192620010 Mobile & Wireless Networking

Lecture 1: Introduction & Wireless Transmission (1/2)

[Schiller, Section 1 & Section 2.1 - 2.5]

Geert Heijenk

Outline of Lecture 1

Introduction □ About the course "Mobile & Wireless Networking" □ History □ Current Wireless Technologies □ Important trends □ Wireless Transmission (1/2) □ Frequencies □ Signals □ Antennas □ Signal Propagation Multiplexing

Why Mobile and Wireless Networking?

- Largest SW/HW/networked system
- Largest number of subscribers
- Mobile devices dominate the Internet
- Mobile applications dominate Internet usage
- New possibilities, new threats

Technology fully integrated into everybody's life almost 24/7,

almost anywhere

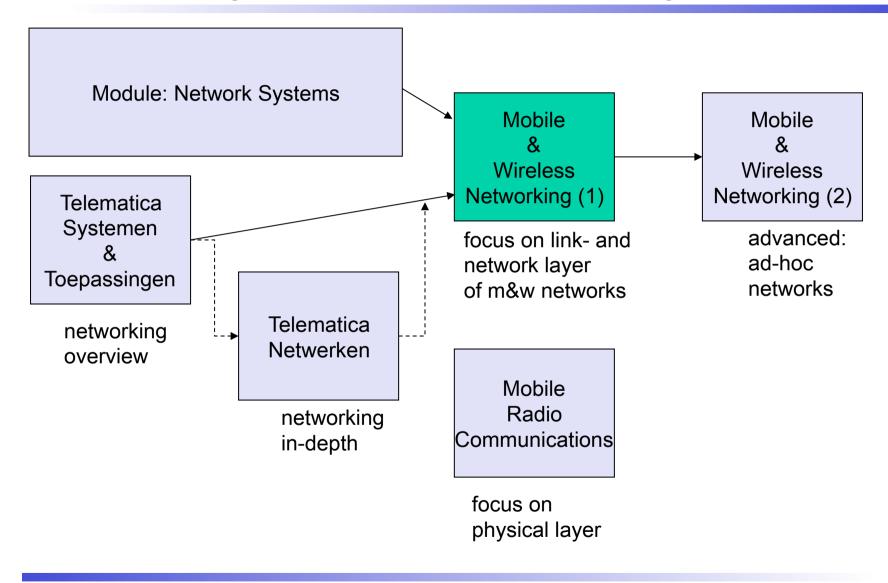
Mobile & Wireless Networking

- □ Mobile
 - □ user can use network services while moving
 - w.r.t. point of attachment to network
 - Usually user is moving with his/her networking device
- □ Wireless
 - communications without using a wire
 - directly between two user nodes, or
 - (often) between user node and access point connected to the fixed (wired) network
- Networking
 - □ roughly, all architectures, protocols, and algorithms at the
 - link layer (mostly medium access control, MAC)
 - network layer, and
 - transport layer
 - (we will briefly address physical layer as well)

What is different in wireless networks?

- □ Higher loss-rates
- □ Restrictive spectrum regulations
- □ Lower transmission rates
- □ Higher delays, higher jitter
- □ Lower security
- □ Shared and unbound medium
- Mobility
 - □ change of point of attachment to network
 - □ how to find a user / device
- □ Limitations of access devices
 - □ battery power

Course Outline (Mobile & Wireless Networking, M&WN)


Basic principles:

- Physical layer: propagation, multiplexing, modulation, spread spectrum, OFDM
- MAC layer: hidden terminals, medium access, random access, CDMA, Hybrid ARQ
- Cellular concepts: cell layout, interference
- Dealing with mobility: handover, mobility management
- Transport layer: problems with TCP over wireless
- Ad-hoc networks: problems of ad-hoc routing

Systems:

- Cellular: UMTS, LTE
- Wireless LAN: IEEE 802.11a/b/g/e/n/ac
- Low power / short range systems: Bluetooth, Zigbee
- Mobile IP: + Hierarchical Mobile IP, Fast Handovers for Mobile IP
- Ad-hoc routing: DSDV, DSR, AODV

Positioning Mobile & Wireless Networking

Course organization

See: http://www.cs.utwente.nl/~heijenk/mwn

Outline of Lecture 1

Introduction □ About the course "Mobile & Wireless Networking" □ History □ Current Wireless Technologies □ Important trends □ Wireless Transmission (1/2) □ Frequencies □ Signals □ Antennas □ Signal Propagation Multiplexing

History of wireless communication

Many people in history used light for communication Discovery of electromagnetic waves

- □ 1831 Faraday demonstrates electromagnetic induction
- 1864 J. Maxwell theory of electromagnetic fields, wave equations
- 1886 H. Hertz demonstration of the wave character of electrical transmission

Hertz: "It's of no use whatsoever[...] this is just an experiment that proves Maestro Maxwell was right - we just have these mysterious electromagnetic waves that we cannot see with the naked eye. But they are there."

1895	Guglielmo Marconi, first demonstration of wireless telegraphy (long wave)
1907	Commercial transatlantic connections
1915	Wireless voice transmission New York - San Francisco
1920	Marconi, discovery of short waves
1928	many TV broadcast trials (across Atlantic, color TV, TV news)
1933	Frequency modulation (E. H. Armstrong)

History of wireless communication II

1956	First mobile phone system in Sweden
1972	B-Netz in Germany
1979	NMT at 450MHz (Scandinavian countries)
1982	Start of GSM-specification
	» goal: pan-European digital mobile phone system with roaming
1992	Start of GSM
1997	Wireless LAN - IEEE802.11
1998	Specification of UMTS
	(Universal Mobile Telecommunication System)
1998	Iridium: portable satellite telephony
1999	IEEE Standard 802.11b, 2.4 GHz, 11 Mbit/s Bluetooth, 2.4 GHz, < 1 Mbit/s

History of wireless communication III

2001 Start of 3G (Japan) UMTS trials in Europe
2002 Start of UMTS in Europe IEEE 802.11g mobile subscribers overtake fixed-line subscribers worldwide 1 billion cellular subscribers
2004 UMTS launch in Netherlands
2007 Introduction of iPhone
2009 IEEE 802.11n standard (December) First LTE Network (Stockholm / Oslo)
2012 6 billion cellular subscribers
2013 LTE launch in Netherlands (KPN, February, Amsterdam

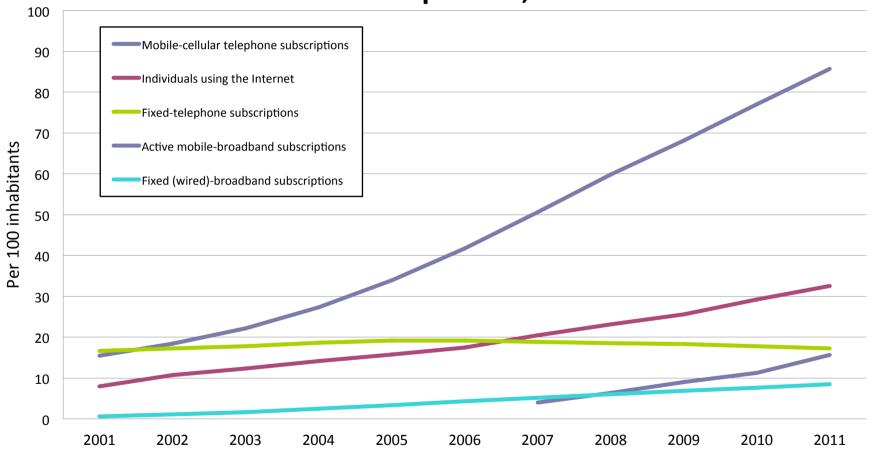
Current wireless technologies (1/2)

□ Telecommunication Systems initial / primary service: mobile voice telephony □ large coverage per access point (100s of meters - 10s of kilometers) □ low - moderate data rate (10s of kbit/s - 10s of Mbits/s)□ Examples: GSM, UMTS, LTE □ WLAN □ initial service: wireless ethernet extension moderate coverage per access point (10s of meters - 100s of meters) moderate - high data rate (Mbits/s - 100s of Mbits/s) □ Examples: IEEE 802.11b, a, g, n, ac. □ Short-range Other systems

Current wireless technologies (2/2)

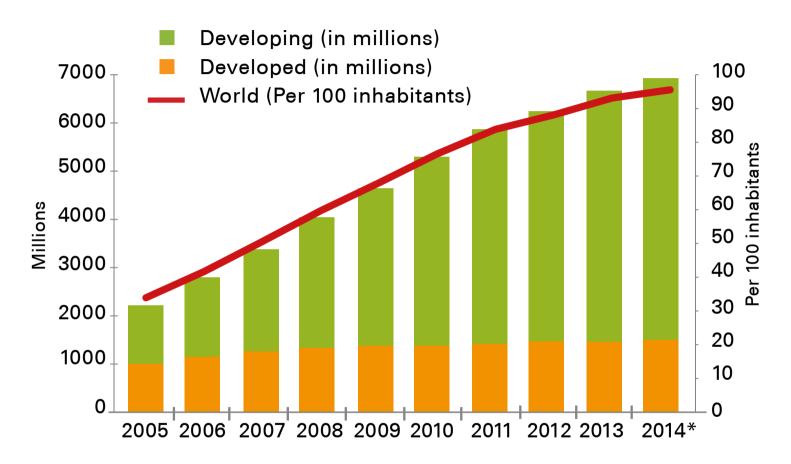
Short-range □ direct connection between devices (< 10s of meters) typical low power usage □ examples: Bluetooth, ZigBee Other systems Satellite systems global coverage, applications audio/TV broadcast; positioning personal communications Broadcast systems satellite/terrestrial • DVB, DAB (Support of high speeds for mobiles) □ Fixed wireless access • several technologies (DECT, WLAN, IEEE802.16 (11-60GHz)) DECT Digital Enhanced Cordless Telecommunication □ TETRA Terrestrial Trunked Radio Netherlands: C2000 system

Standardization


□ 3GPP (3G partnership project) □ GSM □ UMTS □ LTE □ Specifications: http://www.3gpp.org/-specifications-□ IEEE (Institute of Electrical and Electronics Engineers) □ 802.11 (Wireless LAN: WiFi) □ 802.15 (Wireless PAN: Bluetooth, Zigbee) ■ 802.16 (Broadband Wireless Access: WiMAX)) □ Standards: http://standards.ieee.org/about/get/802/802.html □ IETF (Internet Engineering Task Force) □ Mobile IP □ TCP □ AODV □ Requests for Comments (RFCs): http://www.ietf.org/rfc.html

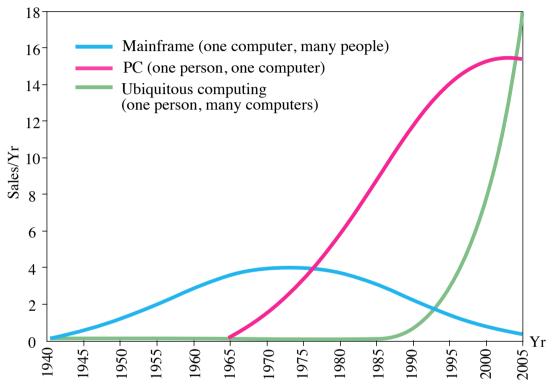
Outline of Lecture 1

Introduction □ About the course "Mobile & Wireless Networking" □ History □ Current Wireless Technologies □ Important trends □ Wireless Transmission (1/2) □ Frequencies □ Signals □ Antennas □ Signal Propagation Multiplexing


Mobile subscriptions

Global ICT developments, 2001-2011

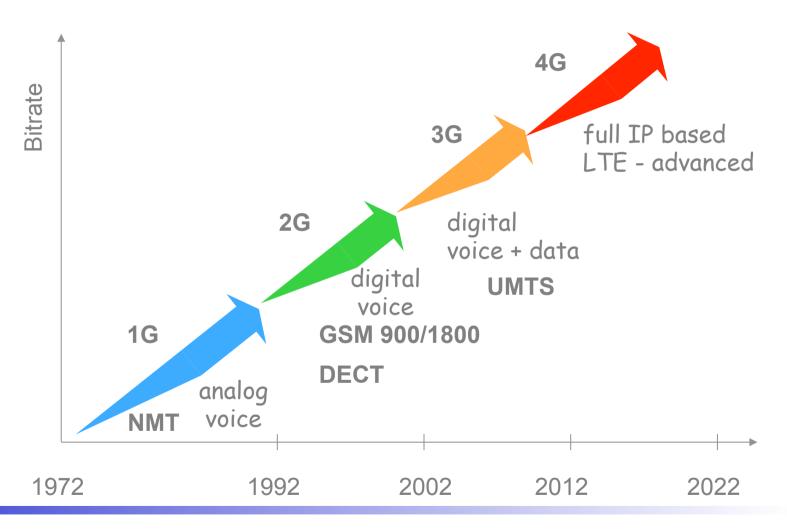
Source: ITU World Telecommunication /ICT Indicators database


Mobile-cellular subscriptions total and per 100 inhabitants

Note: * Estimate

Source: ITU World Telecommunication/ICT Indicators database

Trends in computing


A proliferation of small, lowcost, embedded devices incorporating computing and communication capabilities

Moving towards pervasive computing

Source: Presentation by Marc Weiser "Nomadic issues in Ubiquitous computing", Xerox, Palo Alto. Research Center, 1996.

Evolution of mobile cellular systems

Towards 5G (1/2)

• 1000x capacity/km²

Higher system capacity

5G

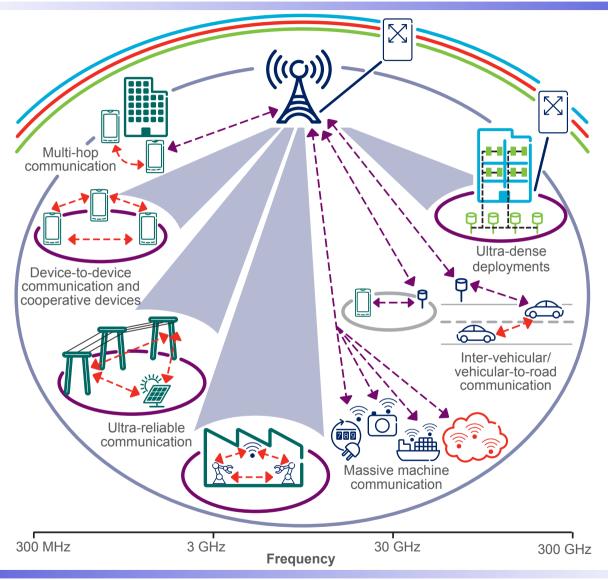
Higher data rate

• 100x typical data rate (Even for high mobility)

Massive device connectivity

• 100x connected devices (Even in crowded areas)

Reduced Latency

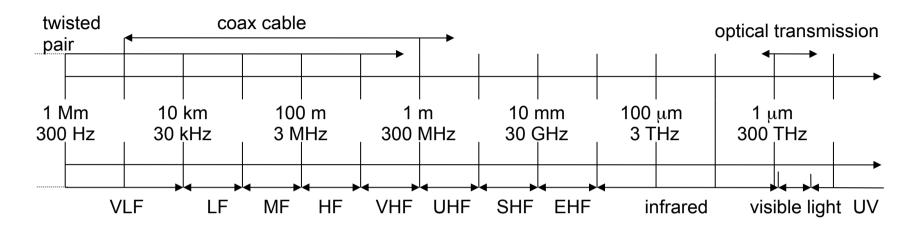

• RAN latency : < 1ms

Energy saving & cost reduction

- Energy saving for NW & terminals
- · Reduced NW cost incl. backhaul

Source: 5G Radio Access: Requirements, Concept and Technologies, NTT DoCoMo, 2014.

Towards 5G (2/2)


Source: 5G Radio Access, Whitepaper, Ericsson, 2013.

Outline of Lecture 1

- Introduction
 About the course "Mobile & Wireless Networking"
 History
 Current Wireless Technologies
 Important trends

 Wireless Transmission (1/2)
 - □ Frequencies
 - □ Signals
 - □ Antennas
 - □ Signal Propagation
 - Multiplexing

Frequencies for communication

VLF = Very Low Frequency

LF = Low Frequency

MF = Medium Frequency

HF = High Frequency

VHF = Very High Frequency

UHF = Ultra High Frequency

SHF = Super High Frequency

EHF = Extra High Frequency

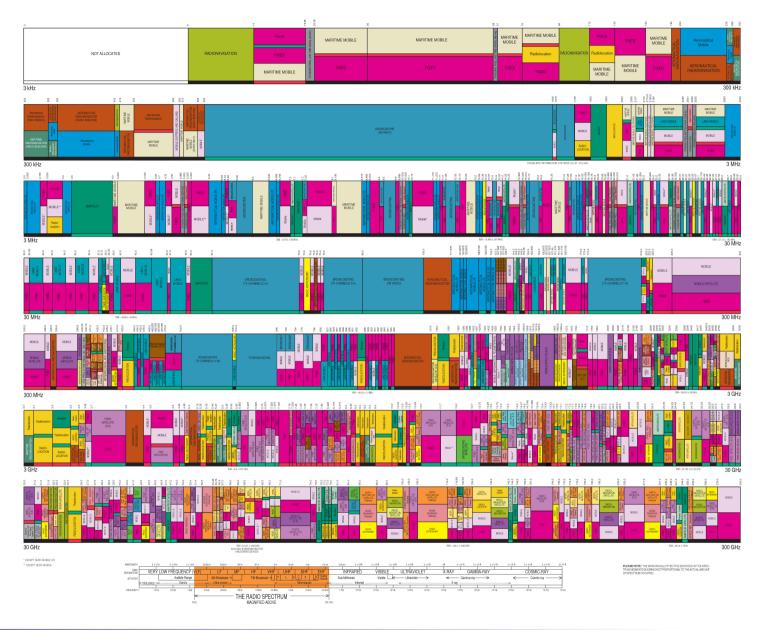
UV = Ultraviolet Light

Frequency and wave length:

$$\lambda = c/f$$

wave length λ , speed of light c $\approx 3x10^8$ m/s, frequency f

UNITED


STATES

FREQUENCY

ALLOCATIONS

THE RADIO SPECTRUM

Frequencies for mobile communication

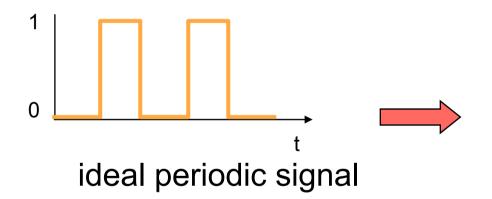
- □ UHF-ranges for mobile cellular systems
 - □ simple, small antenna for cars
 - deterministic propagation characteristics, reliable connections
- □ SHF and higher for directed radio links, satellite communication
 - □ small antenna, focusing
 - □ large bandwidth available
- □ Wireless LANs use frequencies in UHF to SHF spectrum
 - some systems planned up to EHF
 - □ limitations due to absorption by water (>5 GHz) and oxygen (60 GHz) molecules (resonance frequencies)
 - weather dependent fading, signal loss caused by heavy rainfall etc.

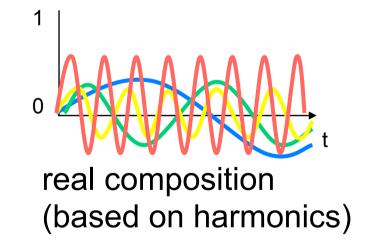
Licensed vs Unlicensed bands

- Mobile cellular typically uses licensed bands
 - Spectrum licensed to operator
 - GSM:
 - 900 MHz, 1800 MHz (Europe)
 - 850 Mhz, 1900 MHz (US)
 - other bands
 - UMTS, LTE
 - See e.g., http://www.frequentieland.nl/wie.htm
- WLAN typically uses unlicensed bands
 - 2.4 GHz Industrial, Scientific, and Medical (ISM) band:
 - IEEE 802.11b/g
 - Bluetooth
 - Zigbee
 - microwave oven
 - 5.8 GHz ISM band:
 - IEEE 802.11a

Signals I

- physical representation of data
- function of time and location
- signal parameters: parameters representing the value of data
- classification
 - continuous time/discrete time
 - continuous values/discrete values
 - □ analog signal = continuous time and continuous values
 - □ digital signal = discrete time and discrete values
- □ signal parameters of periodic signals:

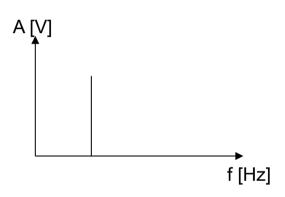

period T, frequency f=1/T, amplitude A, phase shift φ

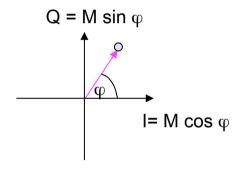

□ sine wave as special periodic signal for a carrier:

$$s(t) = A_t \sin(2 \pi f_t t + \varphi_t)$$

Fourier representation of periodic signals

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

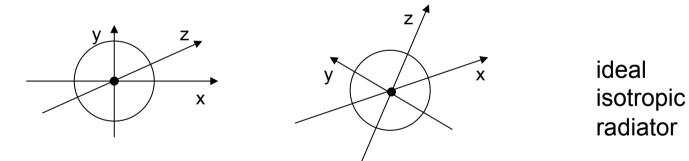




Signals II

- □ Different representations of signals
 - □ amplitude (amplitude domain)
 - □ frequency spectrum (frequency domain)
 - f phase state diagram (amplitude M and phase ϕ in polar

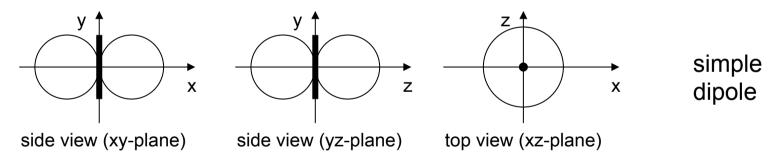
coordinates)



- Composed signals transferred into frequency domain using Fourier transformation
- □ Digital signals need
 - □ infinite frequencies for perfect transmission
 - modulation with a carrier frequency for transmission (analog signal!)

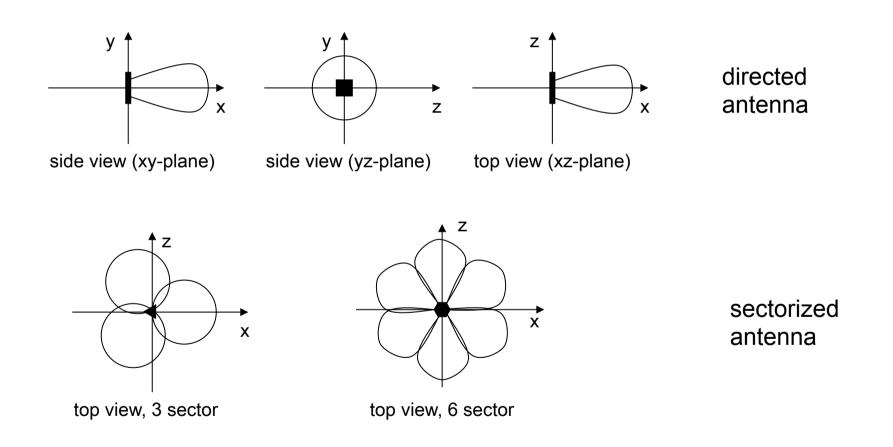
Antennas: isotropic radiator

- □ Radiation and reception of electromagnetic waves, coupling of wires to space for radio transmission
- □ Isotropic radiator: equal radiation in all directions (three dimensional) only a theoretical reference antenna
- Real antennas always have directive effects (vertically and/or horizontally)
- Radiation pattern: measurement of radiation around an antenna


Antennas: simple dipoles

Real antennas are not isotropic radiators but, e.g., dipoles with lengths $\lambda/4$ on car roofs or $\lambda/2$ as Hertzian dipole

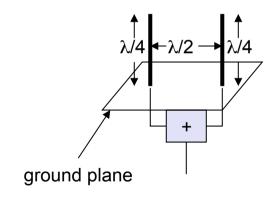
→ shape of antenna proportional to wavelength

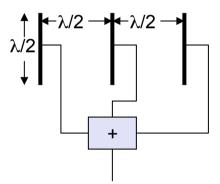

Example: Radiation pattern of a simple Hertzian dipole

Gain: maximum power in the direction of the main lobe compared to the power of an isotropic radiator (with the same average power)

Antennas: directed and sectorized

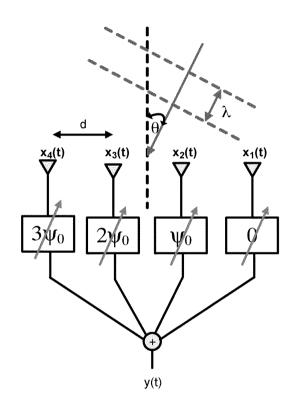
Often used for microwave connections or base stations for mobile phones (e.g., radio coverage of a valley)

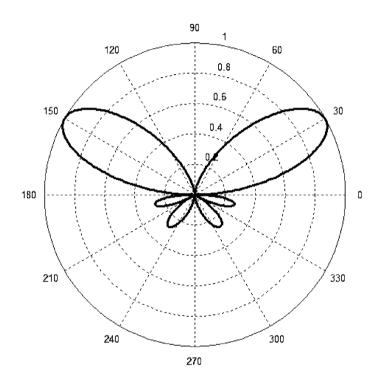

Antennas: diversity


Grouping of 2 or more antennas

□ multi-element antenna arrays

Antenna diversity


- □ switched diversity, selection diversity
 - receiver chooses antenna with largest output
- diversity combining
 - combine output power to produce gain
 - cophasing needed to avoid cancellation



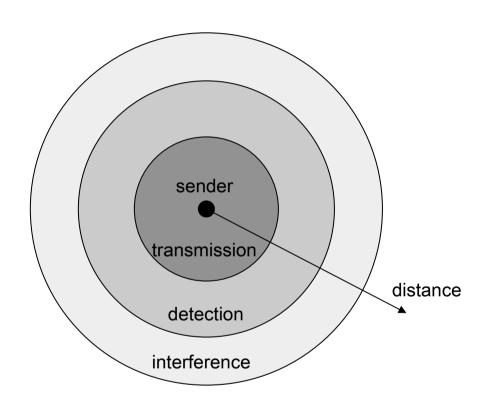
- ☐ Smart antennas
 - beam forming

Beamforming example

[Paramesh, J.; Bishop, R.; Soumyanath, K.; Allstot, D.J., "A four-antenna receiver in 90-nm CMOS for beamforming and spatial diversity", *Solid-State Circuits, IEEE Journal of*, vol.40, no.12, Dec. 2005]

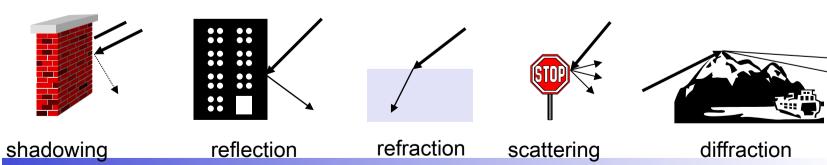
Signal propagation ranges

Transmission range

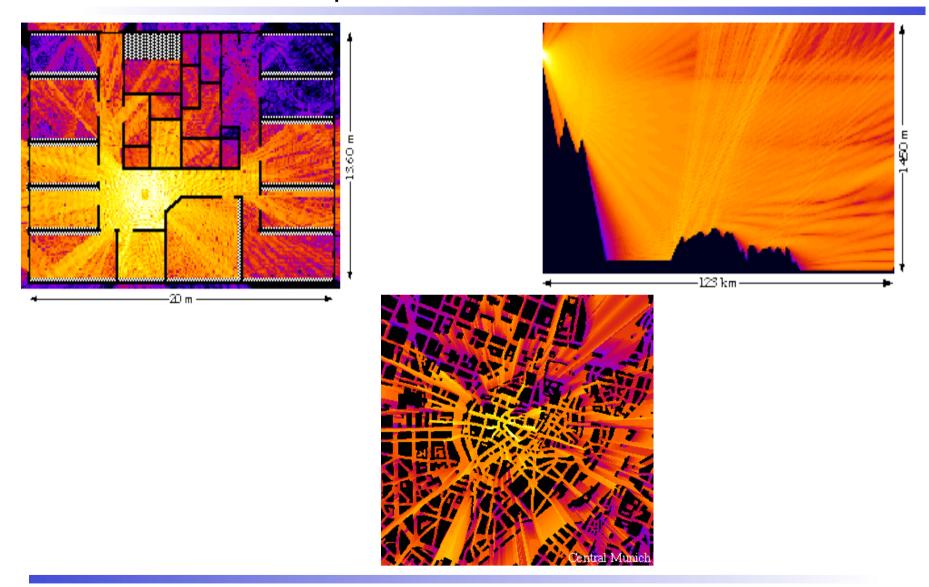

- □ communication possible
- □ low error rate

Detection range

- detection of the signal possible
- no communication possible

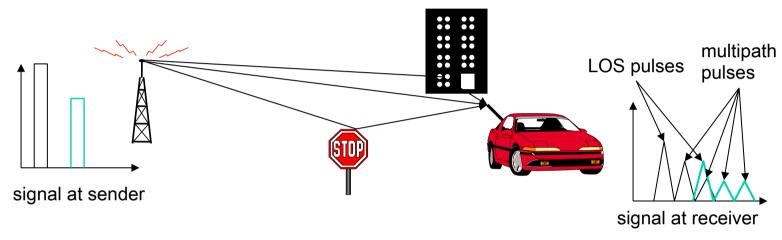

Interference range

- signal may not be detected
- signal adds to the background noise



Signal propagation

- □ Propagation in free space always like light (straight line)
- □ Path loss
 - □ Receiving power proportional to 1/d² (free space)
 (d = distance between sender and receiver)
 - \Box In reality (e.g., due to atmospheric absorption, and effects below): $1/d^{\alpha}$, with α between 2 and 5
- □ Receiving power additionally influenced by
 - □ fading (frequency dependent)
 - shadowing
 - □ reflection at large obstacles
 - refraction depending on the density of a medium
 - scattering at small obstacles
 - □ diffraction at edges



Real world example

Multipath propagation

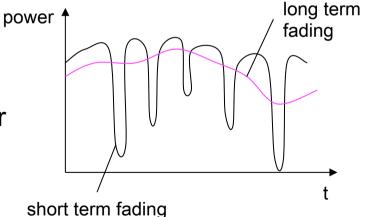
Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

Time dispersion: signal is dispersed over time

→ interference with "neighbor" symbols, Inter Symbol Interference (ISI)

The signal reaches a receiver directly and phase shifted

→ distorted signal depending on the phases of the different parts

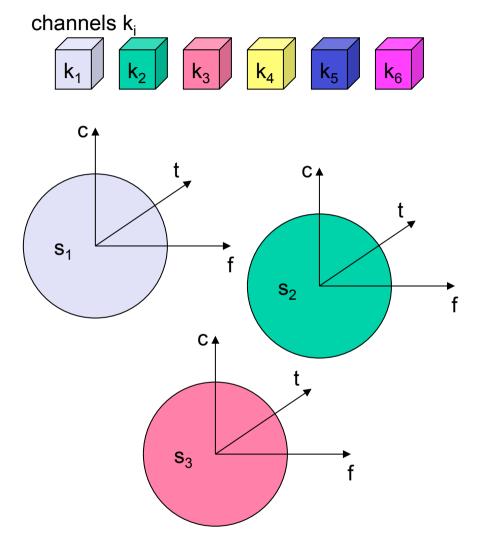

Effects of mobility

Channel characteristics change over time and location

- □ signal paths change
- □ different delay variations of different signal parts
- different phases of signal parts
- → quick changes in the power received (short term fading)

Additional changes in

- distance to sender
- obstacles further away
- → slow changes in the average power received (long term fading)


Multiplexing

Multiplexing in 4 dimensions

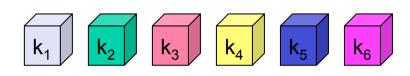
- □ space (s_i)
- □ time (t)
- □ frequency (f)
- □ code (c)

Goal: multiple use of a shared medium

Important: guard spaces needed!

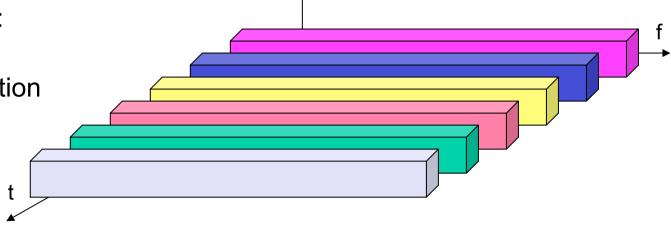
Frequency multiplex

Separation of the whole spectrum into smaller frequency bands A channel gets a certain band of the spectrum for the whole time Advantages:


□ no dynamic coordination necessary ■ works also for analog signals C Disadvantages: waste of bandwidth if the traffic is distributed unevenly □ inflexible guard spaces

Time multiplex

A channel gets the whole spectrum for a certain amount of time

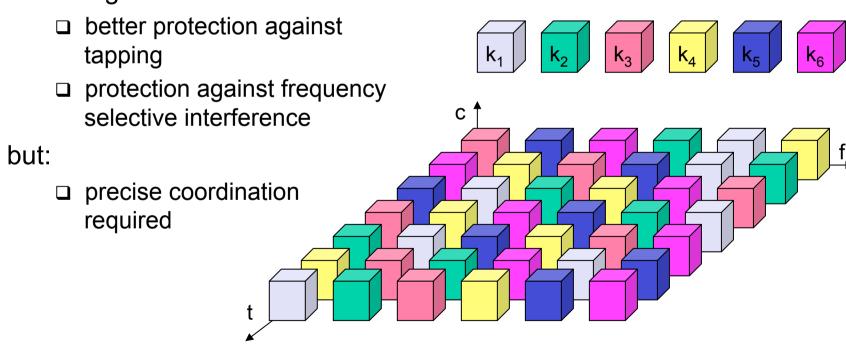

Advantages:

- only one carrier in the medium at any time
- throughput high even for many users

Disadvantages:

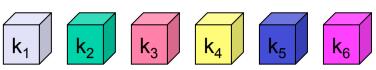
precisesynchronizationnecessary

C


Time and frequency multiplex

Combination of both methods

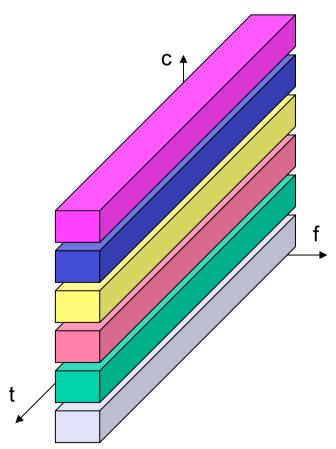
A channel gets a certain frequency band for a certain amount of time


Example: GSM

Advantages:

Code multiplex

Each channel has a unique code


All channels use the same spectrum at the same time

Advantages:

- bandwidth efficient
- no coordination and synchronization necessary
- good protection against interference and tapping

Disadvantages:

more complex signal regeneration
 Implemented using spread spectrum technology

