Rigid Pavement Mechanics

Curling Stresses

- Cracking
 - Bottom-up transverse cracks
 - Top-down transverse cracks
 - Longitudinal cracks
 - Corner breaks
 - Punchouts (CRCP)

- Cracking
 - Bottom-up transverse cracks
 - Top-down transverse cracks
 - Longitudinal cracks
 - Corner breaks
 - Punchouts (CRCP)
- Joint Faulting
- Pumping

Sources of Stress

- Wheel Loads
- Curing Shrinkage
- Thermal Contraction/Expansion
- Thermal Curling
- Moisture Warping

Design Considerations

- Slab Thickness
- Base Type and Thickness
- Drainage
- Joint Spacing
- Temperature Steel
- Dowel Bars
- Tie Bars

 $q_o = q \times b$ (applied load per unit length)

$$\frac{dM}{dx} = V$$

$$\Rightarrow \frac{d^2M}{dx^2} = -q_o$$

$$\frac{dV}{dx} = -q_o$$

$$\kappa = \frac{1}{R} = \frac{d^2 w}{dx^2}$$

$$\Rightarrow M = -EI \frac{d^2 w}{dx^2}$$

$$\kappa = -\frac{M}{EI}$$

$$\frac{d^2}{dx^2} \left(-EI \frac{d^2 w}{dx^2} \right) = -q_o$$

$$EI\frac{d^4w}{dx^4} = q_o$$

Governing Differential Equation for Beam Bending

 $q_o = q \times b$ (applied load per unit length)

 $q_o = q \times b$ (applied load per unit length)

$$p = k_o$$
 w = k b w (resistance per unit length)

Modulus of Subgrade Reaction

$$\frac{dM}{dx} = V$$

$$\Rightarrow \frac{d^2M}{dx^2} = k_o w - q_o$$

$$\frac{dV}{dx} = k_o w - q_o$$

$$\kappa = \frac{1}{R} = \frac{d^2 w}{dx^2}$$

$$\Rightarrow M = -EI \frac{d^2 w}{dx^2}$$

$$\kappa = -\frac{M}{FI}$$

$$\frac{d^2}{dx^2} \left(-EI \frac{d^2 w}{dx^2} \right) = k_o w - q_o$$

$$EI\frac{d^4w}{dx^4} + k_o w = q_o$$

Governing Differential Equation for Beam Bending

$$EI\frac{d^4w}{dx^4} + k_o w = 0$$

$$w = e^{\beta x} \left(C_1 \sin \beta x + C_2 \cos \beta x \right) + e^{-\beta x} \left(C_3 \sin \beta x + C_4 \cos \beta x \right)$$

$$\beta = \sqrt[4]{\frac{k_o}{4EI}} \quad \text{(flexibility)}$$

Solution of the Homogeneous Differential Equation

$$M = -EI \frac{d^2 w}{dx^2}$$
 Beams

$$M_{x} = D \left(\frac{\partial^{2} w}{\partial x^{2}} + v \frac{\partial^{2} w}{\partial y^{2}} \right) \quad \text{Slabs}$$

Moment-Curvature Relationships

$$D = \frac{Eh^3}{12(1-v^2)}$$

Slab Stiffness

$$EI\frac{d^4w}{dx^4} + k_o w = q_o \quad \text{Beams}$$

$$D\left(\frac{\partial^4 w}{\partial x^4} + 2\frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4}\right) + kw = q \quad \text{Slabs}$$
Modulus of Subgrade Reaction

Governing Differential Equation for Slab Bending

$$\beta = \sqrt[4]{\frac{k_o}{4EI}}$$
 Beam Flexibility

Radius of Relative Stiffness
$$\sqrt[\ell]{\frac{D}{k}} = \sqrt[4]{\frac{Eh^3}{12(1-v^2)k}}$$
 Slab Stiffness

Solution of the Homogeneous Differential Equation

Stresses Due to Curling

Temperature Curling

Moisture Warping

Reference Axes

$$\varepsilon_{x} = \frac{\sigma_{x}}{E} - v \frac{\sigma_{y}}{E}$$

$$\varepsilon_{y} = \frac{\sigma_{y}}{E} - v \frac{\sigma_{x}}{E}$$

Hooke's Law for an Infinite Elastic Plate

Slab Bent About y-axis

$$\varepsilon_{y} = \frac{\sigma_{y}}{E} - v \frac{\sigma_{x}}{E} = 0$$

$$\sigma_y - \nu \sigma_x = 0$$

$$\sigma_y = v\sigma_x$$

If slab is bent about the y axis, $\varepsilon_y = 0$

$$\varepsilon_{x} = \frac{\sigma_{x}}{E} - v \frac{v \sigma_{x}}{E} = \frac{\sigma_{x}}{E} \left(1 - v^{2} \right)$$

$$\sigma_x = \frac{E\varepsilon_x}{1 - v^2}$$

Slab bent about y axis

Slab Bent About x-axis

$$\varepsilon_x = \frac{\sigma_x}{E} - v \frac{\sigma_y}{E} = 0$$

$$\sigma_x - \nu \sigma_y = 0$$

$$\sigma_x = v\sigma_y$$

If slab is bent about the x axis, $\varepsilon_x = 0$

$$\varepsilon_{y} = \frac{\sigma_{y}}{E} - \nu \frac{\nu \sigma_{y}}{E} = \frac{\sigma_{y}}{E} \left(1 - \nu^{2} \right)$$

$$\sigma_{y} = \frac{E\varepsilon_{y}}{1 - v^{2}}$$

Slab bent about x axis

Coefficient of Thermal Expansion

$$\varepsilon_x = \varepsilon_y = \frac{\alpha \Delta t}{2}$$

Coefficient of Thermal Expansion

Aggregate Type	Coefficient (10 ⁻⁶ in/in/°F)
Quartz	6.6
Sandstone	6.5
Gravel	6.0
Granite	5.3
Basalt	4.8
Limestone	3.8

Average 5.5

$$\sigma_x = \frac{E\varepsilon_x}{1 - v^2} = \frac{E\alpha\Delta t}{2(1 - v^2)}$$

$$\sigma_{y} = \nu \sigma_{x} = \frac{\nu E \alpha \Delta t}{2(1 - \nu^{2})}$$

Stresses due to curling about y axis due to temperature difference

$$\sigma_{y} = \frac{E\varepsilon_{y}}{1 - v^{2}} = \frac{E\alpha\Delta t}{2(1 - v^{2})}$$

$$\sigma_{x} = v\sigma_{y} = \frac{vE\alpha\Delta t}{2(1 - v^{2})}$$

Stresses due to curling about x axis due to temperature difference

$$\sigma_{x,y} = \frac{E\alpha\Delta t}{2(1-v^2)} + \frac{vE\alpha\Delta t}{2(1-v^2)}$$

Finite Slab Curling

$$\sigma_{x,y} = C_1 \frac{E\alpha\Delta t}{2(1-v^2)} + C_2 \frac{vE\alpha\Delta t}{2(1-v^2)}$$

Finite Slab Curling

Finite Slab Curling

$$\sigma_y = v\sigma_x = 0 \implies v = 0$$

$$\sigma_{x,y} = C_1 \frac{E\alpha\Delta t}{2}$$

Curling stresses at the Edges of a Finite Slab

Temperature Gradients

Source	Slab Thickness	Temperature Gradient
AASHO Road Test	6.5"	3.2°F/in ←
		1.5°F/in ∪
Arlington Road Test	6"	3.7°F/in
	9"	3.4°F/in
Typical Assumption	6" – 9"	3.0°F/in
		1.5°F/in ∪

Example

Calculate the curling stresses in a concrete slab 25'×12'×8" thick subject to a daytime temperature difference of 24°F (i.e., a temperature gradient of 3°F/in). Assume the slab is resting on a foundation with a 200-psi/in modulus of subgrade reaction.

Standard Assumptions

- Assume v = 0.15 (use for all PCC)
- Assume $\alpha = 5.5 \times 10^{-6}$ in/in/°F (typical)
- Assume f_c = 5000 psi (typical)
- Estimate $E = 57,000\sqrt{f_c} = 4 \times 10^{-6} \text{ psi}$
- Estimate $MOR = 8.4\sqrt{f_c} = 593 \text{ psi}^*$
- Estimate $f_t = 6.7\sqrt{f_c} = 474 \text{ psi}^*$

^{*} Not needed for this problem