
CS33 Intro to Computer Systems XVII–1 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

CS 33
Exploiting Caches



CS33 Intro to Computer Systems XVII–2 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Accessing Memory

• Program references memory (load)
– if not in cache (cache miss), data is requested from 

RAM
» fetched in units of 64 bytes

• aligned to 64-byte boundaries (low-order 6 bits of 
address are zeroes)

» if memory accessed sequentially, data is pre-fetched
» data stored in cache (in 64-byte cache lines)

• stays there until space must be re-used (least 
recently used is kicked out first)

– if in cache (cache hit) no access to RAM needed
• Program modifies memory (store)

– data modified in cache
– eventually written to RAM in 64-byte units



CS33 Intro to Computer Systems XVII–3 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Cache Performance Metrics
• Miss rate

– fraction of memory references not found in cache
(misses / accesses)
= 1 – hit rate

– typical numbers (in percentages):
» 3-10% for L1
» can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit time
– time to deliver a line in the cache to the processor

» includes time to determine whether the line is in the cache
– typical numbers:

» 1-2 clock cycles for L1
» 5-20 clock cycles for L2

• Miss penalty
– additional time required because of a miss

» typically 50-200 cycles for main memory (trend: increasing!)



CS33 Intro to Computer Systems XVII–4 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Let’s Think About Those Numbers

• Huge difference between a hit and a miss
– could be 100x, if just L1 and main memory

• 99% hit rate is twice as good as 97%!
– consider: 

cache hit time of 1 cycle
miss penalty of 100 cycles

– average access time:
97% hits:  .97 * 1 cycle + 0.03 * 100 cycles ≈ 4 cycles
99% hits:  .99 * 1 cycle + 0.01 * 100 cycles ≈ 2 cycles

• This is why “miss rate” is used instead of “hit 
rate”



CS33 Intro to Computer Systems XVII–5 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Locality

• Principle of Locality: programs tend to use 
data and instructions with addresses near or 
equal to those they have used recently

• Temporal locality:  
– recently referenced items are likely 

to be referenced again in the near future

• Spatial locality:  
– items with nearby addresses tend 

to be referenced close together in time



CS33 Intro to Computer Systems XVII–6 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Locality Example

• Data references
– reference array elements in 

succession (stride-1 reference 
pattern)

– reference variable sum each iteration
• Instruction references

– reference instructions in sequence.
– cycle through loop repeatedly

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality
Temporal locality



CS33 Intro to Computer Systems XVII–7 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Quiz 1

Does this function have good locality with 
respect to array a? The array a is MxN.

a) yes
b) no

int sum_array_cols(int N, int a[][N]) {
int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}



CS33 Intro to Computer Systems XVII–8 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Writing Cache-Friendly Code

• Make the common case go fast
– focus on the inner loops of the core functions

• Minimize the misses in the inner loops
– repeated references to variables are good (temporal locality)
– stride-1 reference patterns are good (spatial locality)



CS33 Intro to Computer Systems XVII–9 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication Example

• Description:
– multiply N x N 

matrices
» each element is a 

double
– O(N3) total operations
– N reads per source 

element
– N values summed per 

destination
» but may be able to 

hold in register

/* ijk */
for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
} 

Variable sum
held in register

/* ikj */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) {
r = a[i][k];
for (j=0; j<n; j++)

c[i][j] += r * b[k][j];
}

}



CS33 Intro to Computer Systems XVII–10 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Miss-Rate Analysis for Matrix Multiply

• Assume:
– Block size = 64B (big enough for eight doubles)
– matrix dimension (N) is very large
– cache is not big enough to hold multiple rows

• Analysis method:
– look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= *



CS33 Intro to Computer Systems XVII–11 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Layout of C Arrays in Memory (review)

• C arrays allocated in row-major order
– each row in contiguous memory locations

• Stepping through columns in one row:
– for (i = 0; i < N; i++)

sum += a[0][i];

– accesses successive elements
– if block size (B) > 8 bytes, exploit spatial locality

» compulsory miss rate = 8 bytes / Block
• Stepping through rows in one column:

– for (i = 0; i < n; i++)

sum += a[i][0];

– accesses distant elements
– no spatial locality!

» compulsory miss rate = 1 (i.e. 100%)



CS33 Intro to Computer Systems XVII–12 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];
c[i][j] = sum;

}
} 

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C

0.125 1.0 0.0



CS33 Intro to Computer Systems XVII–13 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];
c[i][j] = sum

}
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C

0.125 1.0 0.0



CS33 Intro to Computer Systems XVII–14 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)

c[i][j] += r * b[k][j];
}

}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.125 0.125



CS33 Intro to Computer Systems XVII–15 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) {
r = a[i][k];
for (j=0; j<n; j++)

c[i][j] += r * b[k][j];
}

}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.125 0.125



CS33 Intro to Computer Systems XVII–16 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;
}

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C

1.0 0.0 1.0



CS33 Intro to Computer Systems XVII–17 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; j++) {
r = b[k][j];
for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;
}

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0



CS33 Intro to Computer Systems XVII–18 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• misses/iter = 1.125

kij (& ikj): 
• 2 loads, 1 store
• misses/iter = 0.25

jki (& kji): 
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++)

for (j=0; j<n; j++) {
sum = 0.0;

for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

for (k=0; k<n; k++)

for (i=0; i<n; i++) {
r = a[i][k];

for (j=0; j<n; j++)
c[i][j] += r * b[k][j];   

}

for (j=0; j<n; j++)

for (k=0; k<n; k++) {
r = b[k][j];

for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}



CS33 Intro to Computer Systems XVII–19 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Core i7 Matrix Multiply Performance

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

C
yc

le
s 

pe
r i

nn
er

 lo
op

 it
er

at
io

n

Array size (n)

jki
kji
ijk
jik
kij
ikj

jki / kji

ijk / jik

kij / ikj



CS33 Intro to Computer Systems XVII–20 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

In Real Life ...

• Multiply two 1024x1024 matrices of doubles 
on sunlab machines

– ijk
» 4.185 seconds

– kij
» 0.798 seconds

– jki
» 11.488 seconds



CS33 Intro to Computer Systems XVII–21 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Concluding Observations

• Programmer can optimize for cache 
performance

– organize data structures appropriately
• All systems favor “cache-friendly code”

– getting absolute optimum performance is very 
platform specific
» cache sizes, line sizes, associativities, etc.

– can get most of the advantage with generic code
» keep working set reasonably small (temporal locality)
» use small strides (spatial locality)



CS33 Intro to Computer Systems XVII–22 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and the OS



CS33 Intro to Computer Systems XVII–23 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

The Operating System

OS

My Program Mary’s
Program

Bob’s
Program



CS33 Intro to Computer Systems XVII–24 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Processes

• Containers for programs
– virtual memory

» address space
– scheduling

» one or more threads of control
– file references

» open files
– and lots more!



CS33 Intro to Computer Systems XVII–25 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Idiot Proof …

My Program Mary’s
Program

int main( ) {
int i;
int A[1];

for (i=0; ; i++)
A[rand()] = i;

}

Can I clobber
Mary’s
program?



CS33 Intro to Computer Systems XVII–26 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Fair Share

My Program Bob’s
Program

void runforever( ){
while(1)

;
}

int main( ) {
runforever();

}

Can I
prevent Bob’s 
program from 
running?



CS33 Intro to Computer Systems XVII–27 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Architectural Support for the OS

• Not all instructions are created equal ...
– non-privileged instructions

» can affect only current program
– privileged instructions

» may affect entire system

• Processor mode
– user mode

» can execute only non-privileged instructions
– privileged mode

» can execute all instructions



CS33 Intro to Computer Systems XVII–28 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Which Instructions Should Be 
Privileged?

• I/O instructions
• Those that affect how memory is mapped
• Halt instruction
• Some others ...



CS33 Intro to Computer Systems XVII–29 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Who Is Privileged?

• No one
– user code always runs in user mode

• The operating-system kernel runs in 
privileged mode

– nothing else does
– not even super user on Unix or administrator on 

Windows



CS33 Intro to Computer Systems XVII–30 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Entering Privileged Mode

• How is OS invoked?
– very carefully ...
– strictly in response to interrupts and exceptions
– (booting is a special case)



CS33 Intro to Computer Systems XVII–31 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Interrupts and Exceptions

• Things don’t always go smoothly ...
– I/O devices demand attention
– timers expire
– programs demand OS services
– programs demand storage be made accessible
– programs have problems

• Interrupts
– demand for attention by external sources

• Exceptions
– executing program requires attention



CS33 Intro to Computer Systems XVII–32 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Exceptions

• Traps
– “intentional” exceptions

» execution of special instruction to invoke OS
– after servicing, execution resumes with next 

instruction
• Faults

– a problem condition that is normally corrected
– after servicing, instruction is re-tried

• Aborts
– something went dreadfully wrong ...
– not possible to re-try instruction, nor to go on to 

next instruction



CS33 Intro to Computer Systems XVII–33 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Actions for Interrupts and Exceptions

• When interrupt or exception occurs
– processor saves state of current thread/process on 

stack
– processor switches to privileged mode (if not 

already there)
– invokes handler for interrupt/exception
– if thread/process is to be resumed (typical action 

after interrupt)
» thread/process state is restored from stack

– if thread/process is to re-execute current 
instruction
» thread/process state is restored, after backing up 

instruction pointer
– if thread/process is to terminate

» it’s terminated



CS33 Intro to Computer Systems XVII–34 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Interrupt and Exception Handlers

• Interrupt or exception 
invokes handler (in OS)

– via interrupt and exception 
vector
» one entry for each possible 

interrupt/exception
• contains

– address of handler
– code executed in privileged 

mode
» but code is part of the OS

handler 0 addr

handler 1 addr

handler 2 addr

...

handler n-1 addr

handler i addr

...

intrpt/excp
i

handler i



CS33 Intro to Computer Systems XVII–35 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Entering and Exiting

• Entering/exiting interrupt/exception handler 
more involved than entering/exiting a 
procedure

– must deal with processor mode
» switch to privileged mode on entry
» switch back to previous mode on exit

– interrupted process/threadʼs state is saved on 
separate kernel stack

– stack in kernel must be different from stack in user 
program
» why?



CS33 Intro to Computer Systems XVII–36 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

One Stack Per Mode

Frame 1

Frame 2

Frame 3

Intrp/Excp
Frame

Frame 4

Frame 5

user stack kernel stack



CS33 Intro to Computer Systems XVII–37 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Quiz 2

If an interrupt occurs, which general-purpose 
registers must be pushed onto the kernel 
stack?

a) all
b) none
c) callee-save registers
d) caller-save registers



CS33 Intro to Computer Systems XVII–38 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Back to the x86 ...

• It’s complicated
– more than it should be, but for historical reasons ...

• Not just privileged and non-privileged modes, 
but four “privilege levels”

– level 0
» most privileged, used by OS kernel

– level 1
» not normally used

– level 2
» not normally used

– level 3
» least privileged, used by application code



CS33 Intro to Computer Systems XVII–39 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

The Unix Address Space

text

data

bss
dynamic

stack

read-only

read-write

read-write



CS33 Intro to Computer Systems XVII–40 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Creating Your Own Processes

#include <unistd.h>

int main( ) {

pid_t pid;

if ((pid = fork()) == 0) {

/* new process starts

running here */

}

/* old process continues

here */

}



CS33 Intro to Computer Systems XVII–41 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Creating a Process: Before

fork( )

parent process



CS33 Intro to Computer Systems XVII–42 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Creating a Process: After

fork( )
// returns p

parent process

fork( )
// returns 0

child process 
(pid = p)



CS33 Intro to Computer Systems XVII–43 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Quiz 3
The following program

a) runs forever
b) terminates quickly

int flag;

int main() {

while (flag == 0) {

if (fork() == 0) {

// in child process

flag = 1;

exit(0);  // causes process to terminate

}

}

}



CS33 Intro to Computer Systems XVII–44 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Process IDs

int main( ) {
pid_t pid;
pid_t ParentPid = getpid();

if ((pid = fork()) == 0) {
printf("%d, %d, %d\n",

pid, ParentPid, getpid());
return 0;

}
printf("%d, %d, %d\n",

pid, ParentPid, getpid());
return 0;

}

parent prints:
27355, 27342, 27342

child prints:
0, 27342, 27355



CS33 Intro to Computer Systems XVII–45 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

.

.

.

.

.

.

if (fork() == 0){
execv("prog",

argv);
}

.

.

.

/* prog */

int main() {

}

Putting Programs into Processes

if (fork() == 0){
execv("prog", argv);

}

.

.

.

.

.

.

fork

execv



CS33 Intro to Computer Systems XVII–46 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Exec

• Family of related system functions
– we concentrate on one:

» execv(program,  argv)

char *argv[] = {"MyProg", "12", (void *)0};
if (fork() == 0) { 

execv("./MyProg", argv);
}

argv[0] is the name 
of the program

Name of the file that 
contains the program

First “real” 
argument

End of 
list



CS33 Intro to Computer Systems XVII–47 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Loading a New Image

execv(prog, argv)

Before

prog’s text

prog’s data

prog’s bss

args

After



CS33 Intro to Computer Systems XVII–48 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

A Random Program …

int main(int argc, char *argv[]) {
if (argc != 2) {

fprintf(stderr, "Usage: random count\n");
exit(1);

}
int stop = atoi(argv[1]);
for (int i = 0; i < stop; i++)
printf("%d\n", rand());

return 0;
}



CS33 Intro to Computer Systems XVII–49 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Passing It Arguments

• From the shell
$ random 12

• From a C program
if (fork() == 0) {

char *argv[] = {"random", "12", (void *)0};
execv("./random", argv);

}



CS33 Intro to Computer Systems XVII–50 Copyright © 2021 Thomas W. Doeppner. All rights reserved.

Quiz 4
if (fork() == 0) {
char *argv[] = {"random", "12", (void *)0};

execv("./random", argv);
printf("random done\n");

}
The printf statement will be 
executed

a) only if execv fails
b) only if execv succeeds
c) always


