> Visibility Laboratory University of California Scripps Institution of Oceancgraphy
> San Diego 52, California
.TTOSNHERIC OTTICAL MEASUHEMLNTS DURING
HIGH aitITUDE BiLLOON FLIGHT, PiFt I

Amerian R. Boileau

De cember 1959
Index INumber IS 714-100

SIC KCFITENCT 59-32-(1)
approved:

Bureaid of Ships
Contract NObs-72092

SIO REFERENGE 59-32-(1)

TABLE OF CONTENTS
Page
INTRODUCTION AND SUMMARY 1
PROCEDURIE 2
Balloon Track Chart ${ }^{\prime}$ 4
Color Photograph of Sky 7
Temperature Profile 25
Sun's Zenith and Azimuth Angles 27
PRESENTATION OF DATA 28
Catalogue of Graphs 29
Data vs. Altitude 31
Data vs. Azimuthal Angle 66
DISCUSSION 90
Preface 90
Notation and Instrumentation 90
Recorded Optical Quantities 93
Computed Optical Property 95
Operational Procedure 96
Cycling of Filters 98
APPTINIX 102
REFERENCDS
ACKNO ILEDGTMENTS

htmospheric Optical Neasurements during High altitude Balloon Flight, Part I*

by
.Imerian R. Enieau

INTRODUCTION .ND SUIM, RY

Certain opticel measurements of the atmosphere were made by the Visibility Laboratory, University of California, La Jolla Campus, 21 June 1953, over central liinnesota. These were recorded from daybreak to mid-moming during the time four optically instrumented balloons laurıhed by ir Force Cambridge Research Center recorded related data at a higher altitude.

The data recorded by the Visibility Laboratory are presented herein as a catalogite of the recorded optical measuremonts as they varied with altitude, time of day, azimuthal angle with respect to the sun, and meteorological conditions.

[^0]
PROCEDURE

U. S. iir Force XB-29, No. 4224725, took off for Flight 120 from the iir Force Base at Wold-Chamberlain iirport, MinneapolisSt. Paul at 0415, 21 June 1958 and proceeded to Crosby, finnesota. This airplane carried optical and neteorological instruments from the Visibility Laboratory, University of Califomia, La Jolla Campus. at the time of this flight there vere ir operetion eight optical instruments and one meteorologicai instrument, viz., a vortex thermometer. The purpose of this flight was to record atmospheric optical data at
 means of balloon-borne equipment. When the airmlane arrived above Crosby, before sun rise, it was at 20000 feet.

The belloon launching hed bern scheduled to take place from an open mine pit near Urosky starting at 0500 of the 2lst. The balloons, four in number, were launched by :ineen Research, Inc., under the direction of Dr. V. J. Stakutis from the Themal Radiation Laboratory, Geophysics Fesearch Directorate of the uir Force Cambridge Research Center, iir Research and Develoment Comand. Dach balloon carried an instrumented package which contained photoneters and recordjing devices. The launching proceeded on schedile, the balloons being launched, as observed from the B-29, at 0500, 0521, 0536, and 0551.

The plen for the B-29 was to record data from 20000 feet down to 2000 feet (approximately 1000 .feet above the terrain) in the general
vicinity of the balloons. The optical equipments have light level thresholds below which they will not operate. These thresholds vary for the different instruments. Because a complete set of deta was wanted the startine of the exercise was delayed until the least sensj.t.jve instrument would record. In the moantime the airplanc orbjited in the vicinity of 20000 feet following the balloons in their drift.

The balloons first drifted southeast until they were over the south shore of lille Lacs Lake, then westward. The balloon tracks are show: in Figure l. ihe B-29 was flow on different fight paths during data recording, but by always returning to the vicinity of the talloons the B-29 foliowed the same general track as the balloons.

The approximate positions of the airplane at the timos indicatod is show by the underlined tines.

Balloon tracks are show in solid lines. The time of release of each instrumenica package from the balloon which carried it is indicated by the time at the end of cach track. The underlined times are approximate airplane positions.

FIGURE I
FLIGHT 120
JUNE 21, 1958
CEMTRAL MINNESOTA

The recording of data commenced at 0635 and continued until 1038, at which time the equipment was secured and the airplane retarned to Hinneapolis. During this time data were recorded as follows:

Central Daylight Saving Time

$0635-0704$	is 21000 feet
$0713-0730$	20000 feet to 11300 feet
$0738-0753$	it 11000 feet
$0758-0811$	11200 feet to 2000 feet
$0813-0820$	it 2000 feet
$0830-0835$	6500 feet to 2000 feet
$0907-0920$	it 22000 feet
$0925-0935$	20000 fect to 1 f10n fret
$0942-0949$	ist 17200 feet
$1019-1030$	10200 feet to 2000 fuet
$1.033-1.037$	is 2000 feet

That was the weather like? Fhotographs, (Kodachrome transparencius) takin át 0700, at 21000 feet, show scatteroci clouds at a lower level. Erwhogrenhs taken at 0753, at 11000 feet, show clouds at this altitude and above. By 0945, at 17200 fect, there was a dense cloud lorer below the airplane. 'Then a hole was found and the airplene desconded to below the clond layer the inyer was seen to be some 6000 Ioct thick. Color nrincs fron the transworencies taken at the various station altitides are enclosed as Zigure 2. through 18 inmodiately fo?lowing this page. The rhotographs were taken by tho project engineer sitting in the bomardier's position while the pilot executed right hond, 30° bank, tums. One result of photographing through the airrlana's nose windows was the photographing of reflections of objects inside the airplant. These reflections are very apparent in sone of Line photorrans.

The photoprays also show the terrain over which the data were recorded, this beinit fields, trees, and lakes. In rigure 2, top photograph, Millo Ifecs Lake cen be seen. In each of two photographs, the bottom photograph of Figurc 2 and the top photograph of Figure 3, a river can be seen. It is not the liississippi in either casc; but is balieved to be a tribuLary (or perhaps tributaries) to the St. Sroix :iver.

In Firmer 6 the two ton photographs show Hille Lecs Loke, and in the botion nhotogranh onc of the tributarics to the St. Croix River can be discrmed. The two smell la!os shown in the top photogranh of Figure 7 probably are those: near the town of Fiora.

Figure 8, 9 , and lo show the typical terrain. There are so many lakus of various sjae in this :rea that those shown could not be identified.

Pages 7 through 23 of the original report carried color photograrhs showing the visible atmospheric conditions. These photographs are not included in this second printing of the report. The conditions as shown in the color photoc raphs are described to some extent, however, by the descriptive notes in Fig. 19, page 25.

Temperature was recorded during descending runs as rugistered by an ML-471/iIQ-8 indicating resistance thermometer. .. julot of tomperature as a function of altitude and time is shown in Figure 19 irvediately following this page. In the figure are observations of cloud conditions at the tiries indicoted. In adrition, lines representing psoudo-adiabats ar. nioticd near the iemperature profiles.

[^1]

\qquad

\qquad
0

izimuth and zenith angife of the sun computed for a position at 46° North Latitude and 94° ivest Longitude, are shown in Figura 20. This position was selocted because the balloons ranged from approximatcly 93° to 95° :est Longitude in the vicinity of the 46° North Letitude parallel. These anglus are plotted for the period of 0.500 to 1100 Central Daylioht Saving Time. The ordinates of the lower graph are shown as zeniti angle vilues on the left sjede of the graph and as elovation angly on the right side of the greph, theso angles being complementary.

AZIMUTH AND ZENITH ANGLE OF SUN DURING FLIGHT 120, COMPUTED FOR POSITION 46° N.LAT., $94^{\circ} \mathrm{W}$. LONG.
figure 20
FLIGHT NO. 120 JUNE 21, 1958 CENTRAL MINNESOTA

FRESENTiTICN OF DaTs

The data recorded during Flight 120 are presented heruwith is 2 srtalogue of graphs, each measured quantity being shown as it varied with aititude and time or as it varied with azimuth at a constant altitude. The computed apparent attenustion length, $L_{i}(z)$, is similarly presentud.

The purpose of this report is to mike avallable the data which werc recorded and, in the case of apprrent attenuation length, computed. Interpretation and discussion of applications of these data are rescrved for subsequent reports.

The following notes concorning the graphs are pertinent:

1. The broken lincs in Figures 23 and 27 indicate that detco points i-ru lacking.
2. Figeres 39,40 and 41, nadir luminance and rediance, show larpe random oscillations of values. This is duc to the type of terrain bencath the airplane, i.c., lakes, fields, and wooded areas. The graphs shorm cover the time of flight from stert at 0713 until 0935. The balenc: of the material up to 1030 is so similar that no useful purpose would be served in including it.
3. Records of horizontel luminance and rediance, Figures 42 and 43, are incompletc due to failure of the heating systom on that telephotomuter. This purmittod condensation of moisture on the optics whun airplene dosconded from cold altitude into i. wirmer, moist altitude. after being in wermer altitude ? sufficiently long time the moisture eviporated and records werc e!gein good. This condition accounts for the incomplete nomprent attenuation length dotr, Figures 54 and 55, and the incomplete set of polin plote, Figures 56 to 79.

Catalogue of Graphs

.tmospheric Opticill Requrements vs altitude and Time

itmospheric Optical Munsurements by izzimuthal Distribution it Constant altitude

Timc	Iltitude	Figure	Pcge
0700	21000 feet	$56-61$	$66-71$
0751	11000 feet	$52-63$	$72-73$
0890	2000 fect	$64-67$	$74-77$
0916	22000 feet	$68-73$	$78-83$
0945	17200 fect	$74-79$	$84-89$
aky luminance arid radiance values were recorded. These will be the			

SIO Ref. 59-32-(1)

SIO Ref. 59-32-(1)

SIO Ref. 59-32-(1)
$-35-$

SIO Ref. 59-32-(1)

SIO Ref. 59-32 (1)

SIO Ref. 59-32-(1)

SIO Ref. 59-32-(1)

- 42 -

				${ }^{0713}$	I						
			,								
'			,								
${ }^{16}$	red	recoro				blue re	cord				
${ }^{16}$											
							$>$				
						0730	\bigcirc				
			3		,						
					,						
		reco	ORO		Couse	RECORO					
			ORO								
)	-							
				\bigcirc							
			5								
				7							
			3								
	irma	ADIANCE WAT	$\begin{array}{ll} =, & \text { UPWE } \\ \text { its } & \text { Ft } \end{array}$	ing	$H(2,+$						


```
SIO Ref. 59-32-(1)
``` 20


SIO Ref. 59-32-(1)
- \(45=\)

SIO Ref. 59-32-(1)

SIO Ref. 59-32-(1
- 51 -

RADIANT PATH FUNCTION \(N_{*}\left(2000,90^{\circ}, \phi\right)\)
WATTS \(\Omega^{-1} F T^{-2}\) PER NAUTICAL MILE
BLUE AND RED RECORDS, 2000 'FT. 0820 CDST

FIGURE 67
FLIGHT NO. 120
JUNE 21, 1958
CENTRAL MINNESOTA

(
(
(
(

0 0

SIO Ref. 59-32-(1)

SIO pref. 59-32-(1)

\section*{DISCUSSION}

\section*{Preface}

The Visibility Laborntory of the University of California, Le Jolla Campus, hes been engaged for several voars in an on-poing reser rch program concerning image transmission through the atmosphere. This proeram is discussed in "Image Transmission bv the Troposphere I". I .. reprint of this article is included in this \(r \Leftrightarrow p o r t\) as uppendix \(I\). Of special interest in uppendix I in connectjon with this roport are notation, discussion of path function, attenustion length, and the concept of equilibrium radiance (and luminance).

\section*{Notation and Instrumentation}

The not=tion used at the Visibility Laboratory is discussed in detail in ippendix I. This report follows that notation.

The photometric quantities illuminance and luminance arc dosignated by \(E\) and \(B\), respectivcly; the radiometric quantities irradiance and radiance are designated by \(H\) and \(N\), respectively. In the parenthoses following the bnsic symbols, \(z\) specifies altitudc in feet, " - " indicates downwelling flux, " + "indjcates upwelling flux, \(\theta\) specifies the zunith angle of the path of sight of the photometer, and \(\varnothing\) the azimuth angle of the photometer. In this report the azimuth angle is with respect to the sun.
1. S. O. Duntlev, h. R. Boileau, and R. W. Preisendorfer, "Image Transmission by the Tronosphere I", Journal of the Optical Societv of imerica, 47, \(\mathrm{nn} .1+32-504,(1051)\).

The photometric quantities are thuse recorded with a phototubefilter combination having the spectral sensitivity of the stendard luminosity curve for the daylight-adapted humen eyc. This is show in Tigure 80. In this renort this response is designated is the "photopic" response.

The nototubes are also filtered to resmond to radiont energy in the hlue end of the spectrum in ccormane with the blue spectral sensitivity curve in the above mentioned Figure. Simjlarly, they are filtrred to resnond to radinnt energy in the red end of the spectrum in accordnnce with the red shectral sunsitivity curve in the same Figmu.. In this renort these two sensitivities and respmeses to miniout oncrgy recorded through thess two filters are referrod to as "bluc" and "red" sensjtivities and responses.

The filters used to provide the three filtered phototube spectral sensitivities are interposed in the flux path successively in each instrument by the action of a ratchet solenoid driving a wheel in which the filters are mounted. The ratchet solenoids are so controlled from the projoct engineer's station that all instruments have the same filter in position at any one time. The normal order of jnterposition of filters is photopic, blue, and red.

\section*{Recorded Optical Qunntities}

The following optical guantities were recorded during Flight 120:
Zuantity
Illuminance, Downwelling
Irradiance, Downwelling
Illuminance, Upwelling
Irradiance, Upwelling
Luminance, Zenith
Radiance, Zenith

\section*{Sumbol}

E (z, -)
H \((z,-)\)
\(E(z,+)\)
H (\(z,+\))

B (\(2,0,0\))
\(N(z, 0,0)\)

Luminance, Nadir
B \(\left(z, 180^{\circ}, 0\right)\)
Rodiance, Nadir

Instrumentation
Mensured on a horizontal flat plate collector.* is rotating device shadows the colloctor plate from the sun's rays twice each revolution, thus giving a measure of illuminance from diffuse sky light.

Miensured on a horizontal flat plate collector.*

Measured by zenith telephotometer. Instrument is mounted so that when airplane is level it measures the average luminancc (or radiance) of a \(1^{\circ}\) circular cone of zenith sky.

Measured by nadir telephotometer. Instrument is duplicate of zenith telephotometer. Mounted to measure the average luminance (or radiance) of a \(I^{0}\) circular cone of nadir sky.

\footnotetext{
* The flat plate collectors are made from translucent opal plastic. The plate is ground to a fine mat surface until the incident radiation is accepted in proportion to the cosine of the angle of incidence.
}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Luminance, Horizontel \\
Radiance, Horizontal
\end{tabular} & \(B\left(2,90^{\circ}, \varnothing\right)\)
\(N\left(2,90^{\circ}, \phi\right)\) & lieasured by equilibrium radiance telephotometer of attenuntion meter. (See Figure 4, p. 503, in appendix I.) This telephntometer mersures average luminance or radiance of \(\frac{10}{2}\) circular conc. \\
\hline \begin{tabular}{l}
Horizontal Lummance \\
Path Tunction \\
Horizontul Ridiant Path Function
\end{tabular} & \(B_{*}^{*}\left(z, 90^{\circ}, \phi\right)\)
\(N_{i *}\left(z, 90^{\circ}, \phi\right)\) & Measured by path function telephotoreter of attenuation meter. (Sere Figure 4, P. 503, in sppendix I.) \\
\hline Luminance, Upper Sky Radiance, Unper Sk: & \[
\begin{aligned}
& B(z, \theta, \phi) \\
& N(z, \theta, \not \emptyset) \\
& 0 \Sigma \theta \leqslant 90^{\circ}
\end{aligned}
\] & Mensured by upper homisphere scamming telcphotometer. This instrument measuras the avorane lurinance (or radiance) of a. \(5^{\circ}\) circulur cone of skv as it sweeps from horizon to horizon through the zenith, making \(10^{\circ}\) steps in azimuth between each clevation swecp. a complete map of upper sky is mide in 18 sweeps in 90 seconds. \\
\hline Luminance, Lower Sky kndiance, Lower S'iv & \[
\begin{aligned}
& B(z, \theta, \phi) \\
& N(z, \theta, \phi) \\
& 90^{\circ} \leqslant \theta \leqslant 180^{\circ}
\end{aligned}
\] & Ne sured by lower hemisphere scanning telephotometer. This instrument is similar to upper hemisphere scanning telephctometer in that it has a \(5^{\circ}\) acceptance anole and makes a complo lower sky mep in 90 seconds; it is dissumilar to the upper scanning telcphotometer in that its elcvation sweep and izumuth movement are combinod, the scinnc swingins in szimuth at a constrnt rate of ten degroes for cach l80 \(0^{\circ}\) eluvetion swcep. \\
\hline
\end{tabular}

\section*{Computed Optical Property}

The following optical property is computed fror two monsured quantities:

\[
L_{A}(z)=\frac{B\left(z, 90^{\circ}, \phi\right)}{B_{*}\left(z, 90^{\circ}, \phi\right)} \text { or } \frac{N\left(z, 90^{\circ}, \phi\right)}{N_{*}\left(z, 90^{\circ}, \phi\right)}
\]
2. The mensured horizontal radiance, in \(\left(z, 90^{\circ}, \phi\right)\), if the atmosphere is sufficiently clear, will heve a lesser numerical value than the horizontal equilibrium radisnce, \(\mathrm{Nq}\left(z, 90^{\circ}, \phi\right)\). This is due to the curvaturc of the errth and its atmosphere. This causes the ratio of measured horizontal radiance to radiant path function, \(N\left(z, 90^{\circ}, \phi\right) / N_{\hbar}\left(z, 90^{\circ}, \phi\right)\), to be less than the ratio of horizontal equilibrium radiance to radiant path function, \(\mathrm{Na}\left(z, 90^{\circ}, \phi\right) / \mathrm{N}_{*}\left(z, 90^{\circ}, \phi\right)\). This second ratio is defined as attenuation length,
\[
\mathrm{L}(z)=\mathrm{Ng}\left(z, 90^{\circ}, \phi\right) / \mathrm{N}_{7}\left(z, 90^{\circ}, \phi\right)
\]

The first ratio is defined as apparent attenuation iength,
\[
L_{A}(z)=N\left(z, 90^{\circ}, \phi\right) / N_{*}\left(z, 90^{\circ}, \phi\right)
\]

Socause \(N\left(z, 90^{\circ}, \phi\right)\) on a clear day is less than \(\mathrm{Na}_{1}\left(z, 90^{\circ}, \varnothing\right)\), the aprarent attenlation length is less than attenuation length, i.o., \(\mathrm{L}_{\mathrm{A}}(\mathrm{z})<\mathrm{L}(\mathrm{z})\).

The report "Theory of Attenuation Measurements in Planetary Atmospheres", F. K. Preisendorfer, Scripps Institution of Oceanographv, University of California, La Jolla Campus, SIO Ref. 58-81, of 24 November 1.958 discusses this in detail.

Subsequent to Flight 120 a scanning device was installed on the horizontal radiance telephotometer hr which the differences between measired horizontal radiances and horizontal equilibrium radiances could be determined hy means of eruations developed in the above mentioned report (SIO Ref. 58-81). Only one test flight using this technique was possible prior to the decommissioning of the airplane. The differences were found to be negligible for the blue response, and not over \(5 \%\) for the photopic and red responses and this only at altitudes of 10000 to 20000 feet.

\section*{Operational Procedure}

To record the measurements of the various optical quantities three different flight pattems are normally used. In sky manping the Airplane is maintained in straight and level flight for 90 seconds; during this time the filters are not changed. Patr function measurements for \(360^{\circ}\) in azimuth reguire a left hand circuler flipht path at \(30^{\circ}\) bank; during this time the filters are creled to permit recording of comparable photometric and radiometric data. To record data as a function of altitude the sirplane is held in a level attitude and by use of reducen power and extended flaps is allowed to descend. The flight procedure must be a composite of the different flioht patterns to get the rreatest amonnt of reliable data in the shortest elapsed time.

The three types of flight patterns are described in greater detail as follows:
"A" man. Airplane maintained level, at constant altitude and constant heading for duration of sky mapping. Usually two "A" runs are made in succession, 90 seconds each, with filters changed between runs. Another "A" run on reverse course with third filter selection completes skv map in photopic, blue, and red spectral sensitivities and returns airplane to starting point vicinity. During the run all other optical instmaments are recorring.
"B" run. Airplane is flow in a left handed, \(30^{\circ}\) bank, \(360^{\circ}\) turn during which horjzontal path function and horizontal luminance (and radiance) are recorded. Each cardinal and inter-cardinal compass heading is identified by tho co-pilot and indicateri electrically on instrument records. Filters are cycled br hand from project engineer's position. Lt conclusjon of " \(B^{\prime \prime}\) mur airplane is put into right hand \(360^{\circ}\) turn during which time project engineer photographs sky at cardinal and inter-cardinal compass readings.
"L" run.
hirplane is maintainod in level attitude, on constant heading, but with oltitude decrensing approximatcly 1000 feet per minute. (This is accomplushed by lowering landing gear, extending flaps, and reducing power, the flan extension and power reduction being adjusted to give a suitable descent rate at level attitude.) All optical instruments are recording during this mun except upper and lower sky scannine telephotometers. Filters are cycled bv hand from project engineer's position.

The usual sequence of data-gathering runs is:
"A" runs at maximum altitude for sky meps, using successively the three optical filters.
"B" runs for path function and hurj gontai bmannor ond wianec measurement.
"B" run for photographing sky.
"L" run from maximum to middle altitude.
Repeat "A" and " \(B\) " runs at middle altıtude followed by "L" run from middle to minimum altitude.

Repeat "A" and "B" runs at manimum altitude.
'The "L" runs vary in length, usually because of meteorological conditions. If there are no pronounced haze layers seen diring ascent, or, if no tenperature inversior is apparent, the procedure would be as outlined above. If, howevar, there were sone meteorological or other condition to warrant it, the flight procedure would be changed. For example, in Flight 120 the first part of the flight followed tho usual pattern, i.e., " \(A\) " and " \(\mathrm{B}^{\prime \prime}\) runs at 21000 feet, "L" run to 11000 feet, "A" and "B" runs at 11000 feet, "L" run to 2000 feet, "A" and "B" runs at 2000 feet. But then the patterm was changed.

After "A" and "B" runs at 2000 fest, an ascent to 6000 feet followed by an "L" to 2000 feet was made. This was done to re-record the data
in case moisture had condensed on the optics of the equilibrium luminance telephotometer due to failure of the telephotoneter heating system. The "A" or "B" runs were not repected; and the airplane was taken again to 20000 feet.

Upon arrival at 20000 feet it was necessary to catch up to the balloons. During the cinase the airplene climbed to 22000 fect. Also during the chase the cloud deck at 10500-16500 feet continued to fill in. After the airplane had reached the vicinity of the balloons, "A" and "B" runs were made, followed br an "L" run terminating at 16400 feet, the top of the cloud deck. This was followed by "A" and "B" runs at 17200 feet.

At the conclusion of the " \(\dot{R}\) " and " B " runs at 17200 fert the airplane had been airborne for nearly six hours and because this exceeded the cstimated flight time for the exercise the fuel on board was getting low. (Excess fuel adds unnecessary weight to be carried to 20000 feet so the amount of fuel at take off was that for the estimated flight time pius a safety factor.) Accordingly the airplane left the vicinity of the balloons and proceeded toward Minneapolis until a break in the clours permitted i descent through the cloud deck. Maintaining the same course an "L" run was made below the clouds, from 10000 feet to 2000 feet, followed by three "A" runs at 2000 feet. At the conclusion of the "A" muns the exercise was terminated and the airplene continued on to linneapolis.

\section*{Cucling of Filters}

The operation of the optical filter selection mechanism is different for the three different types of runs. In the "A" runs each filter
remains in the flux path until a complete sky map is obtained. In the "B" and "L" runs the filters are cycled, but at different rates. This discussion covers filter cycling during " B " and "L" runs.

In making "B" runs either of two modes of fillter operation can be used. One is to cycle the filters during the \(360^{\circ}\) turn, the other is to maks three \(360^{\circ}\) turns with the filters changed at the end of each turn. The advantage of the first method is that the data obtained in the three spectral ranges apply to the sane air parcel. Additionally, this is accomplished in one turn of four minute duration. The main disadvantage of the method is that the data llotted as three separate curves are incomplete and missing portions oi the curves must be constructed; and this has froved to be more difficult than expected.

In the second method the data recorded in each turn for each filter are complete and the data so recorded and plotted are more reliable than that obtained by the first method. There ars three disadvantages, however. First, the airplane does not necessarily retain its flight path and a different sample of air is measured, secondiy, at four minutes per turn the tine utilized in "B" mins is extended, and thirdly, if the same flight path is followed succossive turns are in air contaminated with engine exhaust products. Both of these methods have heen tried and from the results obtained the recision was made \(t\) use the first method, that is, the one turn method with filters cycled during turn, during Flight 120.

The cycling of filters during the "B" mus was dore on a nominal eight-second period. To identify the record by spectrel response the photopic filter was uscd for four seconds, followed by blue for two seconds and red for two seconds.

The cveling of the filters for the "L" runs is a must if comparable spectral date are to be recorded. The method of making several "L" runs with one filter for each run introduces reli.tively large time variations with changes of sun's elevation, and air movement taking plice such that the instmment probes during two successive runs cannot possibly be sampling the same air. The period of cycling auring the "L" runs is dictated by the rotation of the shadowing device on the upper hemisphere illuminometer, it being very ciesirable to get one shadowed reading during each filtor positioning. This established the filter cycling period of about sixteen seconds, i.c., cipht seconds on photopic response, and four seconds each for the blue and red responses. Since ten, five, and five are easier to see on watch diaI this was the cycling patterm.

Because the atmosphre is stratified the data recorded by the various measurements do aot plot as simple curves bat show considerable structure. In tho cases of the instruments looking upwerd or downerd and those receiving illunin nce or irrarliance the effect of the stratification is to show gradual changes. In these instruments cycling of filters can be tolerated. In the case of the instruments with a horizont. 1 . Jine of sight, specifically the path function meter and the equilibrium luminance telephotometer, the stritification has a prenounced effect as the instruments are moved verticaily. The measurement made through the filter which is in the flux path as the stratum is entered is the accurate one; the other two filtered quantitics are mensured before and after entering the stratum. To plot graphs of these two quantities it has been necessary to accept the shane of the graph of the recorded quantity.

To overcone the dis:ulvathires of cyeling the fjaters in the horizontally seeing instruments the path function meter and equilibrium telephotometers are being redesigned to record simultanously the three spectral quantities through beam-splitting prisms and threr sepirate fi]ter-rhotetube embinations.

APPENDIX I

\title{
Image Transmission by the Troposphere I*
}

\author{
Seibert Q. Duntley, Almerian R. Boilead, and Rudolph W. Preisendorfer \\ Scripps Institution of Oceanography, \(\dagger\) Universily of California, La Jolla, California
}
(Received November 15, 1956)

\begin{abstract}
Quantitative treatment of the apparent luminance of distant objects and the reduction of apparent contrast along inclined paths of sight through real atmospheres has been accomplished by means of optical data taken from an aircraft in fight. Sample data from a single flight are used to illustrate some of the principles involved. Correlation has been found between the humidity profile of the atmosphere and its optical properties.
\end{abstract}

\section*{INTRODUCTION}

DISTANT objects are usually viewed, photographed, or televised by means of some path of sight through the atmosphere. Conventional principles of geometrical and physical optics suffice to describe the nature of the final image except for effects due to the atmosphere. In most circumstances, however, the configuration of the image and its information content is affected, often seriously, by its transmission from the object to the receiver. The atmosphere can be regarded as a transmission link in the object-to-image chain and the concomitant effect of the pertinent optical atmospheric properties can be regarded as governing its image transmission.

This paper is intended as the first of a series describing the results of an extensive on-going research program which has already been in progress for several years. Results from numerous theoretical and experimental investigations of image transmission phenomena are ready to be reported and further research of many kinds is in progress. Experimental results from a single flight comprise the factual content of this first paper and the equations are limited to certain general relations needed for the practical utilization of the data; this is in keeping with the scope of the oral version of the paper as presented at the Cambridge meeting of the International Commission on Optics.
The specially instrumented B-29 aircraft used to collect the data reported in this paper has, on other flights, secured data up to 30000 ft under several different atmospheric and lighting conditions; and subsequent papers in the series will present data from these and other flights. The optical properties of the troposphere are of special interest because most viewing atakes place through it. Roughly three-fourths of the atmosphere lies within the troposphere and because this lower

\footnotetext{
* Presented at the Fourth Congress of the International Commission of Optics, held in Cambridge-Boston, Massachusetts, March 28-April 3, 1956. Published with financial assistance from UNESCO and the International Union of Pure and Applied Physics.
\(\dagger\) Contribution from the Scripps Institution of Oceanography, University of California, New Series No. 921. This work has been supported by the Geophysical Research Directorate of the Air Force Cambridge Research Center and the Bureau of Ships of the U. S. Navy under contracts NObs-43356, NObs-50274, NObs72039, and NObs-72092.
}
air often contains haze, clouds, dust, and rain it seriously affects image transmission more frequently than do the higher strata. Exploration of image transmission phenomena in the stratosphere must await an opportunity to instrument a vehicle having greater altitude capability.

\section*{- SOME GENERAL PRINCIPLES \(\ddagger\)}

\section*{Introduction}

In the absence of appreciable atmospheric boild the apparent radiance of any distant object is the sum of two independent components: (1) residual imageforming light from the object that has traversed the atmospheric path without having been scattered or absorbed; (2) radiance created by the scattering of ambient light throughout the path of sight, including sunlight, skylight, earth-shine, etc. Only the first component contains information about the object, for the second is the result of scattering processes throughout the path of sight and is, therefore, independent of the nature of the object. In this paper the image transmission of any path of sight will be specified in terms of the transmittance of the entire path and the path radiance. No theoretical model for the atmosphere is needed; consequently, nearly all restrictive assumptions are avoided and the equations can be used to describe any path of sight through all real isotropic atmospheres with any lighting condition. To be useful in practice, these equations must be supplied with data and these are becoming available as a result of the flight research program now in progress.

\section*{Notation}

The notation used in this paper has been adopted with great care and on the basis of experience accumulated over many years. It is designed to fulfill many

\footnotetext{
\(\ddagger\) The principles presented in this paper and in subsequent papers of this series were formulated in unpublished lecture notes used within the Visibility Laboratory of the Scripps Institution of Oceanography which include, generalize, and extend earlier work by the authors and others (R. W. Preisendorfer, "Lectures on photometry, hydrological optics, atmospheric optics," Fall, 1953, Vol. I).
\({ }^{1}\) Duntley, Culver, Culver, and Preisendorfer, J. Opt. Soc. Am 42, 877A (1952); publication of this paper is planned.
}

Fig. 1. Illustrating the geometry of the path of sight.
requirements: It is suited to the terrestrially-based system of altitudes and directions in which flight data must be taken and it is fully compatible with the more powerful vector notation required for the generalized theoretical treatments of image transmission and radiative transfer phenomena to follow It is compatible also with the notation commonly used in several mathematically allied fields of physics, as for example, neutron diffusion theory. It is extendable to hydrological optics, a natural counterpart of meteorological optics, in which the authors of this paper are deeply interested.

The basic symbol employed for the spectral radiance is \(N\), and the symbol for luminance is \(B\). The altitude of the photometer is denoted by \(z\), the height above mean sea level. The direction of any path of sight is specified by a zenith-angle \(\theta\) and an azimuth angle \(\phi\), the photometer being directed upward when \(0 \leq \theta<\pi / 2\), as in Fig. \(1 ; z, \theta\), and \(\phi\) are always written as parenthetic attachments to the parent symbol. When the post subscript \(r\) is appended to any symbol, it denotes that the quantity pertains to a path of length \(r\). The subscript 0 always refers to the hypothetical concept of a photometer located at zero distance from the object, as, for example, in denoting the inherent radiance of a surface. Pre-subscripts identify the object, thus the pre-subscript \(b\) refers to background, and \(t\) to object or visual target. Thus, the (monochromatic) inherent spectral radiance of an object \(t\) at altitude \(z_{t}\) as viewed in the direction \((\theta, \phi)\) is \({ }_{t} N_{0}\left(z_{t}, \theta, \phi\right)\) and the corresponding apparent radiance observed in the direction (\(\theta, \phi\)) at any other altitude \(z\) is \(N_{r}(z, \theta, \phi)\) where \(z_{t}=z+r \cos \theta\). A post-superscript *, or post-subscript \(*\) is employed as a mnemonic symbol signifying that the radiometric quantity has been generated by the scattering of ambient light reaching the path from all directions. Thus \(V_{r}{ }^{*}(z, \theta, \phi)\) is the spectral path radiance observed at altitude \(z\) in the indicated direction, and \(N_{*}(z, \theta, \phi)\) is used to denote path function, a quantity defined later in this paper.

The (monochromatic) apparent spectral radiance of any distant object \(t\) is
\[
\begin{equation*}
{ }_{\imath} V_{r}(z, \theta, \phi)=T_{r}(z, \theta, \phi)_{t} N_{0}\left(z_{t}, \theta, \phi\right)+N_{r}^{*}(z, \theta, \phi) \tag{1}
\end{equation*}
\]
where the first term on the right is the residual imageforming light from the object and the second term is the path radiance due to scattering processes throughout
the path. \(T_{r}(z, \theta, \phi)\) is the spectral transmittance of the path for image-forming rays; it includes the factor \(\left[n(z) / n\left(z_{t}\right)\right]^{2}\) required by geometrical optics whenever the index of refraction of the medium at the observer \([n(z)]\) differs from the index of refraction of the medium at the target \(\left[n\left(z_{t}\right)\right]\). In the case of paths of sight through the troposphere the departure of \(\left[n(z) / n\left(z_{t}\right)\right]^{2}\) from unity is negligible. The transmittance of the path is a property of the atmosphere throughout the path and is independent of the distribution of the ambient lighting; in the case of any path of sight through the troposphere it is the same for upward or downward transmissions, thus \(T_{r}(z, \theta, \phi)=T_{r}\left(z_{t}, \pi-\theta, \pi+\phi\right)\) where \(z_{t}=z+r \cos \theta\). Because forward scattering generally exceeds backward scattering, reversibility is not true of the path radiance \(V_{r}^{*}(z, \theta, \phi)\) except for a few symmetrical lighting conditions, such as (1) horizontal paths of sight under a uniform overcast, and (2) a horizontal path at right angles to the plane of the sun provided both the radiance distributions of the sky above and the earth below the path are symmetrical with respect to the plane.

The image transmitting properties of the atmosphere can be separated from the optical properties of the object by the introduction of the contrast concept:

The inherent spectral conirast \(C_{0}\left(z_{t}, \theta, \phi\right)\) of an object is, by definition,
\[
\begin{equation*}
C_{0}\left(z_{t}, \theta, \phi\right)=\left[{ }_{t} N_{0}\left(z_{t}, \theta, \phi\right)-{ }_{b} N_{0}\left(z_{t}, \theta, \phi\right)\right] /{ }_{b} N_{0}\left(z_{t}, \theta, \phi\right) . \tag{2}
\end{equation*}
\]

The corresponding definition for apparent spectral contrast is
\[
\begin{equation*}
C_{r}(z, \theta, \phi)=\left[{ }_{t} N_{r}(z, \theta, \phi)-{ }_{b} N_{r}(z, \theta, \phi)\right] / b N_{r}(z, \theta, \phi) . \tag{3}
\end{equation*}
\]

The apparent and inherent background radiances are related by the expression
\[
\begin{equation*}
{ }_{b} N_{r}(z, \theta, \phi)=T_{r}(z, \theta, \phi)_{b} N_{0}\left(z_{t}, \theta, \phi\right)+N_{r}^{*}(z, \theta, \phi) \tag{4}
\end{equation*}
\]

\section*{Theorems}

Subtracting Eq. (4) from Eq. (1) yields the relation
\[
\begin{align*}
& {\left[{ }_{t} N_{r}(z, \theta, \phi)-{ }_{b} N_{r}(z, \theta, \phi)\right] } \\
&=T_{r}(z, \theta, \phi)\left[{ }_{t} N_{0}\left(z_{t}, \theta, \phi\right)-{ }_{b} N_{0}\left(z_{t}, \theta, \phi\right)\right] . \tag{5}
\end{align*}
\]

Thus, radiance differences are transmitted along inclined paths with the same attenuation as that experienced by each image-forming ray.
If Eq. (5) is divided by the apparent radiance of the background \({ }_{6} V_{r}(z, \theta, \phi)\) and combined with Eq. (3), the result can be written:
\[
\begin{align*}
& C_{r}(z, \theta, \phi)=T_{r}(z, \theta, \phi) \\
& \times\left[{ }_{t} N_{0}\left(z_{t}, \theta, \phi\right) /_{b} N_{r}(z, \theta, \phi)-{ }_{b} N_{0}\left(z_{t}, \theta, \phi\right) / /_{b} N_{r}(z, \theta, \phi)\right] . \tag{6}
\end{align*}
\]

When the inherent radiance of the background is very dark, as in the case of an object at high altitude, the second term in the brackets on the right side of Eq. (6) may be negligible.

Combining Eqs. (2) and (6) yields the expression
\[
\begin{align*}
C_{r}(z, \theta, \phi) / C_{0}\left(z_{t}, \theta, \phi\right)
\end{align*} \quad-T_{r}(z, \theta, \phi)_{\Delta} N_{0}\left(z_{t}, \theta, \phi\right) / b . V_{,}(z, \theta, \phi) .
\]

The right-hand member of Eq. (7) is an expression for the contrast transmittance of the path of sight; it is independent of the optical properties of the object. Equation (7) is the law of contrast reduction by the atmosphere expressed in its most general form. \({ }^{2}\)

An interesting variant of Eq. (7) formed by combination with Eq. (4) is the following expression in which conlrast lransmillance is characterized in terms of path radiance and apparent background radiance:
\[
\begin{equation*}
C_{r}(z, \theta, \phi) / C_{0}\left(z_{t}, \theta, \phi\right)=1-\left[V_{r}^{*}(z, \theta, \phi) / b V_{r}(z, \theta, \phi)\right] . \tag{8}
\end{equation*}
\]

The apparent indeterminateness of Eqs. (7) and (8) when applied to the case of objects outside the atmosphere can be avoided by the use of the limiting form of Eq. (6), as follows:
\[
\begin{equation*}
C_{r}(z, \theta, \phi)=T_{r}(z, \theta, \phi)_{،} V_{0}\left(z_{t}, \theta, \phi\right) / b V_{r}(z, \theta, \phi) \tag{9}
\end{equation*}
\]

It should be emphasized that Eqs. (1) through (9) are completely general; they apply rigorously to any path of sight regardless of the extent to which the scattering and absorbing properties of the atmosphere or the distributions of lighting exhibit nonuniformities from point to point. No theoretical model of the atmosphere is involved and no restrictive assumptions have been made. The equations can be used in treating all real atmospheres and all real lighting conditions. This is in sharp distinction to treatments of the subject which are based upon theoretical models of the atmosphere which invariably involve major assumptions such as horizontal uniformity, exponential lapse rate of air density, vertical uniformity of particle size distribution, negligible earth curvature, etc.

\section*{Equation of Transfer}

Image-forming light is lost by scattering and absorption in each elementary segment of the path of sight and contrast-reducing path radiance is generated by the scattering of the ambient light which reaches the segment from all directions. The quantitative descriptiom of this scattered component of path-segment radiance involves a quantity called the pall function and denoted by the symbol \(\mathrm{X}_{*}(z, \theta, \phi)\), where the mnemonic subscript symbol \({ }_{*}\) is used both to suggest light reaching the path segment from all directions and to denote that the quantity is a point function. The parenthetical symbols (\(z, \theta, \phi\)) indicate that the path function depends upon the direction of image transmission and upon the location of the segment in the path of sight. The path function depends upon the directional distribution of

\footnotetext{
\({ }^{2}\) Equation (7) is a gencralization of Eq. (15) on p. 183 of Q. Duntley, J. Opt. Soc. Am. 38, 179 (1948).
}

Fig. 2. Illustrating the derivation of the equation of transfer. \(\Delta z\) is defined as \(z_{1}-z_{2}\), so that \(\Delta r=\Delta z \sec \theta\) is always non-negative. The difference \(\Delta N(z, \theta, \phi)\) between output and input is \(N\left(z_{n}, 0, \phi\right)\) \(-N\left(z_{1}, \theta, \phi\right)\).
the lighting on the segment due to its surroundings; it can be operationally defined in terms of the (limiting) ratio of the path radiance associated with a short path to the path length by the relation \(I_{*}(z, \theta, \phi)=\lim (\Delta r \rightarrow 0)\) \(\times V_{\Delta r}{ }^{*}(z, \theta, \phi) / \Delta r\). In experimental practice, the path length \(\Delta r\) should be sufficiently short that no change in the ratio can be detected if \(\Delta r\) is made shorter. Apparatus for path function measurement has been built and will be described elsewhere.
The loss in image-forming light due to attenuation by scattering and absorption within any path segment is proportional to the amount of image-forming light present; the coefficient of proportionality will be written in the reciprocal form \(1 / L(z)\), and \(L(z)\) will be referred to as the allenuation length. \(L(z)\) is a function of position within the path of sight; it does not depend upon the image transmission direction unless the acrosol is anisotropic, as sometimes occurs in the case of falling snow; it is independent of the manner in which the path segment is lighted by the sun or sky; it is a physical property of the atmosphere alone. Attenuation includes loss of image-forming radiance by absorption and by scattering. Absorption refers to any thermodynamically irreversible transformation of monochromatic radiant energy including, primarily, conversion of light into heat but also fluorescence phenomena, photochemical processes, etc. Attenuation by scattering results from any change of direction sufficient to cause the radiation to fall outside the summative radius of the detector mosaic.

In any path segment of length \(\Delta r=\Delta z \sec \theta\), as illustrated by Fig. 2, the difference \(\Delta .1(z, \theta, \phi)\) between output and input radiance is attributable to a gain term \(\gamma_{*}(z, \theta, \phi) \Delta r\) and a loss term \(. \gamma(z, \theta, \phi) \Delta r / L(z)\), so that \(\Delta .{ }^{\prime}(z, \theta, \phi)=I_{*}(z, \theta, \phi) \Delta r-.{ }^{\prime}(z, \theta, \phi) \Delta r / L(z)\). This relation may be rewritten
\[
\begin{equation*}
\Delta . Y^{Y}(z, \theta, \phi) / \Delta z \sec \theta=I_{*}^{*}(z, \theta, \phi)-Y(z, \theta, \phi) / L(z) . \tag{10}
\end{equation*}
\]

In conformity with usage in other fields of physics Eq. (10) will be referred to as the incremental form of the equation of transfer. It is implicit in this equation that \(\Delta z\) must be taken sufficiently small so that over this interval \(L(z)\) and \(\lambda_{*}(z, \theta, \phi)\) may be regarded as constants within the precision of experimental data.

Equation (10) is a steady-state equation of continuity, \({ }^{8}\) based upon the conservation of energy principle; it refers only to nonemitting atmospheres, since an additional term would be needed to represent emission of radiation in the path, as by fluorescence, recombination phenomena, particle excitation, etc. Self-radiosity within the visible spectrum appears to be of negligible importance in the troposphere. Equations (1) and (4) may be regarded as integral forms of the equation of transfer.

The equation of transfer and the concepts of attenuation length and path function share the same generality as the concepts associated with Eqs. (1) through (9): No theoretical model atmosphere has been employed; each of the equations in this paper is applicable to all real isotropic atmospheres, all lighting conditions, and all paths of sight. The use of the equation of transfer in numerical summation procedures involving experimental data will be illustrated in a later section of this paper. Only when Eq. (10) is simulated by a differential equation and an analytic integration performed does the introduction of a theoretical model for the atmosphere become necessary; this will not be done in the present paper.

\section*{Equilibrium Radiance}

Many image transmission phenomena are most clearly understandable in terms of the concept of equilibrium radiance. This concept is a natural consequence of the equation of transfer, which indicates that some unique equilibrium radiance \(N_{q}(z, \theta, \phi)\) must exist at each point such that the loss of radiance within the path segment is balanced by the gain, i.e., \(\Delta N_{\ell}(z, \theta, \phi)\) \(=0\). Thus
\[
\begin{align*}
& 0=N_{*}(z, \theta, \phi)-N_{q}(z, \theta, \phi) / L(z), \text { so that } \\
& N_{q}(z, \theta, \phi)=N_{*}(z, \theta, \phi) L(z) \tag{11}
\end{align*}
\]
and the equation of transfer (10) may be rewritten as follows:
\[
\begin{equation*}
\Delta N(z, \theta, \phi) / \Delta z \sec \theta=\left[N_{q}(z, \theta, \phi)-N(z, \theta, \phi)\right] / L(z) . \tag{12}
\end{equation*}
\]

Equation (11) shows that each segment of every path of sight has associated with it an equilibrium radiance, and Eq. (12) states that the average space rate of change in image-forming radiance caused by the path segment is in such a direction as to cause the output radiance to be closer to the equilibrium radiance than is the input radiance. This segment-by-segment convergence of the apparent radiance of the object to the dynamic equilibrium radiance is illustrated by the data in Fig 6 of this paper.

\footnotetext{
\({ }^{3}\) The equation of transfer has been generalized to the transient case, and rigorously derived for an arbitrary optical medium, using the concepts of measure theory. R. W Preisendorfer, "A mathematical foundation for radiative transfer theory," Doctoral dissertation, U C.L.A., May 1956. An exposition of this theory has been submitted for publication in the Journal of the Optical Society of America.
}

When the path of sight is horizontal and optically uniform both in terms of the composition of the aerosol and its lighting, the equilibrium radiance is identical with the apparent radiance of the horizon. The apparent radiance of distant objects inherently more radiant than the equilibrium value decreases toward the equilibrium radiance as an asymptote; conversely the apparent radiance of any dark distant object approaches the same asymptote.

\section*{Equilibrium Contrast}

Many of the foregoing equations can be rewritten in terms of equilibrium contrast, \(C_{q}(z, \theta, \phi)\), which is defined by the relation
\[
\begin{equation*}
C_{q}(z, \theta, \phi)=\left[. V_{r}(z, \theta, \phi)-N_{q}(z, \theta, \phi)\right] / N_{q}(z, \theta, \phi) . \tag{13}
\end{equation*}
\]

Notation of the type defined by Eq. (13) enables the equation of transfer (10) to be written
\[
\begin{equation*}
\Delta C_{q}(z, \theta, \phi) / \Delta z \sec \theta=-C_{q}(z, \theta, \phi) / L(z) \tag{14}
\end{equation*}
\]
or
\[
\begin{equation*}
\Delta C_{q}(z, \theta, \phi) / C_{q}(z, \theta, \phi)=-\Delta z \sec \theta / L(z), \tag{15}
\end{equation*}
\]
provided that the equilibrium radiance \(N_{\rho}(z, \theta, \phi)\) is constant on the segment of path under discussion. In this case the fractional change in equilibrium contrast depends only upon the ratio of the length of the path segment to the attenuation length. The negative signs throughout Eqs. (14) and (15) signify that equilibrium contrast decreases in absolute magnitude in the segment.

\section*{EXPERIMENTAL METHODS}

\section*{Introduction}

The apparent radiance of any distant object can be computed by means of Eq. (1) if the transmittance of the path of sight and the path radiance are calculated from experimental data. This can be done from profiles of attenuation length and path function for the path of sight by means of the relations
\[
\begin{align*}
T_{r}(z, \theta, \phi)= & {\left[n(z) / n\left(z_{t}\right)\right]^{2} \prod_{m=1}^{m} \exp \left\{-\Delta r / L\left(z_{i}\right)\right\} } \\
& =\left[n(z) / n\left(z_{t}\right)\right]^{2} \exp \left\{-\Delta r \sum_{r=1}^{m} 1 / L\left(z_{i}\right)\right\} \tag{16}
\end{align*}
\]
and
\[
\begin{equation*}
N_{r^{*}}^{*}(z, \theta, \phi)=\Delta r \sum_{r=1}^{m} T_{r r}(z, \theta, \phi) N_{*}\left(z_{r}, \theta, \phi\right), \tag{17}
\end{equation*}
\]
where the vertical height \(\left|z_{t}-z\right|\) of the path is divided into \(m\) equal segments of length \(\Delta z\), and \(\Delta r=\Delta z \sec \theta\). \(L\left(z_{1}\right)\) and \(N_{*}\left(z_{i}, \theta, \phi\right)\) are the mean values of \(L\) and \(V_{*}\) in the \(i\) th segment. \(r_{s}=(i-1) \Delta r, i=1, \cdots, m\).

\section*{Attenuation Profile}

An experimental technique for measuring the vertical profile of attenuation length in horizontally uniform atmospheres has been devised around an air-borne version of an instrument based upon principles described earlier \({ }^{4,5}\) Figure 3 shows this attenuation meter mounted on the B-29 aircraft used by the Visibility Laboratory in its flight research program. The optical system is shown diagrammatically in Fig. 4. The for-

Fig. 3. Specially instrumented B-29 aircraft used to collect the data presented in this paper. The long cylindrical apparatus on top of the fusclage is the attenuation meter, shown schematically in Fig. 4. The smaller cylindrical device which appears slightly forward of the attenuation meter is the sky-scanning telephotometer. It consists of an end-on type multiplier phototube mounted at the focal point of a parabolic front-surfaced mirror 12 in diam. Scanning is accomplished automatically by means of a turret and trunion mounting; scanning time for the entire hemisphere is 90 sec. Field of view, adjustable by means of interchangeable ficld stops, was circular, \(5^{\circ}\) in angular diameter in the case of the data shown in Fig. 6. Sensitivity is sufficient to map even the darkest high-altitude night skies. Spectral response is controlled by absorption filters. A similar (downward-viewing) telephotometer is mounted beneath the aircraft but is not shown by this photograph.

Fig. 4. Schematic diagram of the air-borne attenuation meter. The forward photoelectric telephotometer measures the equilibrium radiance; the rear telephotometer measures the radiance of a path of unit length. The latter radiance is numerically equal to the horizontal path function in the direction of flight. Multiplier phototubes and Sweet-type logarithmic circuits enable direct recording of the ratio of these radiances, i.e., of the attenuation length [see Eq. (11)]. Wind-tunnel tests of the aerodynamic design showed ambient pressure throughout the unit path. Light trap design, stray-light treatment, and photoelectric sensitivity are sufficient to enable measurement of attenuation lengths up to 200 nautical miles when the phototube spectral sensitivity is rendered photopic by means of absorption filters.

\footnotetext{
\({ }^{4}\) S. Q. Duntley, U. S. Patent No. 2,661,650.
\({ }^{\text {i S. Q. Duntley, J. Opt. Soc. Am. 39, 630A (1949). }}\)
}

Fig. 5. Measured profiles of path function and attenuation length over the Atlantic Ocean off the coast of Florida, March 10, 1956. Flight 77. Sun position zenith angle \(=48^{\circ}\), azimuth \(=140^{\circ}\) clock wise from true north. Path function : zenith angle \(\phi=92^{\circ}\); azimuth \(\theta=0^{\circ}\) from the plane of the sun. Sky condition : cloudless, blue. Approximately 36 hr after the passage of a major front. Very light ground haze with top at 4000 ft . The profile of equilibrium luminance was computed by means of Eq. (11).
ward telephotometer is directed toward the horizon and measures the equilibrium radiance of the horizontal path of sight in the direction of flight of the aircraft. The rear telephotometer measures the radiance of a path of unit length; this is numerically equal to the path function. The attenuation length is the ratio of the equilibrium radiance to the path function, as shown by Eq. (11). Recording potentiometers within the aircraft record the outputs of both telephotometers as well as their ratio.
Despite the use of multiplier phototubes, the low level of radiance produced by scattering processes in clear high altitude air precluded the use of narrow-band interference or absorption filters in the airborne-attenuation meter. Because it was not possible to measure the spectral radiances called for by the equations given in this paper, each phototube was carefully corrected by means of specially constructed absorption filters to measure luminous quantities. For reasons of rigor the equations in this paper are written with the symbol \(N\), denoting spectral radiance, but it will be understood that these same equations have been used with \(N\) replaced by \(B\), denoting luminance, in the treatment of the illustrative data shown in Figs. 5 through 8.

During the flight for which data is given in this paper, the aircraft maintained a constant (southerly) heading and a fixed attitude which held the attenuation meter pointed at the desired portion of the horizon sky while making a controlled, rapid descent from 18000 ft to 1000 ft at a rate of approximately 1500 ft per min. The resulting profiles of path function, equilibrium luminance, and attenuation length are shown in Fig. 5.

It will be noted that the equilibrium luminance (horizon luminance) was nearly independent of altitude. Repeated descents have demonstrated that the major details of these curves are repeatable.

The transmittance of any inclined path of sight having terminal altitudes between 1000 and 18000 ft can be calculated from the attenuation profile in Fig. 5 by means of equations corresponding to Eq. (16).

\section*{Path Function Pzofiles}

The aircraft is not equipped for the direct measurement of path functions for vertical and inclined paths of sight. It is capable, however, of measuring the radiance of the sky in any direction, above or below, during flight. A photoelectric telephotometer is located in a trunion mounting on top of the fuselage near the forward end of the attenuation meter, as shown in Fig. 3. This instrument performs an automatic scan of the entire sky above the aircraft in approximately 90 sec . Another telephotometer in a fixed vertical mount provides a continuous record of the radiance of the zenith during the controlled rapid descent described in the preceding section. A corresponding pair of telephotometers is mounted on the bottom of the fuselage. Figure 6 shows zenith luminance data secured by the fixed telephotometer during the same descent to which Fig. 5 applies. Similar profiles of sky luminance for any upward path of sight inclined at angles \(\theta, \phi\) can be constructed from the record of the sky-scanning telephotometer, which is designed to be operated continuously during the descent.
The profile of the path function for any path of sight can be calculated from the sky radiance profile and the attenuation profile by means of Eq. (10) after rearrangement as follows:
\[
\begin{equation*}
N_{*}(z, \theta, \phi)=\Delta N(z, \theta, \phi) / \Delta z \sec \theta+N(z, \theta, \phi) / L(z) \tag{18}
\end{equation*}
\]

Fig. 6. Measured profile of the luminance of the zenith sky. Flight 77. Calculated profiles of the apparent luminance of black and white objects at 18000 ft . Calculated profile of vertical equilibrium luminance.

Fic. 7. Calculated profiles of vertical path function and vertical equilibrium luminance. Flight 77. The profile of attenuation length is identical with that in Fig. 5.

Figure 7 shows the result of such a calculation for the vertical path of sight which corresponds with the zenith luminance profile given in Fig. 6.

\section*{Equilibrium Radiance Profiles}

An expression for the equilibrium radiance for each element of any path of sight can be found by combining Eqs. (11) and (18) as follows:
\[
\begin{equation*}
N_{\vartheta}(z, \theta, \phi)=L(z)(\Delta . V(z, \theta, \phi) / \Delta z \sec \theta)+. V(z, \theta, \phi) . \tag{19}
\end{equation*}
\]

Figure 6 shows the result of the use of Eq . (19) for a calculation of the equilibrium luminance profile for the upward vertical path of sight; the same profile appears in Fig. 7.
In every case the radiance of the sky \(\Gamma^{\gamma}(z, \theta, \phi)\) as observed from any altitude \(z\) is the path radiance generated by the portion of the path above the observer. That is, \(N(z, \theta, \phi)=V_{\infty}{ }^{*}(z, \theta, \phi)\), where \(0 \leq 0<\pi / 2\). Because \(. V(z, \theta, \phi)=0\) outside the atmosphere (except for light from the stars) and \(V(z, \theta, \phi)>0\) within, it follows from Eq. (19) that the equilibrium radiance exceeds the apparent radiance of the clear sky and, therefore, the measured radiance of a clear sky increases as the photometer descends.

When clouds are present or when the image transmission direction is upward, the apparent radiance reaching any particular path segment may excced the equilibrium radiance for that segment, so that a decrease of apparent radiance is possible. In such cases it often happens that the apparent radiance of highly radiant objects decreases while that of objects of small inhereht radiance increases. Illustrative data for upwardtransmitting paths of sight are planned for presentation in a subsequent paper.

\section*{Profiles of Apparent Object Luminance}

Profiles of the apparent luminance of any specific object can be calculated for any path of sight provided that the inherent luminance of the object in the direction of interest is known. Two such profiles appear in Fig. 6; they refer to hypothetical "black" and "white" objects, respectively, located at a fixed altitude of 18000 ft and viewed from directly below on the occasion to which the data in this paper applies. The profiles were calculated by means of Eq. (1). Alternatively, they could have been generated step-wise by successive applications of either Eq. (10) or Eq. (12). The complexity which characterizes the attenuation, path function, and equilibrium luminance profiles is scarcely noticeable in these vertical profiles of apparent object luminance. In the case of paths of sight inclined at large zenith angles, however, the object luminance profiles exhibit the complexities due to atmospheric structure much more.prominently.

\section*{Profiles of Apparent Contrast}

Figure 8 shows profiles of apparent object contrast generated by means of Eq. (3) from the apparent luminance profiles in Fig. 6. The same profiles could have been generated by use of the Eq. (7).

\section*{METEOROLOGICAL CORRELATIONS}

The complex profiles of attenuation length and path function can only be the result of sharply defined layers of scattering particles. Repeated descents have demonstrated that the major features of the profiles are reproducible in space and time; the layers must, therefore,

Fig. 8. Calculated profiles of the apparent contrast of black and white objects at 18000 .ft. Flight 77.

Fig. 9. Profiles of microwave refractive modulus, path function, and free air temperature. Flight 77. Correlations between the profiles of microwave refractive modulus and path function can be noted.
be horizontal strata of great extent which characterize the air mass. Such strata must also be observable in terms of nonoptical meteorological phenomena. Initial attempts to discover correlations with the temperature and humidity profiles produced routinely by the meteorological services from radiosonde observations met with failure. This was attributed to the long time constant associated with the humidity sensing elements carried by the balloons. It was believed necessary to measure the humidity profile during the controlled rapid descent of the B-29 with equipment having a fractional second time constant in order to record faithfully the presence of strata only a few feet in thickness. This was accomplished by means of an airborne microwave refractometer \({ }^{6}\) of the type described by Crain and Deam. \({ }^{7}\) The microwave refractive index recorded by this instrument is governed primarily by the water vapor concentration in the atmosphere; it is related to pressure, temperature, and the partial pressure of water vapor by an equation derived by Debye and discussed by numerous authors in connection with microwave propagation. \({ }^{8}\) An expression for the partial pressure of water vapor obtained from the usual microwave approximation of Debye's equation is:
\[
\begin{aligned}
& \epsilon=\frac{(\text { microwave refractive modulus })(\text { Kelvin temp. })^{2}}{(77.6)(4810)} \\
&-\frac{(\text { total pressure })(\text { Kelvin temp. })}{4810} .
\end{aligned}
\]

\footnotetext{
\({ }^{6}\) The authors are indebted to Mr. Thomas J. Obst, Director of Range Development, Patrick Air Force Base, for suggesting the use of the microwave refractometer, and for arranging for the availability of this equipment for the flight experiment described in this paper.
\({ }^{7}\) C. M. Crain and A. P. Deam, Rev. Sci. Instr. 23, 149 (1953).
\({ }^{8}\) E. K. Smith, Jr., and S. Weintraub, J. Research Natl. Bur. Standards 50, 39 (1953).
}

Fig. 10. Profile of dew point temperature calculated by means of Debye's equation from the profile of microwave refractive modulus in Fig. 9. Profiles of path function and free air temperature are identical with those in Fig. 9. Correlations between profiles of dew point temperature and path function are obvious.

In this equation \(\epsilon\) is in millibars, the Kelvin temperature is of the stratum, the total pressure is in millibars, and the microwave refractive modulus of the stratum for microwaves is defined by the expression \((n-1) 10^{6}\), where \(n\) is the refractive index of the stratum.

An Air Force C-131 equipped with a microwave refractometer flew in formation with the B-29 throughout the descent during which the optical data reported in this paper was secured. The resulting profile of microwave refractive modulus is shown in Fig. 9. The profile of horizontal path function from Fig. 5 also appears in Fig. 9 for purposes of comparison.

Debye's equation was used to calculate a humidity profile from the microwave data. This profile, expressed in terms of dew-point temperature, is given in Fig. 10. The close correlation between humidity and path function is obvious.

The following speculations on the reasons for the observed correlation are offered: In terms of visible
light water vapor exhibits virtually no absorption and it contributed only molecular scattering, the magnitude of which is too small to be responsible for the observed effects. The atmosphere invariably contains, however, suspended material such as sea-salt ions, silica, ammonia, or oxides of nitrogen and sulfur which can form condensation nuclei for water droplets. A tenuous haze of these tiny droplets will form in any stratum having a water vapor content above some critical minimum. These droplets will grow until the vapor pressure just outside the curved surface of the drop equals the partial pressure of water vapor in the surrounding air. \({ }^{9}\) Liquid droplets ranging from \(4 \times 10^{-7}\) to more than \(10^{-4} \mathrm{~cm}\) are known to be present in the atmosphere. \({ }^{10}\) In the case of spherical water droplets small in diameter compared with a wavelength of light that component of the scattering coefficient which is due to droplets increases as the sixth power of their diameter, \({ }^{11}\) assuming the number of droplets per unit of volume to remain fixed. In view of this, the observed correlation between the path function and the humidity within tenuous haze layers appears to be understandable.

\section*{ACKNOWLEDGMENTS}

The number of individuals involved in an experimental program of the complexity, scope, and duration of the flight research partially described by this paper is too great to be listed properly here. Special mention should be made, however, of the technical contributions of Brig. Gen. Victor A. Byrnes, USAF, through whose efforts the program was initiated; \({ }^{\text {Lt. Col. George }} \mathbf{E}\). Long, USAF; Major Joseph X. Brennan, USAF; and research pilot Capt. Robert L. Baron, USAF. Important contributions to the detailed design of the apparatus were made by John M. Hood, Roswell W. Austin, W. Joseph Woodside, Thomas H. Glenn, Romuald Anthony, Merril D. Hobt, and David J. A. Hooton.

\footnotetext{
\({ }^{9}\) W. E. K. Middleton, Vision through the \(A\) tmosphere (Toronto Press, Toronto, 1952), Chap. 3.
\({ }_{10}\) C. Junge, Nuclei of Aimospheric Condensation, Compendium of Meteorology (American Society for Metals, Cleveland, 1951).
\({ }^{11}\) Lord Rayleigh, Proc. Roy. Soc. (London) A90, 219 (1914).
}
1. Duntlejt, S. ก., t. K. Boilcau, and IV. W. Preisendorfer, "Image Transmission by the Troposphere I", Journal of the Optical Society of America, 47, pp. 499-506, (1957).
2. Preisendorfer, R. W., "Theory of Attenuation Measurements in Planotary Atmospheres", SIO Ref. 58-21, Scripps Institution of Ocennography, University of Califormir, Le Jolla Canpus, 24 November 1958.

\footnotetext{
\(T\)
Thild the assistanco of all who have helped in this work is fully nppreciated specinl mention is melde of the crew of the B-29, Ni. 4224725 , Chnt. Ben V. Welker, UShF, Hircraft Commander, Cipt. Louis Prestwood, ISAF, Co-pilot, and Air Forcc Cimbride, Fese rch Center Test Suprort Aroup.
}```

[^0]: * This report is a result of research which has been supported by the Geophysics Research Directorate, air Foree Cambridge Hesearch Conter, Bedford, Massachusetts, and the Bureai of Ships, U. 3. Navy.

[^1]:

