT
AGR

SUBJECT

AGR

PERSON

3

Figure 16.9 The initial argumentsf1 andf2 to Example 16.23.

the arguments is contained as a subpart of the other. In practice, this check is omitted
from most implementations due to its computational cost.

An Example

To illustrate this algorithm, let’s walk through the following example.

(16.23)






AGREEMENT 1

[

NUMBER SG
]

SUBJECT

[

AGREEMENT 1

]







⊔
[

SUBJECT

[

AGREEMENT
[

PERSON 3
]

]

]

Figure 16.9 shows the extended representations for the arguments to this unifica-
tion. Note how the reentrant structure in the first argument is captured through the use
of thePTR field.

These original arguments are neither identical, nor null, nor atomic, so the main
loop is entered. Looping over the features off2, the algorithm is led to a recursive
attempt to unify the values of the correspondingSUBJECTfeatures off1 andf2.

[

AGREEMENT 1

]

⊔
[

AGREEMENT
[

PERSON 3
]

]

These arguments are also non-identical, non-null, and non-atomic so the loop is
entered again leading to a recursive check of the values of the AGREEMENT features.



DRAFT

Section 16.4. Implementing Unification 27

PTR

PTR

PTR

PTR

PTR

PTR

PTR

PTR

PTR

CT

CT

CT

CT

CT

CT

CT

CT

CT

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

SUBJECT

AGR

PERSON

3

SUBJECT
AGR

PERSON

AGR

NUMBER

SG

Figure 16.10 f1 andf2 after the recursion adds the value of the newPERSONfeature.

[

NUMBER SG
]

⊔
[

PERSON 3
]

In looping over the features of the second argument, the factthat the first argu-
ment lacks aPERSONfeature is discovered. APERSONfeature initialized with aNULL

value is, therefore, added to the first argument. This, in effect, changes the previous
unification to the following.

[

NUMBER SG

PERSON NULL

]

⊔
[

PERSON 3
]

After creating this newPERSONfeature, the next recursive call leads to the unifica-
tion of theNULL value of the new feature in the first argument with the 3 value of the
second argument. This recursive call results in the assignment of the pointer field of
the first argument to the 3 value inf2, as shown in 16.10.

Since there are no further features to check in thef2 argument at any level of re-
cursion, each in turn sets the pointer for itsf2 argument to point at itsf1 argument and
returns it. The result of all these assignments is shown in Figure 16.11.



DRAFT

28 Chapter 16. Features and Unification

PTR

PTR

PTR

PTR

PTR

PTR

CT

CT

CT

CT

CT

CT

CT

CT

CT

PTR

PTR

PTR

SUBJ

AGR

PERSON

3

SUBJ

AGR

PERSON

PTR
NUMBER

SG

CT

NULL

NULL

NULL

NULL

NULL

NULL

AGR

Figure 16.11 The final structures off1 andf2 at the end.

16.5 PARSING WITH UNIFICATION CONSTRAINTS

We now have all the pieces necessary to integrate feature structures and unification
into a parser. Fortunately, the order-independent nature of unification allows us to
largely ignore the actual search strategy used in the parser. Once we have unification
constraints associated with the context-free rules of the grammar, and feature structures
with the states of the search, any of the standard search algorithms described in Ch. 13
can be used.

Of course, this leaves a fairly large range of possible implementation strategies. We
could, for example, simply parse as we did before using the context-free components
of the rules, and then build the feature structures for the resulting trees after the fact,
filtering out those parses that contain unification failures. Although such an approach
would result in only well-formed structures in the end, it fails to use the power of
unification to reduce the size of the parser’s search space during parsing.

The next section describes an approach that makes better useof the power of uni-
fication by integrating unification constraints directly into the Earley parsing process,
allowing ill-formed structures to be eliminated as soon as they are proposed. As we
will see, this approach requires only minimal changes to thebasic Earley algorithm.



DRAFT

Section 16.5. Parsing with Unification Constraints 29

We then move on to briefly consider an approach to unification parsing that moves
even further away from standard context-free methods.

16.5.1 Integrating Unification into an Earley Parser

We have two goals in integrating feature structures and unification into the Earley al-
gorithm: to use feature structures to provide a richer representation for the constituents
of the parse, and to block the entry into the chart of ill-formed constituents that vio-
late unification constraints. As we will see, these goals canbe accomplished via fairly
minimal changes to the original Earley scheme given on page??.

The first change involves the various representations used in the original code. Re-
call that the Earley algorithm operates by using a set of unadorned context-free gram-
mar rules to fill in a data-structure called a chart with a set of states. At the end of
the parse, the states that make up this chart represent all possible parses of the input.
Therefore, we begin our changes by altering the representations of both the context-free
grammar rules, and the states in the chart.

The rules are altered so that in addition to their current components, they also in-
clude a feature structure derived from their unification constraints. More specifically,
we will use the constraints listed with a rule to build a feature structure, represented as
a DAG, for use with that rule during parsing.

Consider the following context-free rule with unification constraints.

S→ NP VP

〈NP HEAD AGREEMENT〉 = 〈VP HEAD AGREEMENT〉

〈SHEAD〉 = 〈VP HEAD〉

Converting these constraints into a feature structure results in the following structure:
















S
[

HEAD 1
]

NP

[

HEAD
[

AGREEMENT 2
]

]

VP

[

HEAD 1

[

AGREEMENT 2
]

]

















In this derivation, we combined the various constraints into a single structure by first
creating top-level features for each of the parts of the context-free rule,S, NP, and
VP in this case. We then add further components to this structure by following the
path equations in the constraints. Note that this is a purelynotational conversion; the
DAGs and the constraint equations contain the same information. However, tying the
constraints together in a single feature structure puts it in a form that can be passed
directly to our unification algorithm.

The second change involves the states used to represent partial parses in the Earley
chart. The original states contain fields for the context-free rule being used, the position
of the dot representing how much of the rule has been completed, the positions of the
beginning and end of the state, and a list of other states thatrepresent the completed
sub-parts of the state. To this set of fields, we simply add an additional field to contain



DRAFT

30 Chapter 16. Features and Unification

the DAG representing the feature structure corresponding to the state. Note that when
a rule is first used by PREDICTOR to create a state, the DAG associated with the state
will simply consist of the DAG retrieved from the rule. For example, when PREDICTOR

uses the aboveS rule to enter a state into the chart, the DAG given above will be its
initial DAG. We’ll denote states like this as follows, whereDag denotes the feature
structure given above.

S→ •NP VP, [0,0], [],Dag

Given these representational additions, we can move on to altering the algorithm
itself. The most important change concerns the actions thattake place when a new
state is created via the extension of an existing state, which takes place in the COM-
PLETER routine. Recall that COMPLETER is called when a completed constituent has
been added to the chart. Its task is to attempt to find, and extend, existing states in the
chart that are looking for constituents that are compatiblewith the newly completed
constituent. COMPLETER is, therefore, a function that creates new states bycombin-
ing the information from two other states, and as such is a likelyplace to apply the
unification operation.

To be more specific, COMPLETERadds a new state into the chart by finding an ex-
isting state whose• can be advanced by the newly completed state. A• can be advanced
when the category of the constituent immediately followingit matches the category of
the newly completed constituent. To accommodate the use of feature structures, we
can alter this scheme by unifying the feature structure associated with the newly com-
pleted state with the appropriate part of the feature structure being advanced. If this
unification succeeds, then the DAG of the new state receives the unified structure and
is entered into the chart. If it fails, then no new state is entered into the chart. The
appropriate alterations to COMPLETERare shown in Figure 16.12.

Consider this process in the context of parsing the phraseThat flight, where the
Thathas already been seen, as is captured by the following state.

NP→ Det•Nominal[0,1], [SDet],Dag1

Dag1


















NP

[

HEAD 1

]

DET

[

HEAD

[

AGREEMENT 2

[

NUMBER SG
]

]

]

NOMINAL

[

HEAD 1

[

AGREEMENT 2

]

]



















Now consider the later situation where the parser has processedflight and has subse-
quently produced the following state.

Nominal→ Noun•, [1,2], [SNoun],Dag2

Dag2











NOMINAL

[

HEAD 1

]

NOUN

[

HEAD 1

[

AGREEMENT

[

NUMBER SG
]

]

]













DRAFT

Section 16.5. Parsing with Unification Constraints 31

To advance theNP rule, the parser unifies the feature structure found under the NOM-
INAL feature ofDag2, with the feature structure found under theNOMINAL feature of
theNP’s Dag1. As in the original algorithm, a new state is created to represent the fact
that an existing state has been advanced. This new state’s DAG is given the DAG that
resulted from the above unification.

function EARLEY-PARSE(words, grammar) returns chart

ENQUEUE((γ → • S, [0,0], dagγ ),chart[0])
for i← from 0 to LENGTH(words) do
for eachstatein chart[i] do

if INCOMPLETE?(state) and
NEXT-CAT(state) is not a part of speechthen

PREDICTOR(state)
elseif INCOMPLETE?(state) and

NEXT-CAT(state) is a part of speechthen
SCANNER(state)

else
COMPLETER(state)

end
end
return (chart)

procedure PREDICTOR((A → α • B β , [i, j ], dagA))
for each (B → γ) in GRAMMAR -RULES-FOR(B,grammar) do

ENQUEUE((B → • γ , [ j , j ], dagB),chart[j])
end

procedure SCANNER((A → α • B β , [i, j ], dagA))
if B ⊂ PARTS-OF-SPEECH(word[j] ) then

ENQUEUE((B → word[ j ], [ j , j +1], dagB),chart[j+1] )

procedure COMPLETER((B → γ •, [ j ,k], dagB))
for each (A → α • B β , [i, j ], dagA) in chart[j] do

if new-dag←UNIFY-STATES(dagB,dagA,B) 6= Fails!
ENQUEUE((A → α B • β , [i,k],new−dag),chart[k])

end

procedure UNIFY-STATES(dag1,dag2,cat)
dag1-cp←COPYDAG(dag1)
dag2-cp←COPYDAG(dag2)
UNIFY(FOLLOW-PATH(cat,dag1-cp), FOLLOW-PATH(cat,dag2-cp))

procedure ENQUEUE(state, chart-entry)
if stateis not subsumed by a state inchart-entrythen

PUSH(state, chart-entry)
end

Figure 16.12 Modifications to the Earley algorithm to include unification.



DRAFT

32 Chapter 16. Features and Unification

The final change to the original algorithm concerns the checkfor states already
contained in the chart. In the original algorithm, the ENQUEUE function refused to
enter into the chart any state that wasidentical to one already present in the chart.
“Identical” meant the same rule, with the same start and finish positions, and the same
position of the•. It is this check that allows the algorithm to, among other things, avoid
the infinite recursion problems associated with left-recursive rules.

The problem, of course, is that our states are now more complex since they have
complex feature structures associated with them. States that appeared identical under
the original criteria might in fact now be different since their associated DAGs may
differ. The obvious solution to this problem is to simply extend the identity check to
include the DAGs associated with the states, but it turns outthat we can improve on
this solution.

The motivation for the improvement lies in the motivation for the identity check.
Its purpose is to prevent the wasteful addition of a state into the chart whose effect on
the parse would be accomplished by an already existing state. Put another way, we
want to prevent the entry into the chart of any state that would duplicate the work that
will eventually be done by other states. Of course, this willclearly be the case with
identical states, but it turns out it is also the case for states in the chart that aremore
generalthan new states being considered.

Consider the situation where the chart contains the following state, where theDag
places no constraints on theDet.

NP→ •Det NP, [i, i], [],Dag

Such a state simply says that it is expecting aDet at positioni, and that anyDet will
do.

Now consider the situation where the parser wants to insert anew state into the
chart that is identical to this one, with the exception that its DAG restricts theDet to be
singular. In this case, although the states in question are not identical, the addition of
the new state to the chart would accomplish nothing and should therefore be prevented.

To see this let’s consider all the cases. If the new state is added, then a subsequent
singularDetwill match both rules and advance both. Due to the unificationof features,
both will have DAGs indicating that theirDets are singular, with the net result being
duplicate states in the chart. If on the other hand, a pluralDet is encountered, the new
state will reject it and not advance, while the old rule will advance, entering a single
new state into the chart. On the other hand, if the new state isnot placed in the chart,
a subsequent plural or singularDet will match the more general state and advance it,
leading to the addition of one new state into the chart. Note that this leaves us in
exactly the same situation as if the new state had been entered into the chart, with the
exception that the duplication is avoided. In sum, nothing worthwhile is accomplished
by entering into the chart a state that is more specific than a state already in the chart.

Fortunately, the notion ofsubsumptiondescribed earlier gives us a formal way to
talk about the generalization and specialization relations among feature structures. This
suggests that the proper way to alter ENQUEUE is to check if a newly created state is
subsumedby any existing states in the chart. If it is, then it will not be allowed into the
chart. More specifically, a new state that is identical in terms of its rule, start and finish



DRAFT

Section 16.5. Parsing with Unification Constraints 33

positions, subparts, and• position, to an existing state, will be not be entered into the
chart if its DAG is subsumed by the DAG of an existing state (ie. if Dagold ⊑ Dagnew).
The necessary change to the original Earley ENQUEUE procedure is shown in Figure
16.12.

The Need for Copying

The calls to COPYDAG within the UNIFY-STATE procedure require some elaboration.
Recall that one of the strengths of the Earley algorithm (andof the dynamic program-
ming approach in general) is that once states have been entered into the chart they may
be used again and again as part of different derivations, including ones that in the end
do not lead to successful parses. This ability is the motivation for the fact that states
already in the chart are not updated to reflect the progress oftheir •, but instead are
copied and then updated, leaving the original states intactso that they can be used
again in further derivations.

The call to COPYDAG in UNIFY-STATE is required to preserve this behavior be-
cause of the destructive nature of our unification algorithm. If we simply unified the
DAGS associated with the existing states, those states would be altered by the unifi-
cation, and hence would not be available in the same form for subsequent uses by the
COMPLETERfunction. Note that this has negative consequences regardless of whether
the unification succeeds or fails, since in either case the original states are altered.

Let’s consider what would happen if the call to COPYDAG was absent in the fol-
lowing example where an early unification attempt fails.

(16.24) Show me morning flights.

Let’s assume that our parser has the following entry for the ditransitive version of the
verbshow, as well as the following transitive and ditransitive verb phrase rules.

Verb→ show

〈VerbHEAD SUBCAT FIRST CAT〉 = NP

〈VerbHEAD SUBCAT SECOND CAT〉 = NP

〈VerbHEAD SUBCAT THIRD〉 = END

VP → Verb NP

〈VP HEAD〉 = 〈VerbHEAD〉

〈VP HEAD SUBCAT FIRST CAT〉 = 〈NP CAT 〉

〈VP HEAD SUBCAT SECOND〉 = END

VP → Verb NP NP

〈VP HEAD〉 = 〈VerbHEAD〉

〈VP HEAD SUBCAT FIRST CAT〉 = 〈NP1 CAT 〉

〈VP HEAD SUBCAT SECOND CAT〉 = 〈NP2 CAT 〉

〈VP HEAD SUBCAT THIRD〉 = END



DRAFT

34 Chapter 16. Features and Unification

When the wordme is read, the state representing transitive verb phrase willbe
completed since its dot has moved to the end. COMPLETERwill, therefore, call UNIFY-
STATES before attempting to enter this complete state into the chart. This will fail since
theSUBCAT structures of these two rules can not be unified. This is, of course, exactly
what we want since this version ofshow is ditransitive. Unfortunately, because of
the destructive nature of our unification algorithm we have already altered the DAG
attached to the state representingshow, as well as the one attached to theVP thereby
ruining them for use with the correct verb phrase rule later on. Thus, to make sure that
states can be used again and again with multiple derivations, copies are made of the
dags associated with states before attempting any unifications involving them.

All of this copying can be quite expensive. As a result, a number of alternative
techniques have been developed that attempt to minimize this cost (Pereira, 1985; Kart-
tunen and Kay, 1985; Tomabechi, 1991; Kogure, 1990). Kieferet al. (1999b) describe
a set of related techniques used to speed up a large unification-based parsing system.

16.5.2 Unification Parsing

A more radical approach to using unification in parsing can bemotivated by looking at
an alternative way of denoting our augmented grammar rules.Consider the following
Srule that we have been using throughout this chapter.

S→ NP VP

〈NP HEAD AGREEMENT〉 = 〈VP HEAD AGREEMENT〉

〈SHEAD〉 = 〈VP HEAD〉

An interesting way to alter the context-free part of this rule is to change the way its
grammatical categories are specified. In particular, we canplace the categorical infor-
mation about the parts of the rule inside the feature structure, rather than inside the
context-free part of the rule. A typical instantiation of this approach would give us the
following rule (Shieber, 1986).

X0 → X1 X2

〈X0 CAT〉 = S

〈X1 CAT〉 = NP

〈X2 CAT〉 = VP

〈X1 HEAD AGREEMENT〉 = 〈X2 HEAD AGREEMENT〉

〈 X0 HEAD〉 = 〈X2 HEAD〉

Focusing solely on the context-free component of the rule, this rule now simply
states that theX0 constituent consists of two components, and that theX1 constituent
is immediately to the left of theX2 constituent. The information about the actual cat-
egories of these components is placed inside the rule’s feature structure; in this case,
indicating thatX0 is anS, X1 is anNP, andX2 is aVP. Altering the Earley algorithm
to deal with this notational change is trivial. Instead of seeking the categories of con-
stituents in the context-free components of the rule, it simply needs to look at theCAT

feature in the DAG associated with a rule.



DRAFT

Section 16.5. Parsing with Unification Constraints 35

Of course, since it is the case that these two rules contain precisely the same infor-
mation, it isn’t clear that there is any benefit to this change. To see the potential benefit
of this change, consider the following rules.

X0 → X1 X2

〈X0 CAT〉 = 〈 X1 CAT〉

〈X2 CAT〉 = PP

X0 → X1 and X2

〈X1 CAT〉 = 〈 X2 CAT〉

〈X0 CAT〉 = 〈 X1 CAT〉

The first rule is an attempt to generalize over various rules that we have already
seen, such asNP→ NP PPandVP→ VP PP. It simply states that any category can
be followed by a prepositional phrase, and that the resulting constituent has the same
category as the original. Similarly, the second rule is an attempt to generalize over
rules such asS→ S and S, NP→ NP and NP, and so on.1 It states that any constituent
can be conjoined with a constituent of the same category to yield a new category of
the same type. What these rules have in common is their use of context-free rules that
contain constituents with constrained, but unspecified, categories, something that can
not be accomplished with our old rule format.

Of course, dealing this kind of rule requires some changes toour parsing scheme.
All of the parsing approaches we have considered thus far aredriven by the syntac-
tic category of the various constituents in the input. More specifically, they are based
on simple atomic matches between the categories that have been predicted, and cate-
gories that have been found. Consider, for example, the operation of the COMPLETER

function shown in Figure 16.12. This function searches the chart for states that can be
advanced by a newly completed state. It accomplishes this bymatching the category
of the newly completed state against the category of the constituent following the• in
the existing state. Clearly this approach will run into trouble when there are no such
categories to consult.

The remedy for this problem with COMPLETER is to search the chart for states
whose DAGsunify with the DAG of the newly completed state. This eliminates any
requirement that states or rules have a category. The PREDICTOR can be changed in
a similar fashion by having it add states to the chart states whoseX0 DAG component
can unify with the constituent following the• of the predicting state. Exercise 16.6
asks you to make the necessary changes to the pseudo-code in Figure 16.12 to effect
this style of parsing. Exercise 16.7 asks you to consider some of the implications of
these alterations, particularly with respect to prediction.

1 These rules should not be mistaken for correct, or complete,accounts of the phenomena in question.



DRAFT

36 Chapter 16. Features and Unification

16.6 TYPES AND INHERITANCE

I am surprised that ancient and modern writers have not attributed greater im-
portance to the laws of inheritance. . .

Alexis de Tocqueville,Democracy in America, 1840

The basic feature structures we have presented so far have two problems that have
led to extensions to the formalism. The first problem is that there is no way to place
a constraint on what can be the value of a feature. For example, we have implicitly
assumed that theNUMBER attribute can take onlySG and PL as values. But in our
current system, there is nothing, for example, to stopNUMBER from have the value
3RD or FEMININE as values:

[

NUMBER FEMININE
]

This problem has caused many unification-based grammaticaltheories to add var-
ious mechanisms to try to constrain the possible values of a feature. Formalisms like
Functional Unification Grammar (FUG) (Kay, 1979, 1984, 1985) and Lexical Func-
tional Grammar (LFG) (Bresnan, 1982), for example, focusedon ways to keep intran-
sitive verb likesneezefrom unifying with a direct object (Marin sneezed Toby). This
was addressed in FUG by adding a special atomnone which is not allowed to unifyNONE

with anything, and in LFG by addingcoherenceconditions which specified when a
feature should not be filled. Generalized Phrase Structure (GPSG) (Gazdar et al., 1985,
1988) added a class offeature co-occurrence restrictions, to prevent, for example,
nouns from having some verbal properties.

The second problem with simple feature structures is that there is no way to capture
generalizations across them. For example, the many types ofEnglish verb phrases
described in the Subcategorization section on page 14 sharemany features, as do the
many kinds of subcategorization frames for verbs. Syntacticians were looking for ways
to express these generalities.

A general solution to both of these problems is the use oftypes. Type systems forTYPES

unification grammars have the following characteristics:

1. Each feature structure is labeled by a type.

2. Conversely, each type hasappropriateness conditionsexpressing which fea-APPROPRIATENESS

tures are appropriate for it.

3. The types are organized into atype hierarchy, in which more specific typesTYPE HIERARCHY

inherit properties of more abstract ones.

4. The unification operation is modified to unify the types of feature structures in
addition to unifying the attributes and values.

In suchtyped feature structure systems, types are a new class of objects, just likeTYPED FEATURE
STRUCTURE

attributes and values were for standard feature structures. Types come in two kinds:
simple types(also calledatomic types), andcomplex types. Let’s begin with simpleSIMPLE TYPES

COMPLEX TYPES types. A simple type is an atomic symbol likesg or pl (we will use boldface for
all types), and replaces the simple atomic values used in standard feature structures.
All types are organized into a multiple-inheritancetype hierarchy (apartial order or



DRAFT

Section 16.6. Types and Inheritance 37

lattice). Fig. 16.13 shows the type hierarchy for the new typeagr, which will be the
type of the kind of atomic object that can be the value of anAGREE feature.

agr

1st 3rd sg pl

3−sg 1−pl 3−pl1−sg

3sg−fem 3sg−neut3sg−masc

Figure 16.13 A simple type hierarchy for the subtypes of typeagr which can be the
value of theAGREEattribute. After Carpenter (1992).

In the hierarchy in Fig. 16.13,3rd is a subtype of agr, and3-sg is a subtype ofSUBTYPE

both3rd andsg. Types can be unified in the type hierarchy; the unification ofany two
types is the most-general type that is more specific than the two input types. Thus:

3rd ⊔ sg= 3sg
1st⊔ pl = 1pl
1st⊔ agr = 1st
3rd ⊔ 1st= undefined

The unification of two types which do not have a defined unifier is undefined, al-
though it is also possible to explicitly represent thisfail type using the symbol⊥ (Aı̈t-FAIL TYPE

Kaci, 1984).
The second kind of types are complex types, which specify:

• a set of features that are appropriate for that type

• restrictions on the values of those features (expressed in terms of types)

• equality constraints between the values

Consider a simplified representation of the complex typeverb, which just repre-
sents agreement and verb morphological form information. Adefinition ofverb would
define the two appropriate features,AGREE and VFORM, and would also define the
type of the values of the two features. Let’s suppose that theAGREE feature takes
values of typeagr defined in Fig. 16.13 above, and theVFORM feature takes values
of typevform (wherevform subsumes the seven subtypesfinite, infinitive , gerund,
base, present-participle, past-participle, andpassive-participle. Thusverb would
be defined as follows (where the convention is to indicate thetype either at the top of
the AVM or just to the lower left of the left bracket):







verb
AGREE agr
VFORM vform







By contrast, the typenoun might be defined with theAGREE feature, but without
theVFORM feature:



DRAFT

38 Chapter 16. Features and Unification

[

noun
AGREE agr

]

The unification operation is augmented for typed feature structures just by requiring
that the type of the two structures must unify in addition to the values of the component
features unifying.







verb
AGREE 1st
VFORM gerund







⊔






verb
AGREE sg
VFORM gerund







=






verb
AGREE 1-sg
VFORM gerund







Complex types are also part of the type hierarchy. Subtypes of complex types in-
herit all the features of their parents, together with the constraints on their values. San-
filippo (1993), for example, uses the type hierarchy to encode the hierarchical structure
of the lexicon. Fig. 16.14 shows a small part of this hierarchy, the part that models the
various subcategories of verbs which take sentential complements; these are divided
into the transitive ones (which take direct objects: (ask yourself whether you have be-
come better informed) and the intransitive ones (Monsieur asked whether I wanted to
ride). The typetrans-comp-catwould introduce the required direct object, constrain-
ing it to be of typenoun-phrase, while types likesbase-comp-catwould introduce the
baseform (bare stem) complement and constrain its vform to be the baseform.

trans−comp−cat sfin−comp−cat swh−comp−cat sbase−comp−cat sinf−comp−cat intrans−comp−cat

comp−cat

tr−sfin−comp−cat
tr−swh−comp−cat

tr−sbase−comp−cat intr−sinf−comp−catintr−swh−comp−cat
intr−sbase−comp−catintr−sfin−comp−cat

Figure 16.14 Part of the type hierarchy for the verb typeverb-cat, showing the subtypes of thecomp-cattype.
These are all subcategories of verbs which take sentential complements. After Sanfilippo (1993).

16.6.1 Advanced: Extensions to Typing

Typed feature structures can be extended by allowing inheritance withdefaults. De-DEFAULTS

fault systems have been mainly used in lexical type hierarchies of the sort described in
the previous section, in order to encode generalizations and subregular exceptions to
them. In early versions of default unification the operationwas order-dependent, based
on thepriority union operation (Kaplan, 1987). More recent architectures are order-PRIORITY UNION

independent (Lascarides and Copestake, 1997; Young and Rounds, 1993), related to
Reiter’s default logic (Reiter, 1980).

Many unification-based theories of grammar, including HPSG(Pollard and Sag,
1987, 1994) and LFG (Bresnan, 1982) use an additional mechanism besides inheritance
for capturing lexical generalizations: thelexical rule. Lexical rules (Jackendoff, 1975)LEXICAL RULE

express lexical generalizations by allowing a reduced, hence more redundancy-free
lexicon to be automatically expanded by the rules. See Pollard and Sag (1994) for



DRAFT

Section 16.7. Summary 39

examples, Carpenter (1991) on complexity issues, and Meurers and Minnen (1997) on
efficient implementation. Conversely, see Krieger and Nerbonne (1993) on using the
type hierarchy to replace lexical rules.

Types can also be used to represent constituency. Rules like(16.13) on page 14
used a normal phrase structure rule template and added the features via path equations.
Instead, it’s possible to represent the whole phrase structure rule as a type. In order
to do this, we need a way to represent constituents as features. One way to do this,
following Sag and Wasow (1999), is to take a typephrasewhich has a feature called
DTRS (“daughters”), whose value is a list ofphrases. For example the phraseI love
New Yorkcould have the following representation, (showing only theDTRS feature):














phrase

DTRS 〈

[

CAT PRO

ORTH I

]

,









CAT VP

DTRS 〈

[

CAT V
ORTH LOVE

]

,

[

CAT NP
ORTH NEW YORK

]

〉









〉















16.6.2 Other Extensions to Unification

There are many other extensions to unification besides typing, includingpath inequa-
tions (Moshier, 1988; Carpenter, 1992; Carpenter and Penn, 1994), negation(Johnson,PATH INEQUATIONS

NEGATION 1988, 1990),set-valued features(Pollard and Moshier, 1990), anddisjunction (Kay,
SETVALUED

FEATURES

DISJUNCTION

1979; Kasper and Rounds, 1986). In some unification systems these operations are in-
corporated into feature structures. Kasper and Rounds (1986) and others, by contrast,
implement them in a separate metalanguage which is used todescribefeature struc-
tures. This idea derives from the work of Pereira and Shieber(1984), and even earlier
work by Kaplan and Bresnan (1982), all of whom distinguishedbetween a metalan-
guage for describing feature structures and the actual feature structures themselves.
The descriptions may thus use negation and disjunction to describe a set of feature
structures (i.e., a certain feature must not contain a certain value, or may contain any of
a set of values) but an actual instance of a feature structurethat meets the description
would not have negated or disjoint values.

The unification grammars as described so far have no mechanism for disambigua-
tion. Much recent work in unification grammars has focused onthis disambiguation
problem, particular via the use of probabilistic augmentations. See the History section
for important references.

16.7 SUMMARY

This chapter introduced feature structures and the unification operation which is used
to combine them.

• A feature structure is a set of features-value pairs, where features are unanalyz-
able atomic symbols drawn from some finite set, and values areeither atomic
symbols or feature structures. They are represented eitherasattribute-value



DRAFT

40 Chapter 16. Features and Unification

matrices (AVMs ) or as directed acyclic graphs (DAGs), where features are di-
rected labeled edges and feature values are nodes in the graph.

• Unification is the operation for both combining information (merging the infor-
mation content of two feature structures) and comparing information (rejecting
the merger of incompatible features).

• A phrase-structure rule can be augmented with feature structures, and with fea-
ture constraints expressing relations among the feature structures of the con-
stituents of the rule.Subcategorizationconstraints can be represented as feature
structures on head verbs (or other predicates). The elements which are subcat-
egorized for by a verb may appear in the verb phrase or may be realized apart
from the verb, as along-distance dependency.

• Feature structures can betyped. The resultingtyped feature structuresplace
constraints on which type of values a given feature can take,and can also be
organized into atype hierarchy to capture generalizations across types.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The use of features in linguistic theory comes originally from phonology. Anderson
(1985) credits Jakobson (1939) with being the first to use features (calleddistinctive
features) as an ontological type in a theory, drawing on previous usesof features by
Trubetskoi (1939) and others. The semantic use of features followed soon after; see
Ch. 19 for the history of componential analysis in semantics. Features in syntax were
well established by the 1950s and were popularized by Chomsky (1965).

The unification operation in linguistics was developed independently by Kay (1979)
(feature structure unification) and Colmerauer (1970, 1975) (term unification) (see
page??). Both were working in machine translation and looking for aformalism for
combining linguistic information which would be reversible. Colmerauer’s original
Q-system was a bottom-up parser based on a series of rewrite rules which contained
logical variables, designed for a English to French machinetranslation system. The
rewrite rules were reversible to allow them to work for both parsing and generation.
Colmerauer, Fernand Didier, Robert Pasero, Philippe Roussel, and Jean Trudel de-
signed the Prolog language based on extended Q-systems to full unification based on
the resolution principle of Robinson (1965), and implemented a French analyzer based
on it (Colmerauer and Roussel, 1996). The modern use of Prolog and term unifica-
tion for natural language viaDefinite Clause Grammarswas based on Colmerauer’sDEFINITE CLAUSE

GRAMMARS

(1975) metamorphosis grammars, and was developed and namedby Pereira and Warren
(1980). Meanwhile Martin Kay and Ron Kaplan had been workingwith Augmented
Transition Network (ATN ) grammars. An ATN is a Recursive Transition NetworkATN

(RTN) in which the nodes are augmented with feature registers. In an ATN analysis
of a passive, the first NP would be assigned to the subject register, then when the pas-
sive verb was encountered, the value would be moved into the object register. In order
to make this process reversible, they restricted assignments to registers so that certain
registers could only be filled once, that is, couldn’t be overwritten once written. They



DRAFT

Section 16.7. Summary 41

thus moved toward the concepts of logical variables withoutrealizing it. Kay’s orig-
inal unification algorithm was designed for feature structures rather than terms (Kay,
1979). The integration of unification into an Earley-style approach given in Section
16.5 is based on Shieber (1985).

See Shieber (1986) for a clear introduction to unification, and Knight (1989) for a
multidisciplinary survey of unification.

Inheritance and appropriateness conditions were first proposed for linguistic knowl-
edge by Bobrow and Webber (1980) in the context of an extension of the KL-ONE
knowledge representation system (Brachman and Schmolze, 1985). Simple inheritance
without appropriateness conditions was taken up by number of researchers; early users
include Jacobs (1985, 1987). Aı̈t-Kaci (1984) borrowed thenotion of inheritance in
unification from the logic programming community. Typing offeature structures, in-
cluding both inheritance and appropriateness conditions,was independently proposed
by Calder (1987), Pollard and Sag (1987), and Elhadad (1990). Typed feature struc-
tures were formalized by King (1989) and Carpenter (1992). There is an extensive
literature on the use of type hierarchies in linguistics, particularly for capturing lexical
generalizations; besides the papers previously discussed, the interested reader should
consult Evans and Gazdar (1996) for a description of the DATRlanguage, designed
for defining inheritance networks for linguistic knowledgerepresentation, Fraser and
Hudson (1992) for the use of inheritance in a dependency grammar, and Daelemans
et al. (1992) for a general overview. Formalisms and systemsfor the implementation
of constraint-based grammars via typed feature structuresinclude the PAGE system us-
ing the TDL language (Krieger and Schäfer, 1994), ALE (Carpenter and Penn, 1994),
and ConTroll (Götz et al., 1997).

Efficiency issues in unification parsing are discussed by Kiefer et al. (1999a), Mal-
ouf et al. (2000), and Munteanu and Penn (2004).

Grammatical theories based on unification include Lexical Functional Grammar
(LFG) (Bresnan, 1982), Head-Driven Phrase Structure Grammar (HPSG) (Pollard and
Sag, 1987, 1994), Construction Grammar (Kay and Fillmore, 1999), and Unification
Categorial Grammar (Uszkoreit, 1986).

Much recent computational work on unification grammars has focused on proba-
bilistic augmentations for disambiguation. Key relevant papers include Abney (1997),
Goodman (1997), Johnson et al. (1999), Riezler et al. (2000), Geman and Johnson
(2002), Riezler et al. (2002, 2003), Kaplan et al. (2004), Miyao and Tsujii (2005),
Toutanova et al. (2005), Ninomiya et al. (2006) and Blunsom and Baldwin (2006).

EXERCISES

16.1 Draw the DAGs corresponding to the AVMs given in Examples 16.1–16.2.

16.2 Consider the following BERP examples, focusing on their useof pronouns.



DRAFT

42 Chapter 16. Features and Unification

I want to spend lots of money.
Tell me about Chez-Panisse.
I’d like to take her to dinner.
She doesn’t like Italian.

Assuming that these pronouns all belong to the categoryPro, write lexical and gram-
matical entries with unification constraints that block thefollowing examples.

*Me want to spend lots of money.
*Tell I about Chez-Panisse.
*I would like to take she to dinner.
*Her doesn’t like Italian.

16.3 Draw a picture of the subsumption semilattice corresponding to the feature
structures in Examples 16.3 to 16.8. Be sure to include the most general feature struc-
ture [].

16.4 Consider the following examples.

The sheep are baaaaing.
The sheep is baaaaing.

Create appropriate lexical entries for the wordsthe, sheep, andbaaaaing. Show that
your entries permit the correct assignment of a value to theNUMBER feature for the
subjects of these examples, as well as their various parts.

16.5 Create feature structures expressing the different subcatframes forwhile and
duringshown on page 19.

16.6 Alter the pseudocode shown in Figure 16.12 so that it performs the more radical
kind of unification parsing described on page 34.

16.7 Consider the following problematic grammar suggested by Shieber (1985).

S→ T

〈T F〉 = a

T1 → T2 A

〈T1 F〉 = 〈T2 F F〉

S→ A

A → a

Show the firstSstate entered into the chart using your modifiedPREDICTORfrom
the previous exercise, then describe any problematic behavior displayed byPREDIC-
TOR on subsequent iterations. Discuss the cause of the problem and how in might be
remedied.

16.8 Using the list approach to representing a verb’s subcategorization frame, show
how a grammar could handle any number of verb subcategorization frames with only



DRAFT

Section 16.7. Summary 43

the following twoVP rules. More specifically, show the constraints that would have to
be added to these rules to make this work.

VP → Verb

VP → VP X

The solution to this problem involves thinking about a recursive walk down a verb’s
subcategorization frame. This is a hard problem; you might consult Shieber (1986) if
you get stuck.

16.9 Page 39 showed how to use typed feature structure to represent constituency.
Use that notation to represent rules 16.13, 16.14, and 16.15shown on page 14.



DRAFT

44 Chapter 16. Features and Unification

Abney, S. P. (1997). Stochastic attribute-value grammars.Com-
putational Linguistics, 23(4), 597–618.

Aı̈t-Kaci, H. (1984). A Lattice-Theoretic Approach to Compu-
tation Based on a Calculus of Partially Ordered Types. Ph.D.
thesis, University of Pennsylvania.

Anderson, S. R. (1985).Phonology in the Twentieth Century.
Cambridge University Press.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berke-
ley FrameNet project. InCOLING/ACL-98, pp. 86–90.

Blunsom, P. and Baldwin, T. (2006). Multilingual deep lexical
acquisition for hpsgs via supertagging. InEMNLP 2006.

Bobrow, R. J. and Webber, B. L. (1980). Knowledge representa-
tion for syntactic/semantic processing. InAAAI-80, Stanford,
CA, pp. 316–323. Morgan Kaufmann.

Brachman, R. J. and Schmolze, J. G. (1985). An overview of the
KL-ONE knowledge representation system.Cognitive Sci-
ence, 9(2), 171–216.

Bresnan, J. (Ed.). (1982).The Mental Representation of Gram-
matical Relations. MIT Press.

Calder, J. (1987). Typed unification for natural language
processing. In Kahn, G., MacQueen, D., and Plotkin, G.
(Eds.), Categories, Polymorphism, and Unification. Centre
for Cognitive Science, University of Edinburgh, Edinburgh,
Scotland†.

Carpenter, B. (1991). The generative power of categorial gram-
mars and head-driven phrase structure grammars with lexical
rules.Computational Linguistics, 17(3), 301–313.

Carpenter, B. (1992).The Logic of Typed Feature Structures.
Cambridge University Press.

Carpenter, B. and Penn, G. (1994). The Attribute Logic Engine
Users’s Guide Version 2.0.1. Tech. rep., Carnegie Mellon Uni-
versity.

Chomsky, N. (1965).Aspects of the Theory of Syntax. MIT
Press.

Colmerauer, A. (1970). Les systèmes-q ou un formalisme pour
analyser et synthétiser des phrase sur ordinateur. Internal pub-
lication 43, Département d’informatique de l’Universit´e de
Montréal†.

Colmerauer, A. (1975). Les grammaires de métamorphose GIA.
Internal publication, Groupe Intelligence artificielle, Faculté
des Sciences de Luminy, Université Aix-Marseille II, France,
Nov 1975. English version, Metamorphosis grammars. In L.
Bolc, (Ed.),Natural Language Communication with Comput-
ers, Lecture Notes in Computer Science 63, Springer Verlag,
Berlin, 1978, pp. 133–189.

Colmerauer, A. and Roussel, P. (1996). The birth of Prolog. In
Bergin Jr., T. J. and Gibson, Jr., R. G. (Eds.),History of Pro-
gramming Languages – II, pp. 331–352. ACM Press/Addison-
Wesley, New York.

Daelemans, W., Smedt, K. D., and Gazdar, G. (1992). Inheri-
tance in natural language processing.Computational Linguis-
tics, 18(2), 205–218.

de Tocqueville, A. (1840).Democracy in America. Doubleday,
New York. The 1966 translation by George Lawrence.

Elhadad, M. (1990). Types in functional unification grammars.
In Proceedings of the 28th ACL, Pittsburgh, PA, pp. 157–164.
ACL.

Evans, R. and Gazdar, G. (1996). DATR: A language for lexical
knowledge representation.Computational Linguistics, 22(2),
167–216.

Fraser, N. M. and Hudson, R. A. (1992). Inheritance in word
grammar.Computational Linguistics, 18(2), 133–158.

Gazdar, G., Klein, E., Pullum, G. K., and Sag, I. A. (1985).
Generalized Phrase Structure Grammar. Basil Blackwell,
Oxford.

Gazdar, G., Pullum, G. K., Carpenter, B., Klein, E., Hukari,
T. E., and Levine, R. D. (1988). Category structures.Compu-
tational Linguistics, 14(1), 1–19.

Geman, S. and Johnson, M. (2002). Dynamic programming for
parsing and estimation of stochastic unification-based gram-
mars.. InACL-02, pp. 279–286.

Goodman, J. (1997). Probabilistic feature grammars. InPro-
ceedings of the International Workshop on Parsing Technol-
ogy.

Götz, T., Meurers, W. D., and Gerdemann, D. (1997). The Con-
Troll manual. Tech. rep., Seminar für Sprachwissenschaft,
Universität Tübingen.

Jackendoff, R. (1975). Morphological and semantic regularities
in the lexicon.Language, 51(3), 639–671.

Jacobs, P. (1985).A Knowledge-Based Approach to Language
Generation. Ph.D. thesis, University of California, Berkeley,
CA. Available as University of California at Berkeley Com-
puter Science Division Tech. rep. #86/254.

Jacobs, P. (1987). Knowledge-based natural language genera-
tion. Artificial Intelligence, 33, 325–378.

Jakobson, R. (1939). Observations sur le classement
phonologique des consonnes. In Blancquaert, E. and Pée,
W. (Eds.),Proceedings of the Third International Congress
of Phonetic Sciences, Ghent, pp. 34–41.

Johnson, C. (1999). Syntactic and semantic principles of
FrameNet annotation, version 1. Tech. rep. TR-99-018, ICSI,
Berkeley, CA.

Johnson, M. (1988).Attribute-Value Logic and the Theory of
Grammar. CSLI Lecture Notes. Chicago University Press,
Chicago.

Johnson, M. (1990). Expressing disjunctive and negative fea-
ture constraints with classical first-order logic. InProceedings
of the 28th ACL, Pittsburgh, PA, pp. 173–179. ACL.

Johnson, M., Geman, S., Canon, S., Chi, Z., and Riezler, S.
(1999). Estimators for stochastic “unification-based” gram-
mars. InACL-99, pp. 535–541.

Kaplan, R. M., Riezler, S., King, T. H., Maxwell, J. T., Vasser-
man, A., and Crouch, R. (2004). Speed and accuracy in shal-
low and deep stochastic parsing. InHLT-NAACL-04.



DRAFT

Section 16.7. Summary 45

Kaplan, R. M. (1987). Three seductions of computational psy-
cholinguistics. In Whitelock, P., Wood, M. M., Somers, H. L.,
Johnson, R., and Bennett, P. (Eds.),Linguistic Theory and
Computer Applications, pp. 149–188. Academic Press, Lon-
don.

Kaplan, R. M. and Bresnan, J. (1982). Lexical-functional gram-
mar: A formal system for grammatical representation. In
Bresnan, J. (Ed.),The Mental Representation of Grammati-
cal Relations, pp. 173–281. MIT Press.

Karttunen, L. and Kay, M. (1985). Structure sharing with binary
trees. InACL-85, Chicago, pp. 133–136. ACL.

Kasper, R. T. and Rounds, W. C. (1986). A logical semantics
for feature structures. InACL-86, New York, pp. 257–266.
ACL.

Kay, M. (1979). Functional grammar. InBLS-79, Berkeley, CA,
pp. 142–158.

Kay, M. (1984). Functional unification grammar: A formalism
for machine translation. InCOLING-84, Stanford, CA, pp.
75–78.

Kay, M. (1985). Parsing in functional unification grammar. In
Dowty, D. R., Karttunen, L., and Zwicky, A. (Eds.),Natural
Language Parsing, pp. 251–278. Cambridge University Press.

Kay, P. and Fillmore, C. J. (1999). Grammatical constructions
and linguistic generalizations: The What’s X Doing Y? con-
struction.Language, 75(1), 1–33.

Kiefer, B., Krieger, H. U., Carroll, J., and Malouf, R. (1999a).
A bag of useful techniques for efficient and robust parsing. In
ACL-99, pp. 535–541.

Kiefer, B., Krieger, H.-U., Carroll, J., and Malouf, R. (1999b).
A bag of useful techniques for efficient and robust parsing. In
ACL-99, College Park, MD, pp. 473–480.

King, P. (1989).A Logical Formalism for Head-Driven Phrase
Structure Grammar. Ph.D. thesis, University of Manchester†.
Cited in Carpenter (1992)).

Knight, K. (1989). Unification: A multidisciplinary survey.
ACM Computing Surveys, 21(1), 93–124.

Kogure, K. (1990). Strategic lazy incremental copy graph uni-
fication. InCOLING-90, Helsinki, pp. 223–228.

Krieger, H.-U. and Nerbonne, J. (1993). Feature-based inher-
itance networks for computational lexicons. In Briscoe, T.,
de Paiva, V., and Copestake, A. (Eds.),Inheritance, Defaults,
and the Lexicon, pp. 90–136. Cambridge University Press.

Krieger, H.-U. and Schäfer, U. (1994). TDL — A type de-
scription language for HPSG. Part 1: Overview. Tech. rep.
RR-94-37, DFKI, Saarbrücken.

Lascarides, A. and Copestake, A. (1997). Default representa-
tion in constraint-based frameworks.Computational Linguis-
tics, 25(1), 55–106.

Macleod, C., Grishman, R., and Meyers, A. (1998). COMLEX
Syntax Reference Manual Version 3.0. Linguistic Data Con-
sortium.

Malouf, R., Carroll, J., and Copestake, A. (2000). Efficientfea-
ture structure operations without compilation.Natural Lan-
guage Engineering, 6(1).

Meurers, W. D. and Minnen, G. (1997). A computational treat-
ment of lexical rules in HPSG as covariation in lexical entries.
Computational Linguistics, 23(4), 543–568.

Miyao, Y. and Tsujii, J. (2005). Probabilistic disambiguation
models for wide-coverage hpsg parsing. InACL-05, pp. 83–
90.

Moshier, M. A. (1988). Extensions to Unification Grammar
for the Description of Programming Languages. Ph.D. thesis,
University of Michigan, Ann Arbor, MI.

Munteanu, C. and Penn, G. (2004). Optimizing typed feature
structure grammar parsing through non-statistical indexing. In
ACL-04, Barcelona, Spain, pp. 223–230.

Ninomiya, T., Tsuruoka, Y., Miyao, Y., Taura, K., and Tsujii, J.
(2006). Fast and scalable hpsg parsing.Traitement automa-
tique des langues (TAL), 46(2).

Pereira, F. C. N. (1985). A structure-sharing representation for
unification-based grammar formalisms. InACL-85, Chicago,
pp. 137–144.

Pereira, F. C. N. and Shieber, S. M. (1984). The seman-
tics of grammar formalisms seen as computer languages. In
COLING-84, Stanford, CA, pp. 123–129.

Pereira, F. C. N. and Warren, D. H. D. (1980). Definite clause
grammars for language analysis— a survey of the formalism
and a comparison with augmented transition networks.Artifi-
cial Intelligence, 13(3), 231–278.

Pollard, C. and Moshier, M. A. (1990). Unifying partial descrip-
tions of sets. In Hanson, P. P. (Ed.),Information, Language,
and Cognition, pp. 285–322. University of British Columbia
Press, Vancouver.

Pollard, C. and Sag, I. A. (1987).Information-Based Syntax and
Semantics: Volume 1: Fundamentals. University of Chicago
Press, Chicago.

Pollard, C. and Sag, I. A. (1994).Head-Driven Phrase Struc-
ture Grammar. University of Chicago Press, Chicago.

Reiter, R. (1980). A logic for default reasoning.Artificial Intel-
ligence, 13, 81–132.

Riezler, S., King, T. H., Crouch, R., and Zaenen, A. (2003). Sta-
tistical sentence condensation using ambiguity packing and
stochastic disambiguation methods for Lexical-Functional
Grammar. InHLT-NAACL-03, Edmonton, Canada.

Riezler, S., Prescher, D., Kuhn, J., and Johnson, M. (2000).
Lexicalized stochastic modeling of constraint-based gram-
mars using log-linear measures and em training. InACL-00,
Hong Kong.

Riezler, S., King, T. H., Kaplan, R. M., Crouch, R., III, J. T.M.,
and Johnson, M. (2002). Parsing the wall street journal us-
ing a lexical-functional grammar and discriminative estima-
tion techniques. InACL-02, Philadelphia, PA.

Robinson, J. A. (1965). A machine-oriented logic based on the
resolution principle.Journal of the Association for Computing
Machinery, 12, 23–41.



DRAFT

46 Chapter 16. Features and Unification

Rounds, W. C. and Kasper, R. T. (1986). A complete logical
calculus for record structures representing linguistic informa-
tion. In Proceedings of the 1st Annual IEEE Symposium on
Logic in Computer Science, pp. 38–43.

Sag, I. A. and Wasow, T. (Eds.). (1999).Syntactic Theory: A
Formal Introduction. CSLI Publications, Stanford, CA.

Sanfilippo, A. (1993). LKB encoding of lexical knowledge.
In Briscoe, T., de Paiva, V., and Copestake, A. (Eds.),Inher-
itance, Defaults, and the Lexicon, pp. 190–222. Cambridge
University Press.

Shieber, S. M. (1985). Using restriction to extend parsing al-
gorithms for complex-feature-based formalisms. InACL-85,
Chicago, pp. 145–152.

Shieber, S. M. (1986).An Introduction to Unification-Based
Approaches to Grammar. Center for the Study of Language
and Information, Stanford University, Stanford, CA.

Tomabechi, H. (1991). Quasi-destructive graph unification. In
Proceedings of the 29th ACL, Berkeley, CA, pp. 315–322.

Toutanova, K., Manning, C. D., Flickinger, D., and Oepen, S.
(2005). Stochastic HPSG Parse Disambiguation using the
Redwoods Corpus.Research on Language & Computation,
3(1), 83–105.

Trubetskoi, N. S. (1939).Grundzüge der Phonologie, Vol. 7 of
Travaux du cercle linguistique de Prague. Available in 1969
English translation by Christiane A. M. Baltaxe asPrinciples
of Phonology, University of California Press.

Uszkoreit, H. (1986). Categorial unification grammars. In
COLING-86, Bonn, pp. 187–194.

Young, M. and Rounds, W. C. (1993). A logical semantics for
nonmonotonic sorts. InProceedings of the 31st ACL, Colum-
bus, OH, pp. 209–215. ACL.


