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7. Complex numbers

Complex numbers are expressions of the form x+ yi, where x and y are real numbers, and

i is a new symbol. Multiplication of complex numbers will eventually be defined so that

i2 = −1. (Electrical engineers sometimes write j instead of i, because they want to reserve i

for current, but everybody else thinks that’s weird.) Just as the set of all real numbers is

denoted R, the set of all complex numbers is denoted C.

Flashcard question: Is 9 a real number or a complex number?

Possible answers:

1. real number

2. complex number

3. both

4. neither

Answer: Both, because 9 can be identified with 9 + 0i.

7.1. Operations on complex numbers.

real part Re(x+ yi) := x

imaginary part Im(x+ yi) := y (Note: It is y, not yi, so Im(x+ yi) is real)

complex conjugate x+ yi := x− yi (negate the imaginary component)

One can add, subtract, multiply, and divide complex numbers (except for division by

0). Addition, subtraction, and multiplication are as for polynomials, except that after

multiplication one should simplify by using i2 = −1; for example,

(2 + 3i)(1− 5i) = 2− 7i− 15i2

= 17− 7i.

To divide z by w, multiply z/w by w/w so that the denominator becomes real; for example,

2 + 3i

1− 5i
=

2 + 3i

1− 5i
· 1 + 5i

1 + 5i
=

2 + 13i+ 15i2

1− 25i2
=
−13 + 13i

26
= −1

2
+

1

2
i.

The arithmetic operations on complex numbers satisfy the same properties as for real numbers

(zw = wz and so on). The mathematical jargon for this is that C, like R, is a field. In particular,
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for any complex number z and integer n, the nth power zn can be defined in the usual way

(need z 6= 0 if n < 0); e.g., z3 := zzz, z0 := 1, z−3 := 1/z3. (Warning: Although there is a way to

define zn also for a complex number n, when z 6= 0, it turns out that zn has more than one possible value for

non-integral n, so it is ambiguous notation. Anyway, the most important cases are ez, and zn for integers n;

the other cases won’t even come up in this class.)

If you change every i in the universe to −i (that is, take the complex conjugate everywhere),

then all true statements remain true. For example, i2 = −1 becomes (−i)2 = −1. Another

example: If z = vw, then z = v w.

7.2. The complex plane. Just as real numbers can be visualized as points on a line, complex

numbers can be visualized as points in a plane: plot x+ yi at the point (x, y).

Addition and subtraction of complex numbers has the same geometric interpretation as for

vectors. The same holds for scalar multiplication of a complex number by a real number.

(The geometric interpretation of multiplication by a complex number is different; we’ll explain

it soon.) Complex conjugation reflects a complex number in the real axis.
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The absolute value (or magnitude or modulus) |z| of a complex number z = x + iy is its

distance to the origin:

|x+ yi| :=
√
x2 + y2 (this is a real number).

For a complex number z, inequalities like z < 3 do not make sense, but inequalities like

|z| < 3 do, because |z| is a real number. The complex numbers satisfying |z| < 3 are those in

the open disk of radius 3 centered at 0 in the complex plane. (Open disk means the disk without

its boundary.)

7.3. Some useful identities. The following are true for all complex numbers z:

Re z =
z + z

2
, Im z =

z − z
2i

, z = z, zz = |z|2.

Also, for any real number a and complex number z,

Re(az) = aRe z, Im(az) = a Im z.

(These can fail if a is not real.)

Proof of the first identity: Write z as x+ yi. Then Re z = x and z+z
2

= (x+yi)+(x−yi)
2

= x

too.

The proofs of the others are similar.

7.4. Complex roots of polynomials.

real polynomial : polynomial with real coefficients

complex polynomial : polynomial with complex coefficients

Example 7.1. How many roots does the polynomial z3 − 3z2 + 4 have? It factors as

(z − 2)(z − 2)(z + 1), so it has only two distinct roots (2 and −1). But if we count 2

twice, then the number of roots counted with multiplicity is 3, equal to the degree of the

polynomial.
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Some real polynomials, like z2 + 9, cannot be factored completely into degree 1 real

polynomials, but do factor into degree 1 complex polynomials: (z + 3i)(z− 3i). In fact, every

complex polynomial factors completely into degree 1 complex polynomials — this is proved

in advanced courses in complex analysis. This implies the following:

Fundamental theorem of algebra. Every degree n complex polynomial f(z) has exactly

n complex roots, if counted with multiplicity.

Since real polynomials are special cases of complex polynomials, the fundamental theorem

of algebra applies to them too. For real polynomials, the non-real roots can be paired off

with their complex conjugates.

Example 7.2. The degree 3 polynomial z3 +z2−z+15 factors as (z+3)(z−1−2i)(z−1+2i),

so it has three distinct roots: −3, 1 + 2i, and 1− 2i. Of these roots, −3 is real, and 1 + 2i

and 1− 2i form a complex conjugate pair.

Example 7.3. Want a fourth root of i? The fundamental theorem of algebra guarantees that

z4 − i = 0 has a complex solution (in fact, four of them). We’ll soon learn how to find them.

The fundamental theorem of algebra will be useful for constructing solutions to higher

order linear ODEs with constant coefficients, and for discussing eigenvalues.
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7.5. Real and imaginary parts of complex-valued functions. Suppose that y(t) is a

complex-valued function of a real variable t. Then

y(t) = f(t) + i g(t)

for some real-valued functions of t. Here f(t) := Re y(t) and g(t) := Im y(t). Differentiation

and integration can be done component-wise:

y′(t) = f ′(t) + i g′(t)∫
y(t) dt =

∫
f(t) dt+ i

∫
g(t) dt.

Example 7.4. Suppose that y(t) =
2 + 3i

1 + it
. Then

y(t) =
2 + 3i

1 + it
=

2 + 3i

1 + it
· 1− it

1− it
=

(2 + 3t) + i(3− 2t)

1 + t2
=

(
2 + 3t

1 + t2

)
︸ ︷︷ ︸

f(t)

+ i

(
3− 2t

1 + t2

)
︸ ︷︷ ︸

g(t)

.

The functions in parentheses labelled f(t) and g(t) are real-valued, so these are the real and

imaginary parts of the function y(t). 2
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7.6. The complex exponential function. Derivatives and DEs make sense for complex-

valued functions of a complex variable z, and work in a similar way. In particular, the

existence and uniqueness theorem shows that there is a unique such function f(z) satisfying

f ′(z) = f(z), f(0) = 1.

This function is called the complex exponential function ez.

The number e is defined as the value of ez at z = 1. But it is the function ez, not the number e, that is

truly important. Defining e without defining ez first is a little unnatural. And even if e were defined first,

one could not use it to define ez, because “e raised to a complex number” has no a priori meaning.

Theorem 7.5. The complex exponential function ez has the following properties:

(a) The derivative of ez is ez.

(b) e0 = 1.

(c) ez+w = ezew for all complex numbers z and w.

(d) (ez)n = enz for every complex number z and integer n. The n = −1 case says
1

ez
=

(ez)−1 = e−z.

(e) Euler’s identity:

eit = cos t+ i sin t for every real number t.

(f) More generally,

ex+yi = ex(cos y + i sin y) for all real numbers x and y. (1)

(g) e−it = eit = cos t− i sin t for every real number t.

(h) |eit| = 1 for every real number t.

Of lesser importance is the power series representation

ez = 1 + z +
z2

2!
+
z3

3!
+ · · · . (2)

This formula can be deduced by using Taylor’s theorem with remainder, or by showing that the right hand side

satisfies the DE and initial condition. Some books use (1) or (2) as the definition of the complex exponential

function, but the DE definition we gave is less contrived and focuses on what makes the function useful.

Proof of Theorem 7.5.

(a) True by definition.

(b) True by definition.

(c) As a warm-up, consider the special case in which w = 3. By the chain rule, ez+3 is the

solution to the DE with initial condition

f ′(z) = f(z), f(0) = e3.
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The function eze3 satisfies the same DE with initial condition. By uniqueness, the two

functions are the same: ez+3 = eze3. The same argument works for any other complex

constant w in place of 3, so ez+w = ezew.

(d) If n = 0, then this is 1 = 1 by definition. If n > 0,

(ez)n =

n copies︷ ︸︸ ︷
ezez · · · ez (c) repeatedly

= e

n copies︷ ︸︸ ︷
z + z + · · ·+ z = enz.

If n = −m < 0, then

(ez)−m =
1

(ez)m
(just shown)

=
1

emz
= e−mz

since emze−mz = emz+(−mz) = e0 = 1.

(e) The calculation

d

dt
(cos t+ i sin t) = − sin t+ i cos t

= i(cos t+ i sin t)

shows that the function cos t+ i sin t is the solution to the DE with initial condition

f ′(t) = if(t), f(0) = 1.

But eit is a solution too, by the chain rule. By uniqueness, the two functions are the same

(the existence and uniqueness theorem applies also to complex-valued functions of a real variable t).

(f) By (c) and (e), ex+yi = exeiy = ex(cos y + i sin y).

(g) Changing every i in the universe to−i transforms eit = cos t+i sin t into e−it = cos t−i sin t.

(Substituting −t for t would do it too.) On the other hand, applying complex conjugation

to both sides of eit = cos t+ i sin t gives eit = cos t− i sin t.

(h) By (e), |eit| =
√

cos2 t+ sin2 t =
√

1 = 1. �

Remark 7.6. Some older books use the awful abbreviation cis t := cos t+ i sin t, but this belongs in a cispool

[sic], since eit is a more useful expression for the same thing.

As t increases, the complex number eit = cos t+ i sin t travels counterclockwise around the

unit circle.
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7.7. Polar form of a complex number. Given a nonzero complex number z = x+ yi, we

can express the point (x, y) in polar coordinates r and θ:

x = r cos θ, y = r sin θ.

Then

x+ yi = (r cos θ) + (r sin θ)i = r(cos θ + i sin θ).

In other words,

z = reiθ .

Here reiθ is called a polar form of the complex number z. One has r = |z|; here r must be a

positive real number (assuming z 6= 0).

Any possible θ for z (a possible value for the angle or argument of z) may be called arg z,

but this is dangerously ambiguous notation since there are many values of θ for the same z:

this means that arg z is not a function.
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Example 7.7. Suppose that z = −3i. So z corresponds to the point (0,−3). Then r = |z| = 3,

but there are infinitely many possibilities for the angle θ. One possibility is −π/2; all the

others are obtained by adding integer multiples of 2π:

arg z = . . . , −5π/2, −π/2, 3π/2, 7π/2, . . . .

So z has many polar forms:

· · · = 3ei(−5π/2) = 3e−iπ/2 = 3ei(3π/2) = 3ei(7π/2) = · · · . 2

To specify a unique polar form, we would have to restrict the range for θ to some interval of width 2π.

The most common choice is to require −π < θ ≤ π. This special θ is called the principal value of the argument,

and is denoted in various ways:

θ = Arg z = Arg[z]
Mathematica

= ArcTan[x,y]
Mathematica

= atan2(y,x)
MATLAB

.

Warning: The supplementary notes require 0 ≤ θ < 2π instead. Warning: In MATLAB, be careful to

use (y, x) and not (x, y). Warning: Although the principal value θ satisfies the “slope formula” tan θ = y/x

whenever x 6= 0, the formula θ = tan−1(y/x) is true only half the time. The problem is that there are

two angles in the range (−π, π] with the same value of tan (there are two values of θ for each line through

the origin, differing by π), and tan−1 returns the one in the range (−π/2, π/2). For example, tan−1(y/x)

evaluated at (1, 1) and (−1,−1) produces the same value π/4, but (−1,−1) is actually at angle −3π/4. The

“2-variable arctangent function” used above fixes this.

Test for equality of two nonzero complex numbers in polar form:

r1e
iθ1 = r2e

iθ2 ⇐⇒ r1 = r2 and θ1 = θ2 + 2πk for some integer k.

(This assumes that r1 and r2 are positive real numbers, and that θ1 and θ2 are real numbers,

as you would expect for polar coordinates.)
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7.8. Operations in polar form. Some arithmetic operations on complex numbers are easy

in polar form:

multiplication: (r1e
iθ1)(r2e

iθ2) = r1r2e
i(θ1+θ2) (multiply absolute values, add angles)

reciprocal:
1

reiθ
=

1

r
e−iθ

division:
r1e

iθ1

r2eiθ2
=
r1
r2
ei(θ1−θ2) (divide absolute values, subtract angles)

nth power: (reiθ)n = rneinθ for any integer n

complex conjugation: reiθ = re−iθ.

Taking absolute values gives identities:

|z1z2| = |z1| |z2|,
∣∣∣∣1z
∣∣∣∣ =

1

|z|
,

∣∣∣∣z1z2
∣∣∣∣ =
|z1|
|z2|

, |zn| = |z|n, |z| = |z|.

Question 7.8. What happens if you take a smiley in the complex plane and multiply each

of its points by 3i?

Solution: Since i = eiπ/2, multiplying by i adds π/2 to the angle of each point; that is, it

rotates counterclockwise by 90◦ (around the origin). Next, multiplying by 3 does what you

would expect: dilate by a factor of 3. Doing both leads to. . .
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For example, the nose was originally on the real line, a little less than 2, so multiplying it by

3i produces a big nose close to (3i)2 = 6i. 2

Question 7.9. How do you trap a lion?

Answer: Build a cage in the shape of the unit circle |z| = 1. Get inside the cage. Make

sure that the lion is outside the cage. Apply the function 1/z to the whole plane. Voilà! The

lion is now inside the cage, and you are outside it. (Only problem: There’s a lot of other stuff inside

the cage too. Also, don’t stand too close to z = 0 when you apply 1/z.)

Question 7.10. Why not always write complex numbers in polar form?

Answer: Because addition and subtraction are difficult in polar form!

7.9. The function e(a+bi)t. Fix a nonzero complex number a + bi. As the real number t

increases, the complex number (a + bi)t moves along a line through 0, and e(a+bi)t moves

along part of a line, a circle, or a spiral, depending on the value of a+ bi. Try the “Complex

Exponential” mathlet

http://mathlets.org/mathlets/complex-exponential/

to see this.

Example 7.11. Consider e(−5−2i)t = e−5tei(−2t) as t → ∞. Its absolute value is e−5t, which

tends to 0, so the point is moving inward. Its angle is −2t, which is decreasing, so the point

is moving clockwise. It’s spiraling inwards clockwise.
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7.10. Finding nth roots.

7.10.1. An example.

Problem 7.12. What are the complex solutions to z5 = −32?

Solution: Rewrite the equation in polar form, using z = reiθ:

(reiθ)5 = 32eiπ

r5ei(5θ) = 32eiπ

r5 = 32
absolute values

5θ = π + 2πk
angles

for some integer k

r = 2 and θ =
π

5
+

2πk

5
for some integer k

z = 2ei(
π
5
+ 2πk

5 ) for some integer k.

These are numbers on a circle of radius 2; to get from one to the next (increasing k by 1),

rotate by 2π/5. Increasing k five times brings the number back to its original position. So

it’s enough to take k = 0, 1, 2, 3, 4. Answer:

2ei(π/5), 2ei(3π/5), 2ei(5π/5), 2ei(7π/5), 2ei(9π/5). 2
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Remark 7.13. The fundamental theorem of algebra predicts that the polynomial z5 + 32 has

5 roots when counted with multiplicity. We found 5 roots, so each must have multiplicity 1.

February 14

7.10.2. Roots of unity.

The same method shows that the nth roots of unity (the solutions to zn = 1) are the

numbers ei(
2πk
n ) for k = 0, 1, 2, . . . , n − 1. Taking k = 1 gives the number ζ := e2πi/n. In

terms of ζ, the complete list of nth roots of unity is

1, ζ, ζ2, . . . , ζn−1

(after that they start to repeat: ζn = 1).
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7.10.3. Finding nth roots in general.

Problem 7.14. Given α ∈ C with α 6= 0, what are the solutions to zn = α?

Write α as reiθ. Then the solutions to zn = α are n
√
rei(

θ
n
+ 2π
n
k) for k = 0, 1, 2, . . . , n− 1.

Another way to list the solutions: If z0 is any particular solution, such as n
√
reiθ/n, then

the complete list of solutions is

z0, ζz0, ζ
2z0, . . . , ζ

n−1z0. 2

Try the “Complex Roots” mathlet

http://mathlets.org/mathlets/complex-roots/
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