
16
The Gradient Descent Framework

Consider the problem of finding the minimum-energy s-t electrical
unit flow: we wanted to minimize the total energy burn

E( f ) = ∑
e

f 2
e re

for flow values f that represent a unit flow from s to t (these form
a polytope). We alluded to algorithms that solve this problem, but
one can also observe that E( f ) is a convex function, and we want to
find a minimizer within some polytope K. Equivalently, we wanted
to solve the linear system

Lφ = (es − et),

which can be cast as finding a minimizer of the convex function

‖Lφ− (es − et)‖2.

How can we minimize these functions efficiently? In this lecture, we
will study the gradient descent framework for the general problem of
minimizing functions, and give concrete performance guarantees for
the case of convex optimization.

16.1 Convex Sets and Functions

First, recall the following definitions:

Definition 16.1 (Convex Set). A set K ⊆ Rn is called convex if for all
x, y ∈ K,

λx + (1− λ)y ∈ K, (16.1)

for all values of λ ∈ [0, 1]. Geometrically, this means that for any two
points in K, the line connecting them is contained in K.

Definition 16.2 (Convex Function). A function f : K → R defined on
a convex set K is called convex if for all x, y ∈ K,

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y), (16.2)



196 convex sets and functions

for all values of λ ∈ [0, 1].
f (x)

x λx + (1− λ)y y

f [λx + (1− λ)y]

λ f (x) + (1− λ) f (y)

x

y

There are two kinds of problems that we will study. The most
basic question is that of unconstrained convex minimization (UCM):
given a convex function f , we want to find

min
x∈Rn

f (x).

In some cases we will be concerned with the constrained convex min-
imization (CCM) problem: given a convex function f and a convex
set K, we want to find

min
x∈K

f (x).

Note that setting K = Rn gives us the unconstrained case.

16.1.1 Gradient

For most of the following discussion, we assume that the function f
is differentiable. In that case, we can give an equivalent characteriza-
tion, based on the notion of the gradient ∇ f : Rn → Rn. The directional derivative of f at x (in the

direction y) is defined as

f ′(x; y) := lim
ε→0

f (x + εy)− f (x)
ε

.

If there exists a vector g such that
〈g, y〉 = f ′(x; y) for all y, then f is called
differentiable at x, and g is called the
gradient. It follows that the gradient
must be of the form

∇ f (x) =
(

∂ f
∂x1

(x),
∂ f
∂x2

(x), · · · ,
∂ f
∂xn

(x)
)

.

Fact 16.3 (First-order condition). A function f : K → R is convex if
and only if

f (y) ≥ f (x) + 〈∇ f (x), y− x〉 , (16.3)

for all x, y ∈ K.

Figure 16.1: The blue line denotes
the function and the red line is the
tangent line at x. (Figure from Nisheeth
Vishnoi.)

Geometrically, Fact 16.3 states that the function always lies above
its tangent plane, for all points in K. If the function f is twice-differentiable,
and if H f (x) is its Hessian matrix, i.e. its matrix of second derivatives
at x ∈ K:

(H f )i,j(x) :=
∂2 f

∂xi ∂xj
(x), (16.4)

then we get yet another characterization of convex functions.

Fact 16.4 (Second-order condition). A twice-differentiable function f
is convex if and only if H f (x) is positive semidefinite for all x ∈ K.

16.1.2 Lipschitz Functions

We will need one more notion of smoothness of the function:

Definition 16.5 (Lipschitz). For a convex set K ⊆ Rn, a function
f : K → R is called G-Lipschitz with respect to the norm ‖ · ‖ if

| f (x)− f (y)| ≤ G ‖x− y‖ ,

for all x, y ∈ K.



the gradient descent framework 197

In this chapter we focus on the Euclidean or `2-norm, denoted by
‖ · ‖2. General norms arise in the next chapter, when we talk about
mirror descent. Again, assuming that the function is differentiable
allows us to give an alternative characterization of Lipschitzness.

Fact 16.6. A differentiable function f : K → Rn is G-Lipschitz with
respect to ‖ · ‖2 if and only if

‖∇ f (x)‖2 ≤ G, (16.5)

for all x ∈ K.

16.2 Unconstrained Convex Minimization

If the function f is convex, any stationary point (i.e., a point x∗ where
∇ f (x∗) = 0) is also a global minimum: just use Fact 16.3 to infer that
f (y) ≥ f (x∗) for all y. Now given a convex function, we can just
solve the equation

∇ f (x) = 0

to compute the global minima exactly. This is often easier said than
done: for instance, if the function f we want to minimize may not
be given explicitly. Instead we may only have a gradient oracle that
given x, returns ∇ f (x).

Even when f is explicit, it may be expensive to solve the equation
∇ f (x) = 0, and gradient descent may be a faster way. One example
arises when solving linear systems: given a quadratic function f (x) =
1
2 xᵀAx− bx for a symmetric matrix A (say having full rank), a simple
calculation shows that

∇ f (x) = 0 ⇐⇒ Ax = b ⇐⇒ x = A−1b.

This can be solved in O(nω) (i.e., matrix-multiplication) time using
Gaussian elimination—but for “nice” matrices A we are often able to
approximate a solution much faster using the gradient-based meth-
ods we will soon see.

16.2.1 The Basic Gradient Descent Method

Gradient descent is an iterative algorithm to approximate the opti-
mal solution x∗. The main idea is simple: since the gradient tells us
the direction of steepest increase, we’d like to move opposite to the
direction of the gradient to decrease the fastest. So by selecting an
initial position x0 and a step size ηt at each time t, we can repeatedly
perform the update:

xt+1 ← xt − ηt · ∇ f (xt). (16.6)



198 unconstrained convex minimization

There are many choices to be made: where should we start? What
are the step sizes? When do we stop? While each of these decisions
depend on the properties of the particular instance at hand, we can
show fairly general results for general convex functions.

16.2.2 An Algorithm for General Convex Functions

The algorithm fixes a step size for all times t, performs the up-
date (16.6) for some number of steps T, and then returns the average
of all the points seen during the process.

Algorithm 13: Gradient Descent

13.1 x1 ← starting point
13.2 for t← 1 to T do
13.3 xt+1 ← xt − η · ∇ f (xt)

13.4 return x̂ :=
1
T

T

∑
t=1

xi.

Figure 16.2: The yellow lines denote
the level sets of the function f and the
red walk denotes the steps of gradient
descent. (Figure from Wikipedia.)

This is easy to visualize in two dimensions: draw the level sets
of the function f , and the gradient at a point is a scaled version of
normal to the tangent line at that point. Now the algorithm’s path is
often a zig-zagging walk towards the optimum (see Fig 16.2).

Interestingly, we can give rigorous bounds on the convergence of
this algorithm to the optimum, based on the distance of the starting
point from the optimum, and bounds on the Lipschitzness of the
function. If both these are assumed to be constant, then our error is
smaller than ε in only O(1/ε2) steps.

Proposition 16.7. Let f : Rn → R be convex, differentiable and G-

Lipschitz. Let x∗ be any point in Rd. If we define T := G2‖x0−x∗‖2

ε2 and

η := ‖x0−x∗‖
G
√

T
, then the solution x̂ returned by gradient descent satisfies

f (x̂) ≤ f (x∗) + ε. (16.7)

In particular, this holds when x∗ is a minimizer of f .

The core of this proposition lies in the following theorem

Theorem 16.8. Let f : Rn → R be convex, differentiable and G-Lipschitz.
Then the gradient descent algorithm ensures that

T

∑
t=1

f (xt) ≤
T

∑
t=1

f (x∗) +
1
2

ηTG2 +
1

2η
‖x0 − x∗‖2. (16.8)

We will prove Theorem 16.8 in the next section, but let’s first use it
to prove Proposition 16.7.

Proof of Proposition 16.7. By definition of x̂ and the convexity of f ,

f (x̂) = f
( 1

T

T

∑
t=1

xt

)
≤ 1

T

T

∑
t=1

f (xt).



the gradient descent framework 199

By Theorem 16.8,

1
T

T

∑
t=1

f (xt) ≤ f (x∗) +
1
2

ηG2 +
1

2ηT
‖x0 − x∗‖2

︸ ︷︷ ︸
error

.

The error terms balance when η = ‖x0−x∗‖
G
√

T
, giving

f (x̂) ≤ f (x∗) +
‖x0 − x∗‖G√

T
.

Finally, we set T = 1
ε2 G2‖x0 − x∗‖2 to obtain

f (x̂) ≤ f (x∗) + ε.

Observe: we do not (and cannot) show that the point x̂ is close in
distance to x∗; we just show that the function value f (x̂) ≈ f (x∗).
Indeed, if the function is very flat close to x∗ and we start off at some
remote point, we make tiny steps as we get close to x∗, and we can-
not hope to get close to it.

The 1/ε2 dependence of the number of oracle calls was shown
to be tight for gradient-based methods by Yurii Nesterov, if we al-
low f to be any G-Lipschitz function. However, if we assume that
the function is “well-behaved”, we can indeed improve on the 1/ε2

dependence. Moreover, if the function is strongly convex, we can
show that x∗ and x̂ are close to each other as well: see §16.5 for such
results.

The convergence guarantee in Proposition 16.7 is for the time-
averaged point x̂. Indeed, using a fixed step size means that our
iterates may get stuck in a situation where xt+2 = xt after some point
and hence we never improve, even though x̂ is at the minimizer.
One can also show that f (xT) ≤ f (x∗) + ε if we use a time-varying
step size ηt = O(1/

√
t), and increase the time horizon slightly to

O(1/ε2 log 1/ε). We refer to the work of Shamir and Zhang. Link to
notes.

16.2.3 Proof of Theorem 16.8

Like in the proof of the multiplicative weights algorithm, we will use
a potential function. Define

Φt :=
‖xt − x∗‖2

2η
. (16.9)

We start the proof of Theorem 16.8 by understanding the one-step
change in potential:

Lemma 16.9. f (xt) + (Φt+1 −Φt) ≤ f (x∗) + 1
2 ηG2.



200 unconstrained convex minimization

Proof. Using the identity

‖a + b‖2 = ‖a‖2 + 2 〈a, b〉+ ‖b‖2,

with a + b = xt+1 − x∗ and a = xt − x∗, we get

Φt+1 −Φt =
1

2η

(
‖xt+1 − x∗‖2 − ‖xt − x∗‖2) (16.10)

=
1

2η

(
2 〈xt+1 − xt, xt − x∗〉︸ ︷︷ ︸

〈b,a〉

+ ‖xt+1 − xt‖2
︸ ︷︷ ︸

‖b‖2

)
;

now using xt+1 − xt = −η∇ f (xt) from gradient descent,

=
1

2η

(
2 〈−η∇ f (xt), xt − x∗〉+ ‖η∇ f (xt)‖2).

Since f is G-Lipschitz, ‖∇ f (x)‖ ≤ G for all x. Thus,

f (xt) + (Φt+1 −Φt) ≤ f (xt) + 〈∇ f (xt), x∗ − xt〉+
1
2

ηG2

Since f is convex, we know that f (xt) + 〈∇ f (xt), x∗ − xt〉 ≤ f (x∗).
Thus, we conclude that

f (xt) + (Φt+1 −Φt) ≤ f (x∗) +
1
2

ηG2.

Now that we understand how our potential changes over time,
proving the theorem is straightforward.

Proof of Theorem 16.8. We start with the inequality we proved above:

f (xt) + (Φt+1 −Φt) ≤ f (x∗) +
1
2

ηG2.

Summing over t = 1, . . . , T,

T

∑
t=1

f (xt) +
T

∑
t=1

(Φt+1 −Φt) ≤
T

∑
t=1

f (x∗) +
1
2

ηG2T

The sum of potentials on the left telescopes to give:

T

∑
t=1

f (xt) + ΦT+1 −Φ1 ≤
T

∑
t=1

f (x∗) +
1
2

ηG2T

Since the potentials are nonnegative, we can drop the ΦT term:

T

∑
t=1

f (xt)−Φ1 ≤
T

∑
t=1

f (x∗) +
1
2

ηG2T

Substituting in the definition of Φ1 and moving it over to the right
hand side completes the proof.



the gradient descent framework 201

16.2.4 Some Remarks on the Algorithm

We assume a gradient oracle for the function: given a point x, it
returns the gradient ∇ f (x) at that point. If the function f is not
given explicitly, we may have to estimate the gradient using, e.g.,
random sampling. One particularly sample-efficient solution is to
pick a uniformly random point u ∼ Sn−1 from the sphere in Rn, and
return As δ → 0, the expectation of this

expression tends to ∇ f (x), using
Stokes’ theorem. Details?d

[ f (x + δu)
δ

u
]

for some tiny δ > 0. It is slightly mysterious, so perhaps it is useful to
consider its expectation in the case of a univariate function:

Eu∼{−1,+1}
[ f (x + δu)

δ
u
]
=

f (x + δ)− f (x− δ)

2δ
≈ f ′(x).

In general, randomized strategies form the basis of stochastic gra-
dient descent, where we use an unbiased estimator of the gradient,
instead of computing the gradient itself (because it is slow to com-
pute, or because enough information is not available). The challenge
is now to control the variance of this estimator.

Another concern is that the step-size η and the number of steps
T both require knowledge of the distance ‖x1 − x∗‖ as well as the
bound on the gradient. More here. As an exercise, show that using
the time-varying step-size ηt := ‖x0−x∗‖

G
√

t
also gives a very similar

convergence rate.
Finally, the guarantee is for f (x̂), where x̂ is the time-average of

the iterates. What about returning the final iterate? It turns out this
has comparable guaranteed, but the proof is slightly more involved.
See put notes on webpage.

16.3 Constrained Convex Minimization

Unlike the unconstrained case, the gradient at the minimizer may not
be zero in the constrained case—it may be at the boundary. In this This is the analog of the minimizer of a

single variable function being achieved
either at a point where the derivative is
zero, or at the boundary.

case, the condition for a convex function f : K → R to be minimized
at x∗ ∈ K is now

〈∇ f (x∗), y− x∗〉 ≥ 0 for all y ∈ K. (16.11)

In other words, all vectors y − x∗ pointing within K are “positively
correlated” with the gradient. When x∗ is in the interior of K, the

condition (16.11) is equivalent to
∇ f (x∗) = 0.

16.3.1 Projected Gradient Descent

While the gradient descent algorithm still makes sense: moving in
the direction opposite to the gradient still moves us towards lower



202 constrained convex minimization

function values. But we must change our algorithm to ensure that the
new point xt+1 lies within K. To ensure this, we simply project the
new iterate xt+1 back onto K. Let projK : Rn → K be defined as

projK(y) = arg minx∈K ‖x− y‖2 .

The modified algorithm is given below in Algorithm 14, with the
changes highlighted in blue.

Algorithm 14: Projected Gradient Descent For CCM

14.1 x1 ← starting point
14.2 for t← 1 to T do
14.3 x′t+1 ← xt − η · ∇ f (xt)

14.4 xt+1 ← projK(x′t+1)

14.5 return x̂ := 1
T

T

∑
t=1

xt

xt

x′t+1xt+1

Figure 16.3: Projection onto a convex
bodyWe will show below that a result almost identical to that of Theo-

rem 16.8, and hence that of Proposition 16.7 holds.

Proposition 16.10. Let K be a closed convex set, and f : K → R be convex,

differentiable and G-Lipschitz. Let x∗ ∈ K, and define T := G2‖x0−x∗‖2

ε2 and

η := ‖x0−x∗‖
G
√

T
. Then the solution x̂ returned by projected gradient descent

satisfies
f (x̂) ≤ f (x∗) + ε. (16.12)

In particular, this holds when x∗ is a minimizer of f .

Proof. We can reduce to an analogous constrained version of Theo-
rem 16.8. Let us start the proof as before:

Φt+1 −Φt =
1

2η

(
‖xt+1 − x∗‖2 − ‖xt − x∗‖2) (16.13)

But xt+1 is the projection of x′t+1 onto K, which is difficult to reason
about. Also, we know that −η∇ f (xt) = x′t+1 − x∗, not xt+1 − x∗,
so we would like to move to the point x′t+1. Indeed, we claim that∥∥x′t+1 − x∗

∥∥ ≥ ‖xt+1 − x∗‖, and hence we get

Φt+1 −Φt =
1

2η

(
‖x′t+1 − x∗‖2 − ‖xt − x∗‖2). (16.14)

Now the rest of the proof of Theorem 16.8 goes through unchanged.
Why is the claim

∥∥x′t+1 − x∗
∥∥ ≥ ‖xt+1 − x∗‖ true? Since K is

convex, projecting onto it gets us closer to every point in K, in particular
to x∗ ∈ K. To formally prove this fact about projections, consider
the angle x∗ → xt+1 → x′t+1. This is a non-acute angle, since the
orthogonal projection means K likes to one side of the hyperplane
defined by the vector x′t+1 − xt+1, as in the figure on the right.



the gradient descent framework 203

Note that restricting the play to K can be helpful in two ways: we
can upper-bound the distance ‖x∗ − x1‖ by the diameter of K, and
moreover we need only consider the Lipschitzness of f for points
within K. Give examples.

16.4 Online Gradient Descent, and Relationship with MW

We considered gradient descent for the offline convex minimization
problem, but one can use it even when the function changes over
time. Indeed, consider the online convex optimization (OCO) prob-
lem: at each time step t, the algorithm proposes a point xt ∈ K and
an adversary gives a function ft : K → R with ‖∇ ft‖ ≤ G. The cost of
each time step is ft(xt) and your objective is to minimize

regret = ∑
t

ft(xt)− min
x∗∈K

∑
t

ft(x∗).

For instance if K = ∆n, and ft(x) := 〈`t, x〉 for some loss vector
`t ∈ [−1, 1]n, then we are back in the experts setting of the previous
chapters. Of course, the OCO problem is far more general, allowing
arbitrary convex functions.

Surprisingly, we can use the almost same algorithm to solve the
OCO problem, with one natural modification: the update rule is now
taken with respect to gradient of the current function ft: This was first observed by Martin

Zinkevich in 2002, when he was a Ph.D.
student here at CMU.xt+1 ← xt − η · ∇ ft(xt).

Looking back at the proof in §16.2, the proof of Lemma 16.9 immedi-
ately extends to give us

ft(xt) + Φt+1 −Φt ≤ ft(x∗) +
1
2

ηG2.

Now summing this over all times t gives

T

∑
t=1

(
ft(xt)− ft(x∗)

)
≤

T

∑
t=1

(
Φt −Φt+1

)
+

1
2

ηTG2

≤ Φ1 +
1
2

ηTG2,

since ΦT+1 ≥ 0. The proof is now unchanged: setting T ≥ ‖x1−x∗‖2G2

ε2

and η = ‖x1−x∗‖
G
√

T
, and doing some elementary algebra as above,

1
T

T

∑
t=0

(
ft(xt)− ft(x∗)

)
≤ ‖x1 − x∗‖G√

T
≤ ε.

16.4.1 Comparison to the MW/Hedge Algorithms

One advantage of the gradient descent approach (and analysis) over
the multiplicative weight-based ones is that the guarantees here hold



204 stronger assumptions

for all convex bodies K and all convex functions, as opposed to being
just for the unit simplex ∆N and linear losses ft(x) = 〈`t, x〉, say for
`t ∈ [−1, 1]n. However, in order to make a fair comparison, suppose
we restrict ourselves to ∆n and linear losses, and consider the number
of rounds T before we get an average regret of ε.

• If we consider ‖x1 − x∗‖ (which, in the worst case, is the diameter
of K), and G (which is an upper bound on ‖∇ ft(x)‖ over points in
K) as constants, then the T = Θ( 1

ε2 ) dependence is the same.

• For a more quantitative comparison, note that ‖x1 − x∗‖ ≤
√

2 for
x1, x∗ ∈ ∆n, and ‖∇ ft(x)‖ = ‖`t‖ ≤

√
n for `t ∈ [−1, 1]n. Hence,

Proposition 16.10 gives us T = Θ
(√n

ε2

)
, as opposed to T = Θ

( log n
ε2

)

for multiplicative weights.

The problem, at a high level, is that we are “choosing the wrong
norm”: when dealing with probabilities, the “right” norm is the `1

norm and not the Euclidean `2 norm. In the next lecture we will for-
malize what this means, and how this dependence on n be improved
via the Mirror Descent framework.

16.5 Stronger Assumptions

If the function f is “well-behaved”, we can improve the guarantees
for gradient descent in two ways: we can reduce the dependence on
ε, and we can weaken (or remove) the dependence on the parameters
G and ‖x1 − x∗‖. There are two standard assumptions to make on
the convex function: that it is “not too flat” (captured by the idea of
strong convexity), and it is not “not too curved” (i.e., it is smooth).
We now use these assumptions to improve the guarantees.

16.5.1 Strongly-Convex Functions

Definition 16.11 (Strong Convexity). A function f : K → R is α-
strongly convex if for all x, y ∈ K, any of the following holds:

1. (Zeroth order) f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y)− α
2 λ(1−

λ)‖x− y‖2 for all λ ∈ [0, 1].

2. (First order) If f is differentiable, then

f (y) ≥ f (x) + 〈∇ f (x), y− x〉+ α

2
‖x− y‖2 . (16.15)

3. (Second order) If f is twice-differentiable, then all eigenvalues of
H f (x) are at least α at every point x ∈ K.



the gradient descent framework 205

We will work with the first-order definition, and show that the
gradient descent algorithm with (time-varying) step size ηt = O

( 1
αt
)

converges to a value at most f (x∗) + ε in time T = Θ(G2

αε ). Note there
is no more dependence on the diameter of the polytope. Before we
give this proof, let us give the other relevant definitions.

16.5.2 Smooth Functions

Definition 16.12 (Lipschitz Smoothness). A function f : K → R is
β-(Lipschitz)-smooth if for all x, y ∈ K, any of the following holds:

1. (Zeroth order) f (λx + (1− λ)y) ≥ λ f (x) + (1− λ) f (y)− β
2 λ(1−

λ)‖x− y‖2 for all λ ∈ [0, 1].

2. (First order) If f is differentiable, then

f (y) ≤ f (x) + 〈∇ f (x), y− x〉+ β

2
‖x− y‖2 . (16.16)

3. (Second order) If f is twice-differentiable, then all eigenvalues of
H f (x) are at most β at every point x ∈ K.

In this case, the gradient descent algorithm with fixed step size
ηt = η = O

( 1
β

)
yields an x̂ which satisfies f (x̂) − f (x∗) ≤ ε when

T = Θ
( β‖x1−x∗‖

ε

)
. In this case, note we have no dependence on the

Lipschitzness G any more; we only depend on the diameter of the
polytope. Again, we defer the proof for the moment.

16.5.3 Well-conditioned Functions

Functions that are both β-smooth and α-strongly convex are called
well-conditioned functions. From the facts above, the eigenvalues of
their Hessian H f must lie in the interval [α, β] at all points x ∈ K.
In this case, we get a much stronger convergence—we can achieve
ε-closeness in time T = Θ(log 1

ε ), where the constant depends on the
condition number κ = β/α.

Theorem 16.13. For a function f which is β-smooth and α-strongly con-
vex, let x∗ be the solution to the unconstrained convex minimization prob-
lem arg minx∈Rn f (x). Then running gradient descent with ηt = 1/β

gives

f (xt)− f (x∗) ≤ β

2
exp

(−t
κ

)
‖x1 − x∗‖2 .

Proof. For β-smooth f , we can use Definition 16.12 to get

f (xt+1) ≤ f (xt)− η‖∇ f (xt)‖2 + η2 β

2
‖∇ f (xt)‖2.



206 stronger assumptions

The right hand side is minimized by setting η = 1
β , when we get

f (xt+1)− f (xt) ≤ −
1

2β
‖∇ f (xt)‖2. (16.17)

For α-strongly-convex f , we can use Definition 16.11 to get:

f (xt)− f (x∗) ≤ 〈∇ f (xt), xt − x∗〉 − α

2
‖xt − x∗‖2 ,

≤ ‖∇ f (xt)‖ ‖xt − x∗‖ − α

2
‖xt − x∗‖2 ,

≤ 1
2α
‖∇ f (xt)‖2 , (16.18)

where we use that the right hand side is maximized when ‖xt − x∗‖ =
‖∇ f (xt)‖ /α. Now combining with (16.17) we have that

f (xt+1)− f (xt) ≤ −
α

β

(
f (xt)− f (x∗)

)
, (16.19)

or setting ∆t = f (xt)− f (x∗) and rearranging, we get

∆t+1 ≤
(

1− α

β

)
∆t ≤

(
1− 1

κ

)t
∆1 ≤ exp

(
− t

κ

)
· ∆1.

We can control the value of ∆1 by using (16.16) in x = x∗, y = x1;
since ∇ f (x∗) = 0, get ∆1 = f (x1)− f (x∗) ≤ β

2 ‖x1 − x∗‖2.

Strongly-convex (and hence well-conditioned) functions have
the nice property that if f (x) is close to f (x∗) then x is close to x∗:
intuitively, since the function is curving at least quadratically, the
function values at points far from the minimizer must be significant.
Formally, use (16.15) with x = x∗, y = xt and the fact that ∇ f (x∗) = 0
to get

‖xt − x∗‖2 ≤ 2
α
( f (xt)− f (x∗)).

We leave it as an exercise to show the claimed convergence bounds
using just strong convexity, or just smoothness. (Hint: use the state-
ments proved in (16.17) and (16.18).

Before we end, a comment on the strong O(log 1/ε) convergence
result for well-conditioned functions. Suppose the function values
lies in [0, 1]. The Θ(log 1/ε) error bound means that we are correct
up to b bits of precision—i.e., have error smaller than ε = 2−b—after
Θ(b) steps. In other words, the number of bits of precision is linear in
the number of iterations. The optimization literature refers to this as
linear convergence, which can be confusing when you first see it.



the gradient descent framework 207

16.6 Extensions and Loose Ends

16.6.1 Subgradients

What if the convex function f is not differentiable? Staring at the
proofs above, all we need is the following:

Definition 16.14 (Subgradient). A vector zx is called a subgradient at
point x if

f (y) ≥ f (x) + 〈zx, y− x〉 for all y ∈ Rn.

Now we can use subgradients at the point x wherever we used
∇ f (x), and the entire proof goes through. In some cases, an approxi-
mate subgradient may also suffice.

16.6.2 Stochastic Gradients, and Coordinate Descent

16.6.3 Acceleration

16.6.4 Reducing to the Well-conditioned Case


