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I worked so hard to understand it that it must be true.

— James Richardson



18.06.28: Complex vector spaces

From last time …

I was alluding to a way to make complex multiplication easier to understand.
The idea is this: for any 𝑧 = 𝑎 + 𝑏𝑖 ∈ C, you may consider the matrix

𝑀𝑧 = (
𝑎 −𝑏
𝑏 𝑎
) .

On the newest problem set, you’ll show that addition of complex numbers is
addition of these matrices, multiplication of complex numbers is multiplica-
tion of these matrices (!), and one more thing …
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Complex conjugation is the map 𝑧 𝑧 that carries 𝑧 = 𝑎 + 𝑏𝑖 to 𝑧 = 𝑎 − 𝑏𝑖.
You’ll see that𝑀𝑧 =𝑀⊺𝑧 .

Complex conjugation can be used to extract the real and complex parts of
your complex number:

2𝑎 = 𝑧 + 𝑧;

2𝑏𝑖 = 𝑧 − 𝑧.
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Complex conjugation also gives you the length of the vector ~𝑣 ∈ R2 corre-
sponding to 𝑧 ∈ C:

‖~𝑣‖2 = 𝑧𝑧.

So
𝑧 = √𝑧𝑧 exp(𝑖𝜃)

for some (and hence infinitely many) 𝜃 ∈ R.

If 𝑧 ≠ 0, there is a unique such 𝜃 ∈ [0, 2𝜋); this is sometimes called the
argument of 𝑧, but it’s annoying to write down a good formula. It’s better to
think of it as an element of R/2𝜋Z.
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One last general thing about the complex numbers, just because it’s so impor-
tant.

Theorem (“Fundamental theorem of algebra”). For any polynomial

𝑓(𝑧) =
𝑛

∑
𝑖=0
𝛼𝑖𝑧𝑖

with complex coefficients 𝛼𝑖 such that 𝛼𝑛 ≠ 0, there exist complex numbers
𝑤1,… ,𝑤𝑛 such that

𝑓(𝑧) = 𝛼𝑛(𝑧 − 𝑤1)(𝑧 − 𝑤2)⋯ (𝑧 − 𝑤𝑛).

This is actually a theorem of topology, not algebra, but there you go.
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Here’s a cool example: 𝑓(𝑧) = 𝑧𝑛 − 1. Let’s find the roots!
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The set C𝑛 is the set of column vectors

𝑣 = (

𝑧1
𝑧2
⋮
𝑧𝑛

)

with 𝑧𝑖 ∈ C. One can add such vectors componentwise, and one can multiply
any such vector with a complex scalar.

So this is the fundamental example of a complex vector space.



18.06.28: Complex vector spaces

Note that R𝑛 ⊂ C𝑛. Now if 𝑣 ∈ C𝑛, then 𝑣 = 𝑣 if and only if 𝑣 ∈ R𝑛.



18.06.28: Complex vector spaces

More generally, a complex vector subspace 𝑉 ⊆ C𝑛 is a subset such that:

(1) for any 𝑣,𝑤 ∈ 𝑉, one has 𝑣 + 𝑤 ∈ 𝑉;

(2) for any 𝑣 ∈ 𝑉 and any 𝑧 ∈ C, one has 𝑧𝑣 ∈ 𝑉.
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Vectors 𝑣1,… , 𝑣𝑘 span a vector subspace 𝑉 ⊆ C𝑛 over C if and only if every
vector 𝑤 ∈ 𝑉 can be written as a C-linear combination of the 𝑣𝑖, i.e.,

𝑤 =
𝑘

∑
𝑖=1
𝑧𝑖𝑣𝑖,

where each 𝑧𝑖 ∈ C.
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Similarly, the vectors 𝑣1,… , 𝑣𝑘 are linearly independent over C if and only if
any vanishing C-linear combination

𝑘

∑
𝑖=1
𝑧𝑖𝑣𝑖 = 0

is a trivial C-linear combination, so that 𝑧1 = ⋯ = 𝑧𝑘 = 0.

A C-basis of 𝑉 is thus a collection of vectors of 𝑉 that is linearly independent
over C and spans 𝑉 over C.
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Let’s do an example to appreciate the distinction. Let’s think of C2, and let’s
think of the complex line

𝐿 = {(
𝑧
𝑤
) ∈ C2 | 3𝑧 − 2𝑤 = 0} ⊂ C2.

Now C2 ≅ R4, so that complex line is a real plane:

𝐿 =

{{{{
{{{{
{

(

𝑧1
𝑧2
𝑤1
𝑤2

) ∈ R4
||||

|

3𝑧1 − 2𝑤1 = 0
3𝑧2 − 2𝑤2 = 0

}}}}
}}}}
}

⊂ R4.
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The single vector (
2
3
) forms a C-basis of 𝐿.

Another legit C-basis would be the single vector (
2𝑖
3𝑖
).

The vectors
{{{{
{{{{
{

(

2
0
3
0

) ,(

0
2
0
3

)

}}}}
}}}}
}

forms an R-basis of 𝐿 over R.
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Another example: consider the complex vector subspace𝑊 ⊂ C2 spanned by

(
𝑖
1
).

Here’s an important sentence to parse correctly:𝑊 does not have a C-basis
consisting of real vectors.

A real basis for𝑊 ⊂ R4 consists of(

0
1
1
0

) and(

−1
0
0
1

)
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Proposition. Any complex vector subspace𝑊 ⊂ C𝑛 of complex dimension 𝑘
has an underlying real vector space of dimension 2𝑘.

To see why, take a C-basis {𝑤1,… ,𝑤𝑘} of𝑊. Now {𝑤1, 𝑖𝑤1,… ,𝑤𝑘, 𝑖𝑤𝑘} is an
R-basis of𝑊.
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In the other direction, a real vector subspace 𝑉 ⊆ R𝑛 generates a complex
vector subspace 𝑉C ⊆ C𝑛, called the complexification; this is the set of all
C-linear combinations of elements of 𝑉:

𝑉C ≔ {𝑤 ∈ C𝑛 | 𝑤 =
𝑘

∑
𝑖=1
𝛼𝑖𝑣𝑖, for some 𝛼1,… ,𝛼𝑘 ∈ C, 𝑣1,… , 𝑣𝑘 ∈ 𝑉} .

Note that not all complex vector subspaces of C𝑛 are themselves complexifi-

cations; the complex vector subspace𝑊 ⊂ C2 spanned by (
𝑖
1
) provides a

counterexample. (A complex vector space is a complexification if and only if
it has a C-basis consisting of real vectors.)
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Now, most importantly, we may speak of complex matrices (i.e., matrices with
complex entries).

All the algebra we’ve done with matrices over R works perfectly for matrices over
C, without change.
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However, the freedom to contemplate complex matrices offers us new hori-
zons when it comes to questions about eigenspaces and diagonalization. Let’s
contemplate the matrix

𝐴 = (
0 −1
1 0
) .

The characteristic polynomial 𝑝𝐴(𝑡) = 𝑡2 + 1 doesn’t have any real roots, so
there’s no hope of diagonalizing 𝐴 over R.

Over C, however, we find eigenvalues 𝑖, −𝑖. Let’s try to diagonalize 𝐴.
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Let’s begin with 𝐿𝑖 = ker(𝑖𝐼 − 𝐴) = ker(
𝑖 1
−1 𝑖
). It’s dimension 1, and it’s

spanned by the vector (
1
−𝑖
).

And 𝐿−𝑖 = ker(
−𝑖 1
−1 −𝑖

) is dimension 1 and spanned by (
1
𝑖
).
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Note that neither 𝐿𝑖 nor 𝐿−𝑖 is a complexification. However, we do have a basis

{(
1
−𝑖
) ,(
1
𝑖
)} of C2 consisting of eigenvectors of 𝐴, and writing 𝑇𝐴 in

terms of this basis gives us the matrix

(
𝑖 0
0 −𝑖
) .

So 𝐴 is not diagonalizable over R, but it is diagonalizable over C.
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There’s one more new thing you can do with a complex matrices that doesn’t
quite work for real matrices: you can conjugate their entries. Of particular
import is the conjugate transpose:

𝐴∗ ≔ (𝐴)⊺ = (𝐴⊺).

We’ll understand the significance of this operation next time.


