Question 1 (**)

$$
\frac{d y}{d x}+\frac{4 y}{x}=6 x-5, x>0 .
$$

Determine the solution of the above differential equation subject to the boundary condition is $y=1$ at $x=1$.

Give the answer in the form $y=f(x)$.

Created by T. Madas

Question 2 (**+)

$$
\frac{d y}{d x}+y \tan x=\mathrm{e}^{2 x} \cos x, y(0)=2
$$

Show that the solution of the above differential equation is

Created by T. Madas

Question 3 (**+)

The velocity of a particle $v \mathrm{~ms}^{-1}$ at time $t \mathrm{~s}$ satisfies the differential equation

$$
t \frac{d v}{d t}=v+t, t>0
$$

Given that when $t=2, v=8$, show that when $t=8$

$$
v=16(2+\ln 2)
$$

Question $4{ }^{(* *+)}$

$$
x \frac{d y}{d x}+4 y=8 x^{4}, \text { subject to } y=1 \text { at } x=1 .
$$

Show that the solution of the above differential equation is

$$
y=x^{4}
$$

Created by T. Madas

Question 5 (***)

$$
\frac{d y}{d x} \sin x=\sin x \sin 2 x+y \cos x
$$

Given that $y=\frac{3}{2}$ at $x=\frac{\pi}{6}$, find the exact value of y at $x=\frac{\pi}{4}$.

$$
1+\sqrt{2}
$$

2 Question 6 (***)
$x \frac{d y}{d x}+2 y=9 x\left(x^{3}+1\right)^{\frac{1}{2}}$, with $y=\frac{27}{2}$ at $x=2$.

Show that the solution of the above differential equation is

Created by T. Madas

Question 7 (***)
A trigonometric curve C satisfies the differential equation

$$
\frac{d y}{d x} \cos x+y \sin x=\cos ^{3} x .
$$

a) Find a general solution of the above differential equation.
b) Given further that the curve passes through the Cartesian origin O, sketch the graph of C for $0 \leq x \leq 2 \pi$.
The sketch must show clearly the coordinates of the points where the graph of C meets the x axis.

$$
y=\sin x \cos x+A \cos x
$$

\square

Created by T. Madas

Question 8 (***)
20 grams of salt are dissolved into a beaker containing 1 litre of a certain chemical.

The mass of salt, M grams, which remains undissolved t seconds later, is modelled by the differential equation

$$
\frac{d M}{d t}+\frac{2 M}{20-t}+1=0, t \geq 0
$$

Show clearly that

Created by T. Madas

Question 9 (***+)
Given that $z=f(x)$ and $y=g(x)$ satisfy the following differential equations

$$
\frac{d z}{d x}+2 z=\mathrm{e}^{-2 x} \text { and } \frac{d y}{d x}+2 y=z
$$

a) Find z in the form $z=f(x)$
b) Express y in the form $y=g(x)$, given further that at $x=0, y=1, \frac{d y}{d x}=0$

$$
\text { ? } z=(x+C) \mathrm{e}^{-2 x}, y=\left(\frac{1}{2} x^{2}+2 x+1\right) \mathrm{e}^{-2 x}
$$

Created by T. Madas

Question 10 (***+)

$$
x \frac{d y}{d x}=\sqrt{y^{2}+1}, x>0, \text { with } y=0 \text { at } x=2 .
$$

Show that the solution of the above differential equation is

$$
y=\frac{x}{4}-\frac{1}{x}
$$

Question 11

Given that $y=2$ at $x=1$, solve the above differential equation to show that

$$
y=4(3-\ln 2) \text { at } x=3 .
$$

Question 12 (***+)
$\frac{d y}{d x}+k y=\cos 3 x, k$ is a non zero constant.

By finding a complimentary function and a particular integral, or otherwise, find the general of the above differential equation.

$$
y=A \mathrm{e}^{-x}+\frac{k}{9+k^{2}} \cos 3 x+\frac{3}{9+k^{2}} \sin 3 x
$$

Created by T. Madas

Question 13 (***+)

$$
\left(2 x-4 y^{2}\right) \frac{d y}{d x}+y=0 .
$$

By reversing the role of x and y in the above differential equation, or otherwise, find its general solution.

Created by T. Madas

Question 14 (*****)
The curve with equation $y=f(x)$ satisfies

$$
x \frac{d y}{d x}+(1-2 x) y=4 x, x>0, f(1)=3\left(\mathrm{e}^{2}-1\right)
$$

Determine an equation for $y=f(x)$.

Created by T. Madas

Question 15 (****)

A curve C, with equation $y=f(x)$, passes through the points with coordinates $(1,1)$ and $(2, k)$, where k is a constant.

Given further that the equation of C satisfies the differential equation
determine the exact value of k.

Created by T. Madas

Question 16 (****)

$$
\left(1-x^{2}\right) \frac{d y}{d x}+y=\left(1-x^{2}\right)(1-x)^{\frac{1}{2}},-1<x<1
$$

Given that $y=\frac{\sqrt{2}}{2}$ at $x=\frac{1}{2}$, show that the solution of the above differential equation can be written as
\square , proof

$\left(1-x^{2}\right) \frac{d y}{d^{2}}+y=\left(1-x^{2}\right)\left(1-x^{2}\right)^{2}$
 AN INTEGRATNG FACTOR
$\Rightarrow \frac{d y}{d x}+\frac{1}{1-x^{2}} \frac{d y}{d x}=(1-x)^{\frac{1}{2}}$
 $=e^{\int \frac{\frac{1}{1+x}}{1+\frac{1}{2}} \frac{\frac{1}{1-x}}{} d x}=e^{\left.\frac{1}{2}| |^{\frac{1+x}{1-x}} \right\rvert\,}=e^{\ln \sqrt{\frac{1+x}{1-x}}=\frac{\sqrt{1+2}}{\sqrt{1-x}}}$ $\left.\Rightarrow \frac{d}{d x}\left[y\left(\frac{\sqrt{1+x}}{\sqrt{1-x}}\right)\right]=\sin x\right)^{\frac{1}{2}}\left(\frac{\sqrt{1+x}}{\sqrt{1+x}}\right)$
$\Rightarrow \frac{y(1+x)^{\frac{1}{2}}}{(1-x)^{\frac{1}{2}}}=\int(1+x)^{\frac{1}{2}} d x$
$\Rightarrow \frac{y(1+x)^{\frac{1}{2}}}{(1-x)^{\frac{1}{2}}}=\frac{2}{3}(1+x)^{\frac{3}{2}}+A$
$\Rightarrow y=\frac{2}{3}(1+x)^{1}(1-x)^{\frac{1}{2}}+A \frac{(1-x)^{\frac{1}{2}}}{(1+x)^{\frac{1}{2}}}$
Anfy $z=\frac{1}{2}, y=\frac{\sqrt{2}}{2}$
$\Rightarrow \frac{\sqrt{2}}{2}=\frac{2}{3} \times \frac{3}{2} \times \frac{\sqrt{2}}{2}+A \frac{\sqrt{3 / 2}}{3 / 2}$ $\Rightarrow \frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}+A \frac{\sqrt{2}}{3}$ $\Rightarrow A=0$

Question 17 (****)
A curve C, with equation $y=f(x)$, meets the y axis the point with coordinates $(0,1)$.

It is further given that the equation of C satisfies the differential equation

$$
\frac{d y}{d x}=x-2 y
$$

a) Determine an equation of C.
b) Sketch the graph of C.

The graph must include in exact simplified form the coordinates of the stationary point of the curve and the equation of its asymptote.
\square

$$
y=\frac{1}{2} x-\frac{1}{4}+\frac{5}{4} \mathrm{e}^{-2 x}
$$

Created by T. Madas

Question 18 (****)

$$
\frac{d y}{d x}+\frac{y}{x}=\frac{5}{\left(x^{2}+2\right)\left(4 x^{2}+3\right)}, x>0 .
$$

Given that $y=\frac{1}{2} \ln \frac{7}{6}$ at $x=1$, show that the solution of the above differential equation can be written as

$$
y=\frac{1}{2 x} \ln \left(\frac{4 x^{2}+3}{2 x^{2}+4}\right)
$$

\square , proof

Whrte THE O.D.E in the OSVAL ORDFR
$\Rightarrow \frac{d y}{d x}+\frac{y}{x}=\frac{5}{\left(x^{2}+2\right)\left(4 x^{2}+3\right)}$
INTGRATNG Aftcor CNN Bt found
$e^{\int \frac{1}{x} d x}=e^{\ln x}=x$
\#hace we oritn
$\Rightarrow \frac{d}{d x}(y x)=\frac{5 x}{\left(x^{2}+2\right)(d x+3)}$
$\Rightarrow y x=\int \frac{5 x}{\left(x^{2}+2\right)\left(4 x^{2}+3\right)} d x$
Partal feactions tre netsdo
$\frac{5 x}{\left(x^{2}+2\right)\left(4 x^{2}+3\right)} \equiv \frac{4 x+B}{x^{2}+2}+\frac{C x+D}{4 x^{2}+3}$
$5 x \equiv(A x+B)\left(1 x^{2}+3\right)+\left(x^{2} 12\right)(C x+1)$
$\begin{aligned} 5 x= & 4 A a^{3}+4 B x^{2}+3 A x+3 B \\ & C x^{3}+D x^{2}+2 C x+2 D \end{aligned}$
$5 x=(4 A+C) x^{3}+(4 B+D) x^{2}+(3 A+2 C) x+(3 B+2 D)$
$\left.\left.\begin{array}{l} 4 A+C=0 \\ 3 A+2 C=5 \end{array}\right\} \rightarrow \begin{array}{l} 8 A+2 C=0 \\ 3 A+2 C=5 \end{array}\right\} \Rightarrow \begin{aligned} & \frac{t}{2}=-1 \\ & C=4 \end{aligned}$
$\left.\left.\begin{array}{l} 4 B+D=0 \\ 3 B+2 D=0 \end{array}\right\} \Rightarrow \begin{array}{l} B B+2 D=0 \\ 3 B+2 D=0 \end{array}\right\} \Rightarrow \begin{aligned} & B=0 \\ & D=0 \end{aligned}$

$\begin{aligned} & \Rightarrow y x=\int \frac{4 x}{4 x^{2}+3}-\frac{x}{x^{2}+2} d x \\ & \Rightarrow 2 y x=\int \frac{8 x}{4 x^{2}+3}-\frac{2 x}{x^{2}+2} d x \end{aligned}$
$\begin{aligned} & \rightarrow 2 y a=\ln \left(4 x^{2}+3\right)-\ln \left(x^{2}+2\right)+\ln x+ \\ & \rightarrow 2 y z=\ln \left[\frac{\left.+(4)^{2}+3\right)}{x^{2}+2}\right] \end{aligned}$
-
$\Rightarrow 2 \times \frac{1}{\ln z} \times 1=\ln \left(\frac{7 \pi}{3}\right)$
$\Rightarrow \ln \frac{7}{6}-\ln \frac{74}{3}$
$\rightarrow \frac{7}{6}=\frac{74}{3}$
$\Rightarrow A=\frac{1}{2}$
Gintuy we thate
$\Rightarrow 2 y x=\ln \frac{4 x^{2}+3}{2\left(x^{(x+2)}\right]}$
$\Rightarrow y=\frac{1}{2 x} \ln \left[\frac{42^{2}+3}{2+4}\right]$.

Created by T. Madas

Question 19 (****)

$$
x \frac{d y}{d x}+3 y=x \mathrm{e}^{-x^{2}}, x>0
$$

Show clearly that the general solution of the above differential equation can be written in the form

Created by T. Madas

Question 20 (****)
The general point P lies on the curve with equation $y=f(x)$.

The gradient of the curve at P is 2 more than the gradient of the straight line segment $O P$.

Given further that the curve passes through $Q(1,2)$, express y in terms of x.

$$
y=2 x(1+\ln x)
$$

Created by T. Madas

Question 21 (****+)
A curve with equation $y=f(x)$ passes through the origin and satisfies the differential equation

$$
2 y\left(1+x^{2}\right) \frac{d y}{d x}+x y^{2}=\left(1+x^{2}\right)^{\frac{3}{2}}
$$

By finding a suitable integrating factor, or otherwise, show clearly that
\square , proof
8

Question 22 (****+)
The curve with equation $y=f(x)$ passes through the origin, and satisfies the relationship

$$
\frac{d}{d x}\left[y\left(x^{2}+1\right)\right]=x^{5}+2 x^{3}+x+3 x y
$$

Determine a simplified expression for the equation of the curve.
\square $y=\frac{1}{3}\left(x^{2}+1\right)^{2}-\frac{1}{3}\left(x^{2}+1\right)^{\frac{1}{2}}$

\square

Created by T. Madas

Question 23 (****+)
A curve with equation $y=f(x)$ passes through the point with coordinates $(0,1)$ and satisfies the differential equation

$$
y^{2} \frac{d y}{d x}+y^{3}=4 \mathrm{e}^{x}
$$

By finding a suitable integrating factor, solve the differential equation to show that
\square
, proof

Created by T. Madas

Question 24 (****+)

It is given that a curve with equation $y=f(x)$ passes through the point $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ and satisfies the differential equation

$$
\left(\frac{d y}{d x}-\sqrt{\tan x}\right) \sin 2 x=y
$$

Find an equation for the curve in the form $y=f(x)$.

Created by T. Madas

Question 25
The variables x and y satisfy

$$
(2 y-x) \frac{d y}{d x}=y, \quad y>0, x>0
$$

\square proof

Metion B - By substurion ts The $0 . D \in \Delta$ theno stanvoris $\Rightarrow(2 y-x) \frac{d y}{d x}=y$

$\rightarrow v_{1}+\frac{1}{2 v 2-x}$ \square
$\rightarrow v+\frac{d x}{a}=\frac{v}{2 v-1}$
$\Rightarrow 2 \frac{d v}{d x}=\frac{v-2 v^{2}+v}{2 v-1}$

$\Rightarrow \frac{2 v-1}{-2 v^{2}+2 v} d v=\frac{1}{x} d x$
$\Rightarrow \frac{2 v-1}{2 v^{2}-2 v} d v=-\frac{1}{x} d x$
$\Rightarrow \quad \frac{2 v-1}{v^{2}-y} d v=-\frac{2}{x} d x$
$\rightarrow \int \frac{2 v-1}{v^{2} v} d v=\int-\frac{2}{x} d b$
$\Rightarrow \ln \left|v^{2}-v\right|=-2 \ln |x|+A$
$\Rightarrow \ln \left|v^{2}-v\right|=\ln \left(\frac{1}{x^{2}}\right)+\ln B$
$\Rightarrow \ln \left|v^{2}-v\right|=\ln \left(\left.\frac{B}{x^{2}} \right\rvert\,\right.$
$\Rightarrow \quad y^{2}-v=\frac{B}{x}$
$\frac{y^{2}}{x^{2}}-\frac{y}{x}=-\frac{1}{x^{2}}$
$y^{2}-x y=-1$
$y^{2}-x y=-1$
$y^{2}+1=x y$
\qquad

Question 26
The variables x and y satisfy

$$
\frac{d y}{d x}=\frac{y(y+1)}{y-x-x y-1}, \quad y>0
$$

If $y=1$ at $x=1-\ln 4$, show that $y+\ln (y+1)=0$ at $x=3$.
\square , proof

$\Rightarrow x y=\int 1-\frac{2}{y+1} d y$ $\Rightarrow x y=y-2 \ln (y+1)+A$ APry gansurey gnothoi Gita $a=-\ln 4, y=1$ $\Rightarrow(1-\ln 4) \times 1=1-2 \ln 2+4$
$\Rightarrow 1-\ln 4=1-\ln 4+4$ $\Rightarrow A=0$
$2 y=y-2 \ln (y+1)$
WHet $2=3$
$\Rightarrow 3 y=y-2 \ln (y+1)$ $\Rightarrow \quad 2 y=-2 \ln (y+1)$
$\Rightarrow y=-\ln (y+1)$ $y+\ln (y+1)=0$

Created by T. Madas

Question 27 (*****)
The curve with equation $y=f(x)$ has the line $y=1$ as an asymptote and satisfies the differential equation

$$
x^{3} \frac{d y}{d x}-x=x y+1, x \neq 0
$$

Solve the above differential equation, giving the solution in the form $y=f(x)$.

Question 28 (*****)
It is given that a curve with equation $x=f(y)$ passes through the point $\left(0, \frac{1}{2}\right)$ and satisfies the differential equation

$$
(2 y+3 x) \frac{d y}{d x}=y .
$$

Find an equation for the curve in the form $x=f(y)$.
\square ,$x=4 y^{3}-y$

Question 29 ($* * * * *$)
Use suitable manipulations to solve this exact differential equation.

$$
4 x \frac{d y}{d x}+\sin 2 y=4 \cos ^{2} y, \quad y\left(\frac{1}{4}\right)=0
$$

Given the answer in the form $y=f(x)$.

