

"It isn't the mountains ahead to climb that wear you out; it's the pebble in your shoe." - Muhammad Ali

PAIN AND COLLISIONS

MOMENTUM, IMPULSE, AND PRESSURE

Extra Practice Problems: 5.1, 5.7, 5.9, 5.11, 5.13, 5.15, 5.17, 9.3, Conceptual 9.1

Today

Momentum (p). (mass times velocity)

Impulse (I). (change in momentum)

Pressure (*P***).** (force over some area of space)

Momentum

Think of a time when you've heard this term.

(Linear) Momentum Mass times Velocity.

 $\vec{p} = m\vec{v}$ SI units: $\frac{\text{kg m}}{\text{s}}$

Direction of momentum is same as direction of velocity!

Let's try it

A pitcher claims he can throw a **0.145 kg baseball** with as much momentum as a **3.00 g bullet** moving with a speed of **1500 m/s!** What must the baseball's speed be if the pitcher's claim is valid?

Which has greater kinetic energy?

p = mvKE $=\frac{1}{2}mv^2$

A. the ballB. the bulletC. they are the same

(1) Q51

Impulse Change in Momentum.

$$\vec{I} = \Delta \vec{p} = m\vec{v}_f - m\vec{v}$$

SI units: $\frac{\text{kg m}}{\text{s}}$

Impulse

Are impulses bad if acted on too quickly?

(Usually...!)

Impulse

Can also be written as average/constant force (F) on an object times the duration of that force, Δt

$$\boldsymbol{F}_{net} \Delta t = m\boldsymbol{v}_f - m\boldsymbol{v}_i$$

Time is the collision time (start to end of impact).

Direction of impulse is the same as the direction of the force acting on an object (note: impulse only happens if there's a force!).

Impulse Impulses hurt if acted on too quickly! $F_{net} \Delta t = mv_f - mv_i$ Remember "child falling out of bed" example!

Impulses hurt if acted on too quickly!

 $F_{net} \Delta t = mv_f - mv_i$ $F \Delta t$ $F \Delta t$ $F \Delta t$ "Rolling with the punches"
Boxers opt for more Δt rather than more force!

A 100-g lump of clay hits a wall at 70 cm/s and sticks. A 100-g rubber ball hits the same wall at 60 cm/s and rebounds with a speed of 30 cm/s.

Which object has a larger impulse magnitude delivered by the wall during the collision?

- A. The clay
- B. The ball
- C. Both impulses are the same.
- D. Cannot be determined.

D Q52

Impulse and Average Force What if the force isn't constant? Force vs time in a car crash F (in units of 10⁵ N) Where is the biggest High chance of death above t<u>his line</u> impulse? \sim 20 40 60 80 100 120 0 A. Between 70 and 80 ms B. Between 10 and 20 ms C. Between 100 and 110 ms Q53 D. Before the collision

Impulse and Average Force

A car is **travelling at 27 m/s** (60 mph) and crashes into a pole, coming to **rest** in time **150ms**. What is the *average* force exerted on a **100kg person** strapped into the car in this collision?

Man on a Chair

A man sits on a four-legged chair with his feet off the floor. The combined mass of the man and chair is 95 kg. If the chair legs are circular and have a radius of 0.50 cm at the bottom, what pressure does each leg exert on the floor?

What could you do to reduce pressure and chance of scratching?

Car Tires

The four tires of an automobile are inflated to a gauge pressure of **2.0 x 10⁵ Pa**. Each tire has an area of **0.024 m²** in contact with the ground. Determine the weight of the automobile.

Momentum (p). (mass times velocity) p = mv

Impulse (I). (change in momentum) $I = F_{net} \Delta t = mv_f - mv_i$

Pressure (P). (force over some area of space) Pressure or Stress = F / A