PURE MATHEMATICS
 A level Practice Papers

PAPER P
 MARK SCHEME

1	Recognises that two subsequent values will divide to give an equal ratio and sets up an appropriate equation. $\quad \frac{2 k^{2}}{4 k}=\frac{4 k}{k+2}$		M1
	Makes an attempt to solve the equation. For example, $2 k^{3}+4 k^{2}=16 k^{2}$ or $2 k^{3}-12 k^{2}=0$		M1
	Factorises to get $2 k^{2}(k-6)=0$		M1
	States the correct solution: $k=6 . k \neq 0$ or $k=0$ is trivial may also be seen, but is not required.		A1
	TOTAL: 4 marks		

2 Recognises the need to use the chain rule to find $\frac{\mathrm{d} V}{\mathrm{~d} t}$
For example $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} r} \times \frac{\mathrm{d} r}{\mathrm{~d} S} \times \frac{\mathrm{d} S}{\mathrm{~d} t}$ is seen.

Finds $\frac{\mathrm{d} V}{\mathrm{~d} r}=4 \pi r^{2}$ and $\frac{\mathrm{d} S}{\mathrm{~d} r}=8 \pi r$	M1	
Makes an attempt to substitute known values.	For example, $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{4 \pi r^{2}}{1} \times \frac{1}{8 \pi r} \times \frac{-12}{1}$	M1
Simplifies and states $\frac{\mathrm{d} V}{\mathrm{~d} t}=-6 r$	A1	
TOTAL:	4 marks	

3	Recognises that the identity $\sin ^{2} t+\cos ^{2} t \equiv 1$ can be used to find the cartesian equation.	M1
States $\sin t=\frac{y}{2}$ or $\sin ^{2} t=\frac{y^{2}}{4} \quad$ Also states $\cos ^{2} t=\frac{1}{x-1}$	M1	
Substitutes $\sin ^{2} t=\frac{y^{2}}{4}$ and $\cos ^{2} t=\frac{1}{x-1}$ into $\sin ^{2} t+\cos ^{2} t \equiv 1 \frac{y^{2}}{4}+\frac{1}{x-1}=1 \Rightarrow \frac{y^{2}}{4}=\frac{x-2}{x-1}$	M1	
Solves to find $y=\sqrt{\frac{4 x-8}{x-1}}$, accept $y=\sqrt{\frac{8-4 x}{1-x}}, x<1$ or x Ö 2	A1	
TOTAL: \quad 4 marks		

States that: $\quad A(2 x+5)+B(5 x-1) \equiv 6 x+42$ Equates the various terms. Equating the coefficients of $x: 2 A+5 B=6$ Equating constant terms: $5 A-B=42$ Multiplies both of the equations in an effort to equate one of the two variables. Finds $A=8$	M1 $*$	
Find $B=-2$	M1*	
TOTAL:	$\mathbf{5}$ marks	A1

Alternative method

Uses the substitution method, having first obtained this equation: $A(2 x+5)+B(5 x-1) \equiv 6 x+42$
Substitutes $x=-\frac{5}{2}$ to obtain $-\frac{27}{2} B=27$
(M1)
Substitutes $x=\frac{1}{5}$ to obtain $\frac{27}{5} A=43.2$
(M1)

$\mathbf{6}$	Equating the coefficients of $x^{4}: A=5$	A1
Equating the coefficients of $x^{3}: B=-4$	$\mathbf{A 1}$	
Equating the coefficients of $x^{2}: 2 A+C=17, C=7$	$\mathbf{A 1}$	
Equating the coefficients of $x: 2 B+D=-5, D=3$	$\mathbf{A 1}$	
Equating constant terms: $2 C+E=7, E=-7$	$\mathbf{A 1}$	
TOTAL: $\quad \mathbf{5}$ marks		

NOTES: 8c: Award mark for a correct answer using their value of p from part \mathbf{b}.

9a	States $5^{2}+6^{2}+(k-10)^{2}=(5 \sqrt{5})^{2}$		M1
	Makes an attempt to solve the equation.	For example, $(k-10)^{2}=64$ is seen.	M1
	States $k=2$ and $k=18$		A1
			(3 marks)
9b Finds the vector $\overrightarrow{O A}=(-1,7,18)$			M1 ft
Finds $\|\overrightarrow{O A}\|=\sqrt{(-1)^{2}+(7)^{2}+(18)^{2}}=\sqrt{374}$			M1 ft
States the unit vector $\frac{1}{\sqrt{374}}(-\mathbf{i}+7 \mathbf{j}+18 \mathbf{k})$			A1 ft
			(3 marks)
TOTAL: 6 marks			

NOTES: 9b

Award ft marks for a correct answer to part \mathbf{b} using their incorrect answer from part a.

10a	Makes an attempt to find $\operatorname{fg}(x)$. For example, writing $\operatorname{fg}(x)=\mathrm{e}^{2 \ln (x+1)}+4$	M1
	Uses the law of logarithms to write $\operatorname{fg}(x)=\mathrm{e}^{\ln (x+1)^{2}}+4$	M1
	States that $\operatorname{fg}(x)=(x+1)^{2}+4$	A1
	States that the range is $y>4$ or $\mathrm{fg}(x)>4$	B1
		(4 marks)
10b	States that $(x+1)^{2}+4=85$	M1
	Makes an attempt to solve for x, including attempting to take the square root of both sides of the equation. For example, $x+1= \pm 9$	M1
	States that $x=8$. Does not need to state that $x \neq-10$, but do not award the mark if $x=-10$ is stated.	A1
		(3 marks)
	TOTAL: 7 marks	

11a	Rearranges $x^{4}-8 x^{2}+2=0$ to find $x^{2}=\frac{x^{4}+2}{8}$	M1
	States $x=\sqrt{\frac{x^{4}+2}{8}}$ and therefore $a=\frac{1}{8}$ and $b=\frac{1}{4} \quad$ or \quad states $x=\sqrt{\frac{1}{8} x^{4}+\frac{1}{4}}$	A1
		(2 marks
	Attempts to use iterative procedure to find subsequent values.	M1
11b	Correctly finds:$\begin{aligned} & x_{1}=0.9396 \\ & x_{2}=0.5894 \\ & x_{3}=0.5149 \\ & x_{4}=0.5087 \end{aligned}$	A1
		(2 marks)
11c	Demonstrates an understanding that the two values of $\mathrm{f}(x)$ to be calculated are for $x=-2.7815$ and $x=-2.7825$.	M1*
	Finds $\mathrm{f}(-2.7815)=-0.0367 \ldots$ and $\mathrm{f}(-2.7825)=(+) 0.00485 \ldots$	M1
	Change of sign and continuous function in the interval $[-2.7825,-2.7815] \Rightarrow$ root	A1
		(3 marks)
	TOTAL: 7 marks	

NOTES:

11b
Award M1 if finds at least one correct answer.

11c

Any two numbers that produce a change of sign, where one is greater than -2.782 and one is less than -2.782 , and both numbers round to -2.782 to 3 decimal places, are acceptable.

Minimum required is that answer states there is a sign change in the interval and that this implies a root in the given interval.

NOTES:

12b
Student does not need to state ' +C ' to be awarded the second method mark.
12b
Award ft marks for a correct answer using an incorrect initial answer.

13a	Begins the proof by assuming the opposite is true. 'Assumption: there exists a number n such that n^{2} is even and n is odd.'	B1
	Defines an odd number (choice of variable is not important) and successfully calculates n^{2} Let $2 k+1$ be an odd number. $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1$	M1
	Factors the expression and concludes that this number must be odd. $4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$, so n^{2} is odd.	M1
	Makes a valid conclusion. This contradicts the assumption n^{2} is even. Therefore if n^{2} is even, n must be even.	B1
		(4 marks)
13b	Begins the proof by assuming the opposite is true. 'Assumption: $\sqrt{2}$ is a rational number.'	B1
	Defines the rational number: $\sqrt{2}=\frac{a}{b}$ for some integers a and b, where a and b have no common factors.	M1
	Squares both sides and concludes that a is even: $\sqrt{2}=\frac{a}{b} \Rightarrow 2=\frac{a^{2}}{b^{2}} \Rightarrow a^{2}=2 b^{2}$ From part a: a^{2} is even implies that a is even.	M1
	Further states that if a is even, then $a=2 c$. Choice of variable is not important.	M1
	Makes a substitution and works through to find $b^{2}=2 c^{2}$, concluding that b is also even. $a^{2}=2 b^{2} \Rightarrow(2 c)^{2}=2 b^{2} \Rightarrow 4 c^{2}=2 b^{2} \Rightarrow b^{2}=2 c^{2}$ From part a: $\quad b^{2}$ is even implies that b is even.	M1
	Makes a valid conclusion. If a and b are even, then they have a common factor of 2 , which contradicts the statement that a and b have no common factors. Therefore $\sqrt{2}$ is an irrational number.	B1
		(6 marks)
	TOTAL: 10 marks	

14a	States $\frac{\mathrm{d} V}{\mathrm{~d} t}=-k V$	M1
	Separates the variables $\int \frac{1}{V} \mathrm{~d} V=\int-k \mathrm{~d} t$	M1
	Finds $\ln V=-k t+C$	A1
	Shows clearly progression to state $V=V_{0} \mathrm{e}^{-k t}$ For example, $V=\mathrm{e}^{-k t+C}=\mathrm{e}^{-k t} \mathrm{e}^{C}$ is seen. May also explain the $V_{0}=\mathrm{e}^{C}$ where e^{C} is a constant.	A1
		(4 marks)
14b	$\text { States } \frac{1}{5} V_{0}=V_{0} \mathrm{e}^{-k t}$	M1
	Simplifies the expression by cancelling V_{0} and then taking the natural log of both sides $\ln \frac{1}{5}=-k t$	M1
	States that $k=-\frac{1}{10} \ln \frac{1}{5}$	A1
		(3 marks)
14c	States $\frac{1}{20} V_{0}=V_{0} \mathrm{e}^{-k t}$	M1
	Simplifies the expression by cancelling V_{0} and then taking the natural \log of both sides $\ln \frac{1}{20}=t\left(\frac{1}{10} \ln \frac{1}{5}\right)$	M1
	Finds $t=18.613 \ldots$ years. Accept 18.6 years.	A1
		(3 marks)
	TOTAL: 10 marks	

15a	States: $\quad R \cos (\theta+\alpha) \equiv R \cos \theta \cos \alpha-R \sin \theta \sin \alpha$ Or: $\quad 5 \cos \theta-8 \sin \theta \equiv R \cos \theta \cos \alpha-R \sin \theta \sin \alpha$	M1
	Deduces that: $5=R \cos \alpha \quad 8=R \sin \alpha$	M1
	States that $R=\sqrt{89}$ Use of $\sin ^{2} \theta+\cos ^{2} \theta=1$ might be seen, but is not necessary to award the mark.	A1
	Finds that $\alpha=1.0122$ $\tan \alpha=\frac{8}{5}$ might be seen, but is not necessary to award the mark.	A1
		(4 marks)
15b	Uses the maths from part a to deduce that $T_{\max }=1100+\sqrt{89}=1109.43^{\circ} \mathrm{C}$	A1
	Recognises that the maximum temperature occurs when $\cos \left(\frac{x}{3}+1.0122\right)=1$	M1
	Solves this equation to find $\frac{x}{3}=2 \pi-1.0122$	M1
	Finds $x=15.81$ hours	A1
		(4 marks)
15c	Deduces that $1097=1100+\sqrt{89} \cos \left(\frac{x}{3}+1.0122\right)$	M1
	Begins to solve the equation. For example, $\cos \left(\frac{x}{3}+1.0122\right)=-\frac{3}{\sqrt{89}}$ is seen.	M1
	States that $\frac{x}{3}+1.0122=1.8944,2 \pi-1.8944,2 \pi+1.8944$ Further values may be seen, but are not necessary in order to award the mark.	M1
	Finds that $x=2.65$ hours, 10.13 hours, 21.50 hours	A1
		(4 marks)
	TOTAL: 12 marks	

