Ist ORDER O.D.E. EXAM QUESTIONS LASINALISCON I.Y.C.B. MARIASINALISCON I.Y.C.B. MARIASIN

Question 1 (**)

E.A.

 $\frac{dy}{dx} + \frac{4y}{x} = 6x - 5, \ x > 0.$

Determine the solution of the above differential equation subject to the boundary condition is y = 1 at x = 1.

Give the answer in the form y = f(x).

 $y = x^2$

x-

ng

Question 2 (**+)

maths.com

SM21/1S-COM

I.C.p

$$\frac{dy}{dx} + y \tan x = e^{2x} \cos x, \ y(0) = 2.$$

Show that the solution of the above differential equation is K.C.P.

madasmaths.com

1.1.6.1

 $y = \frac{1}{2} \left(e^{2x} + 3 \right) \cos x \,.$

2			A
·		<u>∧</u> `	proof
12			proor
1 9	2	COOK FOR MN INSHREATING FACTOR	
20. 9	1 m	The self that do selflect a second a when the movie that the second and the movie that the movie that the movie the	SvAq
n.	4310	$\implies \frac{1}{\cos dt} + y \tan \frac{1}{\cos z} = z^{2t} \cos \frac{1}{\cos z}$	
dry	100	$\Rightarrow \frac{d}{dx}(gsca) = e^{2t}$ $\Rightarrow \frac{d}{dx}(gsca) = e^{2t}$ $\begin{cases} use = e^{2t} \\ \frac{d}{dx}(use = e^{2t}) \\ \frac{d}{dx}(use = e^{2t}) \end{cases}$	a hure {
18	0.1	$= \int \int dx = \int dx + C$ $= \int dx = \int dx^{2} + C$ $= \int dx = \int dx^{2} + C$	
°Cn.	~	- g = ±ritara + Coore	3
r. "		4987 CONDUTION' Y(0)=2 → 2= ±×1×1+C×1 → 2= ±+C	
1. J.	1.	history we estran	
S.C.	6 P_	$\Rightarrow \widehat{d} = \overline{7}(e_3 + 3) \operatorname{rev}_1$	
58	10	S 5/	0
· /	- S.		
. 12		h	Do.
~ -4	2	4200	- °0,
20.	Up.	1/2	
no.	211	TOD.	
All.	10	· · · · · · · · · · · · · · · · · · ·	2
S	~~(Co. 4	10
· · · · O >	1	~m	Co.
- F M	7	× ×.	S
S.P.	1.	5. D	
N.C.	S.Y.		·

the com

14.0

1+

Madasm.

I.V.C.B. Madash

Created by T. Madas

Question 3 (**+)

The velocity of a particle $v \text{ ms}^{-1}$ at time t s satisfies the differential equation

$$t\frac{dv}{dt} = v + t, \ t > 0.$$

Given that when t = 2, v = 8, show that when t = 8

$$v = 16(2 + \ln 2)$$
.

-90	
$ \begin{array}{l} \left(\begin{array}{c} \frac{dy}{dt} = y + \frac{1}{2} \\ \frac{dy}{dt} = y + \frac{1}{2} \\ \frac{dy}{dt} = \frac{y}{2} + 1 \\ \frac{dy}{dt} = \frac{1}{2} \\ \frac{dy}{dt} - \frac{1}{2} \\ \frac{dy}{dt} = \frac{1}$	Note to 2, in the formula to the fo
$\Rightarrow \frac{\partial}{\partial \xi} \left(\sqrt{\kappa \frac{1}{\xi}} \right) = -1 \times \frac{1}{\xi}$	$\Rightarrow V = 8\ln8 + (4 - \ln2) \times 8$ $\Rightarrow V = 8\ln8 + 32 - 8\ln2$
$\Rightarrow = \frac{1}{2} = $	$\Rightarrow V = 8x 33m_2 + 32 - 8bm_2$ $\Rightarrow V = 241m_2 + 32 - 8bm_2$
⇒ 🗸 = thit + At	\Rightarrow V= 32 + 16/m2 \Rightarrow V = 16(2+1m2)

proof

proof

Question 4 (**+)

 $x\frac{dy}{dx} + 4y = 8x^4$, subject to y = 1 at x = 1.

Show that the solution of the above differential equation is

 $y = x^4$.

 $\begin{array}{c} 2\cdot\frac{dy}{dx} + 4y = 8x^{4} \\ \Rightarrow \frac{dy}{dx} + \frac{dy}{dx} = 6x^{4} \\ \text{I.f.} = e^{-\frac{1}{2}\frac{dy}{dx}} = e^{\frac{1}{2}\frac{dy}{dx}} = e^{\frac{1}{2}\frac{dy}{dx}} \\ \Rightarrow \frac{dy}{dx}(yx^{4}) = 8x^{2}x^{4} \\ \Rightarrow yx^{4} = \int 8x^{7}dx \\ \Rightarrow yx^{4} = x^{4} + C \\ \Rightarrow y = \frac{1}{2}y = x^{2} + \frac{1}{2x^{4}} \end{array}$

Question 5 (***)

 $\frac{dy}{dx}\sin x = \sin x \sin 2x + y \cos x \,.$

Given that $y = \frac{3}{2}$ at $x = \frac{\pi}{6}$, find the exact value of y at $x = \frac{\pi}{4}$.

nadasm

an and a survey a survey of the and a survey of the and a survey of the and th	⇒ y=2sip+ Conz
=) dy = SIN22 + ycota	whu a=宏 y= 흪
$\Rightarrow \frac{dy}{dx} - y_{(dx)} = s_{(12x)}$	$\frac{3}{2} = 2x \frac{1}{4} + Cx \frac{1}{2}$
J-Words -Insins	3 = 1 + C
Simz - Simz	C= 2
$\Rightarrow \frac{d}{dt}\left(\frac{y}{dita}\right) = \frac{s_{M2}}{s_{M2}}$	⇒ g = 23m32 + 25142
= u = J sm2 dz	∴ William 2 = III
$\Rightarrow \frac{1}{200} = \int \frac{2005usl}{2005} dt$	y=1+12
$\rightarrow \frac{4}{SM_{2x}} = \int 2005x dx$	
$\Rightarrow \frac{g}{SM\lambda} = 2SM\lambda + C$	

ths.com

 $1+\sqrt{2}$

Question 6 (***)

I.C.B.

202

 $x\frac{dy}{dx} + 2y = 9x(x^3 + 1)^{\frac{1}{2}}$, with $y = \frac{27}{2}$ at x = 2.

 $y = \frac{2}{x^2} \left(x^3 + 1 \right)^{\frac{3}{2}}.$

Show that the solution of the above differential equation is

50,

proof

1.4

201

$ \begin{array}{c} \mathcal{Q}_{-} \frac{d u}{d \lambda} + 2 u = 9 \chi \left(\chi^{2} + 1 \right)^{\frac{1}{2}} \\ \Longrightarrow \frac{d u}{d \lambda} + \frac{2}{\lambda \cdot u} = q \left(\chi^{2} + 1 \right)^{\frac{1}{2}} \\ \hline \left\{ \left[F, z \right]_{X-\lambda \cdot u}^{\frac{1}{2}} - \frac{2 \lambda u}{z} \\ = e^{-z} = e^{-z} = u^{\frac{1}{2}} \\ \end{array} \right\} $	$= \int \left[\frac{dJ}{dz} = \frac{2(2^{\frac{1}{2}}+1)^{\frac{1}{2}}}{2z^{\frac{1}{2}}} + \frac{c}{3z^{\frac{1}{2}}} \right]$ $\bigoplus \text{With } z = z dy = \frac{21}{2}$ $\frac{2T}{2} = \frac{2T}{2} + \frac{c}{4}$ c = c
$\Rightarrow \frac{d}{du}(y_{3}z) = \Im^{2}(2^{3}+i)^{\frac{1}{2}}$ $\Rightarrow \Im^{2}z^{2} = \Im^{2}(2^{3}+i)^{\frac{1}{2}}du$ $\Rightarrow \Im^{2}z^{2} = \chi(2^{3}+i)^{\frac{1}{2}}+c$	$4 \text{ we } \frac{2(\alpha^3 + 1)^{\frac{3}{2}}}{\alpha^2}$

Question 7 (***)

A trigonometric curve C satisfies the differential equation

 $\frac{dy}{dx}\cos x + y\sin x = \cos^3 x \,.$

- a) Find a general solution of the above differential equation.
- b) Given further that the curve passes through the Cartesian origin O, sketch the graph of C for $0 \le x \le 2\pi$.

The sketch must show clearly the coordinates of the points where the graph of C meets the x axis.

Question 8 (***)

20 grams of salt are dissolved into a beaker containing 1 litre of a certain chemical.

The mass of salt, M grams, which remains undissolved t seconds later, is modelled by the differential equation

$$\frac{dM}{dt} + \frac{2M}{20-t} + 1 = 0, \ t \ge 0.$$

Show clearly that

 $M = \frac{1}{10} (10 - t) (20 - t).$

proof

Question 9 (***+)

Y.C.B. Ma

I.C.B.

Given that z = f(x) and y = g(x) satisfy the following differential equations

$$\frac{dz}{dx} + 2z = e^{-2x}$$
 and $\frac{dy}{dx} + 2y = z$,

- **a**) Find z in the form z = f(x)
- **b)** Express y in the form y = g(x), given further that at x = 0, y = 1, $\frac{dy}{dx} = 0$

nn

(a) $\frac{dz}{dx} + 2z = e^{-2z}$	(b) $\frac{dy}{dx} + \frac{dy}{dx} = \frac{2}{2}$
$ = \frac{d}{dt} \left(\frac{2e^{2t}}{2e^{2t}} \right) = \frac{-2x}{e} \frac{2x}{e} $	$O(1) = e^{2x} + Breach$
$\Rightarrow \frac{d}{dt}(2e^{2t}) = 1$	$\Rightarrow \frac{d}{dx}(ye^{2t}) = (ye^{-2t} + Ce^{-2t})e^{2t}$
$=) ze^{2\lambda} = \int [d\lambda]$	$\Rightarrow \frac{d}{dx}(ye^{2x}) = 2 + C$
$\Rightarrow e = 2 + C$ $\Rightarrow Z = 2e^{-2\lambda} + Ce^{-2\lambda}$	- ye' = JatCal
	$\Rightarrow \qquad ye = \frac{1}{2}x^2 + (x+1)$ $\Rightarrow \qquad y = \left(\frac{1}{2}x^2 + (x+1)e^{-2x}\right)$
	• 200 yel
· · · · · · · · · · · ·	→ g=(±x+++++)e
	From THE 200 DODE 0+2=2.
	HAVE FROM 14 ODE:
	$\therefore y = \left(\frac{1}{2}x^2 + 2x + 1\right)e^{-2x}$

arns

I.C.B.

COM

Ż

6

Question 10 (***+)

$$x\frac{dy}{dx} = \sqrt{y^2 + 1}$$
, $x > 0$, with $y = 0$ at $x = 2$.

Show that the solution of the above differential equation is

 $y = \frac{x}{4} - \frac{1}{x}.$

1000 C 100 C	
$\frac{x dy}{dt} = \sqrt{y^2 + 1}$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ $
\Rightarrow atomby = $\ln x + C$	$= y + 1 = \frac{1}{2}x - \frac{1}{2}y + y^2$ $= \frac{1}{2}x^2 - 1$
$ \implies \ln(9+\sqrt{9^2+1^2}) = \ln \lambda + \ln \lambda $ $ \implies \ln(9+\sqrt{9^2+1^2}) = \ln \lambda_2 $	$ = y = \frac{1}{4^2 - \frac{1}{2}} $
$\Rightarrow \boxed{9 + \sqrt{9^2 + 1^2} = Ax}$	ts Expuiled
1= 24 (<u>A=1</u>))

proof

Question 11 (***

$$(x+1)\frac{dy}{dx} = y + x + x^2, \ x > -1.$$

Given that y = 2 at x = 1, solve the above differential equation to show that

 $y = 4(3 - \ln 2)$ at x = 3.

(a+) da = y+a+22	$\left\langle \Rightarrow \frac{x_{H}}{y_{H}} = \int \frac{x_{H}}{x_{H}} dt \right\rangle$
$\Rightarrow \frac{dy}{dt} \div \left(\frac{1}{x_{t+1}}\right)y = \frac{x_{t+2}}{x_{t+1}}$	$ \Rightarrow \underbrace{\frac{4}{3t+1}}_{x+1} = \underbrace{\int 1 - \frac{1}{3t+1}}_{x+1} = \frac{1}{3t} + \underbrace{\frac{1}{3t}}_{x+1} = \frac{1}{3t} + \underbrace{\frac{1}{3t}}_{x+1} = \underbrace{\frac{1}{3t$
$\Rightarrow \frac{d}{dh} \left[\frac{u}{x_{ti}} \right] = \frac{3 + 3^2}{(3 + 1)^2}$	y = 1 $l = 1 - \ln 2 = 4$ $4 = \ln 2$ $\frac{34}{2} = 2 - \ln(2\pi i) + \ln 2$
$\Rightarrow \frac{d}{dt} \left(\frac{d}{dt_{+1}} \right) \stackrel{!}{=} \frac{d}{dt_{+1}} \left(\frac{d}{dt_{+1}} \right)^2$	$\begin{array}{c} \left(\frac{1}{241} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \right) \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
$\Rightarrow \frac{d}{dt}\left(\frac{d}{dt}\right) = \frac{d}{dt}$	$\frac{ij}{4} = 3 - \ln 2$ $y = 4(3 - \ln 2)$ As elements

proof

Question 12 (***+)

 $\frac{dy}{dx} + ky = \cos 3x$, k is a non zero constant.

By finding a complimentary function and a particular integral, or otherwise, find the general of the above differential equation.

	11.12	50	
	-r	k 2 3 1 2	1 4
40 0	$y = Ae^{-x} + -g$	$\frac{1}{9+k^2}\cos 3x + \frac{1}{9+k^2}\sin 3x$	
			2.0
n in Us.	. Ve	2	6
42. 42. 40		ou + ky = cosa • turunky-found	TP.
45h 400 19	0.	A+K =0 CORMANNEY FACTION A=-K : y= A=K	
Con Con	m.	PARTICULAR NEWSON	19
The sha	1311	y = +holita + 4 consta y = - Han fa + 3 consta	
-U.S. 411	· (Do	58 100 THE O.D.E (39+48)(003+4(10-33)) 2	
···· · · · · · · · · · · · · · · · · ·	100	$\frac{3\varphi+k\varphi=1}{k\varphi-k\varphi=0} \xrightarrow{\varphi} \Rightarrow \underbrace{P=\frac{1}{k\varphi}}_{P=\frac{1}{k\varphi}}$	
in the second	CD.	$\Rightarrow 3\varphi + k(\frac{1}{2}k\varphi) = 1$ $\Rightarrow 3\varphi + \frac{1}{2}k\varphi = 1$	2
	~	$\Rightarrow \varphi(3+\frac{1}{2^{l-2}}) = 1$ $\Rightarrow \varphi = \frac{1}{2^{l+\frac{1}{2^{l-2}}}}$	7
		$\Rightarrow \boxed{\mathbb{Q}_{q} = \frac{3}{q+k^{2}}} \text{a} \boxed{\mathbb{P} = \frac{k}{q+k^{2}}}$	
	A	". Griller Bannal y= 4e"+ k classe + 3 and	
AL CA	1.		
CO GA	1		10
- C A - 7 A	11.12	50	
	510		
7_0 , r_h $1/_0$. 1	5
90/2 · 10/2 ·	1. 1	7- V	2.
4do. 190/2 4	20.	an	40
The de		·42	- 95
12xx 00-	1200	100	
×10. ×21	Ch.	121.	
NO CO		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·		m.
0n ~0n ~0n		m ~0	0.
	2	Y 2	10
		/ Y.	
the Part	1.1.		
	"In	1 1 1 1 X	
6.3 3.5	· · · (.) >	512	
		· · · · · · · · · · · · · · · · · · ·	A
		A 6	\mathcal{D}_{α}
$D_{2} = \langle D_{2} \rangle$	\sim \sim	10.	da
Create	ed by T. Madas	201	-49,
· 420.	100	420	10
	12.		1

Question 13 (***+)

 $\left(2x-4y^2\right)\frac{dy}{dx}+y=0.$

By reversing the role of x and y in the above differential equation, or otherwise, find its general solution.

$\boxed{\qquad}, xy^2 = y^4 + C$	2
USING THE-SUBGESTION GUINN	
\rightarrow $(z_1 - (y_1^2) \frac{dy_1}{dy_1} + y_1 = 0$	
LET 2 HOY & y HOX	
$\Rightarrow (2Y - 4X^2) \frac{dX}{dY} + X = 0$	
$\Rightarrow \frac{dx}{dy} = -\frac{x}{2y-4x^2}$	
$\rightarrow dX = \frac{4x^2 - 2Y}{\times}$	
$\Rightarrow \frac{dY}{dx} = \frac{4\chi - \frac{2Y}{x}}{x}$	
$\Rightarrow \frac{dY}{dX} + \frac{2}{2}Y = 4X$	
INTEGRATING FACTOR	
$e^{\int \frac{2}{X} dX} = e^{2hX} = e^{\ln X^2} = \chi^2$	
MUCTIPLYING THEOUGH BY THE INTEGRATING FACTOR TO MAKE THE LEFT SIDE EXACT	
$\Rightarrow \frac{d}{dx}(YX^2) = 4X^3$	
$\Rightarrow \forall x^2 = \int 4x^3 dx$	
\Rightarrow $YX^2 = X^4 + C$	
$=) 2y^2 = y^4 + C$	

24

Question 14 (****)

alasmaths.com

I.V.C.B. Madasn

Smaths.com

I.Y.G.B.

Ò

The curve with equation y = f(x) satisfies

$$x\frac{dy}{dx} + (1-2x)y = 4x, x > 0, f(1) = 3(e^2 - 1).$$

nadasn.

COM

I.Y.C.B.

Determine an equation for y = f(x).

madasmaths.com

+ (1-2x)y = 42 x=1 $y=3(e^2_{-1})$ $\begin{array}{c|c} 4\lambda & 4\\ \hline -\frac{1}{2}e^{i\lambda} & e^{-i\lambda} \end{array}$ I.F.C.B. $\frac{3}{2}e^{2\lambda}-\frac{1}{x}-2$

Madasmaths.com

011

·C.B.

3

The Com

Maths.Col

4.60

1.4

Madasma

Question 15 (****)

A curve C, with equation y = f(x), passes through the points with coordinates (1,1) and (2,k), where k is a constant.

Given further that the equation of C satisfies the differential equation

determine the exact value of k.

 $+ \frac{A}{2^3} e^{2}$

		= (=	- 1	+ .	9 1				
				te .	1					
		-, ,		61-1		e				
NAUC	t Let	a=2.								
		1			-					
	9=	32 -	72	+ -03	- e^					
	K =	1 -	1	+ 01	xe ²					
	1-	1	1- 1	e-1						
		4	8	8						
	Ł∓	8+	8							
	Ł =	早(年	+1)							
	1 -	L(e	+1)							
		8.	e /	/					~	
	ka	86	= //	/						
	-		11							
						1		 	-	
	÷					-ji	 	 		-1-

e +1

8*e*

k =

Question 17 (****)

A curve C, with equation y = f(x), meets the y axis the point with coordinates (0,1).

It is further given that the equation of C satisfies the differential equation

dy dx

a) Determine an equation of C.

b) Sketch the graph of *C*.

The graph must include in exact simplified form the coordinates of the stationary point of the curve and the equation of its asymptote.

(a) WITH THE OLLE IN THE " $\Rightarrow \frac{1}{200} = 2 - 24$ $\Rightarrow \frac{1}{200} = 2 + 24 = 24$ $\Rightarrow \frac{1}{200} = 2 + 24 = 24$ $\Rightarrow \frac{1}{200} = 2 + 24$ $\Rightarrow \frac{1}{200} = 2 + 24$	CALL FORM AND YEST FOR AN INTRAMIND FORME ELLEN Jaids - 201	b) EXECT SOME INFORMATION $ \begin{array}{c} y = \frac{1}{2}x - \frac{1}{2}x + \frac{1}{2}e^{2x} \\ \frac{1}{2}y = \frac{1}{2}x - \frac{1}{2}e^{2x} \\ 0 = \frac{1}{2}x - \frac{1}{2}e^{2x} \\ 0 = \frac{1}{2}x - \frac{1}{2}e^{2x} \end{array} $	7237 9= ±(2n5)- ± + ∓ 9- ±h2-±+± 3= ±25
NERTON & NOT IN 7 ⇒ ye ² = ±2e ² - ⇒ ye ² = ±2e ² - ⇒ y = ±2-±	$\begin{array}{c} f \mathcal{E}HC \\ \int \frac{1}{2} \mathcal{E}^{2k} dk \\ f \in \mathcal{E}^{2k} \end{array} \qquad $	$\int_{0}^{\infty} \int_{0}^{\infty} \frac{\nabla f_{1}}{\partial t} = \int_{0}^{\infty} \frac{\nabla f_{2}}{\partial t} + \frac{\nabla f_{2}}{\partial t} = \int_{0}^{\infty} \frac{\nabla f_{2}}{\partial t} + \nabla f_$: <u>stritones at</u> (<u>fbs</u> , fbs) v fe ⁻¹ / ₂ v fe ²²
1	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	y- frog 9- frog 9- frot	8-22-24 (A) (5-9)

 $y = \frac{1}{2}$

Question 18 (****)

I.C.B.

I.C.P.

$$\frac{dy}{dx} + \frac{y}{x} = \frac{5}{(x^2 + 2)(4x^2 + 3)}, \ x > 0.$$

Given that $y = \frac{1}{2} \ln \frac{7}{6}$ at x = 1, show that the solution of the above differential equation can be written as

 $y = \frac{1}{2x} \ln\left(\frac{4x^2 + 3}{2x^2 + 4}\right).$

WRITE THE O.D.E IN THE ASDAL ORDER
$\frac{2}{(\xi^{\frac{1}{2}}\chi^{\frac{1}{2}})(\xi^{\frac{1}{2}}\chi^{\frac{1}{2}})} = \frac{2}{\xi} + \frac{\chi h}{\chi b} \longleftarrow $
INTEGRATING ARCTOR CAN BE FOUND
esta la = a
HAVE WE DETAIN
$\implies \frac{d}{dt}(yx) = \frac{5x}{(x^2t_2)(dxt_3)}$
$= \underbrace{y_2}_{x} = \int \frac{S_x}{(x_{t2}^2)(4x_{t+3}^2)} dx$
PARTAL FRACTIONS ARE NEEDED
$\frac{5\alpha}{(\lambda^2 t_2)(k_1^2 + 3)} \equiv \frac{4\alpha + \beta}{\lambda^2 + 2} + \frac{C_x + D}{4\lambda^2 + 3}$
$5_{2} \equiv (4 + b)(1 + 3) + (2 + 2)(C_{x} + b)$
$5\alpha \equiv \frac{4A\alpha^3 + 48\alpha^2 + 3A\alpha + 38}{(\alpha^3 + 2\alpha^2 + 2C\alpha + 2D)}$
$S_{\underline{\lambda}} \equiv ((\underline{A} + C)\underline{x}^{\underline{\lambda}} + (\underline{A} \underline{B} + \underline{D})\underline{x}^{\underline{\lambda}} + (\underline{3} \underline{A} + 2\underline{C})\underline{x} + (\underline{3} \underline{B} + 2\underline{D})\underline{x}^{\underline{\lambda}} + (\underline{A} \underline{B} + \underline{D})\underline{x}^{\underline{\lambda}} + (\underline{A} \underline{A} \underline{A} + \underline{D})\underline{x}^{\underline{\lambda}} + (\underline{A} \underline{A} + \underline{D})\underline{A} + (\underline{A} + \underline{A} + \underline{A} + \underline{A} + \underline{A}) + (\underline{A} + \underline{A} + \underline{A} + \underline{A} + \underline{A} + \underline{A}) + (\underline{A} + \underline{A} + $
$\begin{array}{c} 4A+C=0 \\ 3A+2C=0 \\ 3A+2C=5 \\ \end{array} \xrightarrow{A=cl} \\ 3A+2C=5 \\ \end{array} \xrightarrow{A=cl} \\ C=4 \\ \end{array}$
4B+D = O = BB+2D = O = BB+2D = O = O = O = O = O = O = O = O = O =

I.C.B.

Mada

proof

1+

Created by T. Madas

10

Question 19 (****)

ŀ.G.B.

I.C.B.

 $x\frac{dy}{dx} + 3y = xe^{-x^2}, \ x > 0.$

Show clearly that the general solution of the above differential equation can be written in the form

 $2yx^{3} + (x^{2} + 1)e^{-x^{2}} = \text{constant}$.

ŀG.p.

n

 $\begin{array}{c} x \frac{1}{2k} + 2y_1 = x x^{2k} \\ \Rightarrow & y_2 x^k = \int \frac{1}{2} x^k x^k & y_1 \\ \Rightarrow & y_2 x^k = \int \frac{1}{2} x^k x^{2k} \\ \Rightarrow & y_2 x^k = \int \frac{1}{2} x^k x^k & y_2 \\ \Rightarrow & y_3 x^k = \int \frac{1}{2} x^k x^k & y_3 \\ \Rightarrow & y_3 x^k = \int \frac{1}{2} x^k x^k & y_3 \\ & y_3 x^k & y_3 x^k & y_3$

proof

1+

202.sm

21/18

F.C.B.

nn,

madasn

Question 20 (****)

The general point P lies on the curve with equation y = f(x).

The gradient of the curve at P is 2 more than the gradient of the straight line segment OP.

 $y = 2x(1 + \ln x)$

Given further that the curve passes through Q(1,2), express y in terms of x.

Question 21 (****+)

A curve with equation y = f(x) passes through the origin and satisfies the differential equation

 $2y(1+x^{2})\frac{dy}{dx} + xy^{2} = (1+x^{2})^{\frac{3}{2}}.$

By finding a suitable integrating factor, or otherwise, show clearly that

(****+) **Question 22**

I.G.B.

I.C.P.

The curve with equation y = f(x) passes through the origin, and satisfies the relationship

 $\frac{d}{dx}\left[y\left(x^2+1\right)\right] = x^5 + 2x^3 + x + 3xy.$

 $y = \frac{1}{3} \left(x^2 + 1 \right)^2 - \frac{1}{3} \left(x^2 + 1 \right)^2$

 $\Rightarrow 0 = \frac{1}{3} +$ $\Rightarrow A = -\frac{1}{3}$

 $\Rightarrow y = \frac{1}{3}(x^{2}+1)^{2} - \frac{1}{3}(x^{2}+1)^{\frac{1}{2}}$

I.F.G.B.

Determine a simplified expression for the equation of the curve.

Created by T. Madas

I.C.

Question 23 (****+)

A curve with equation y = f(x) passes through the point with coordinates (0,1) and satisfies the differential equation

Question 24 (****+)

F.G.B.

I.C.B.

It is given that a curve with equation y = f(x) passes through the point $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ and satisfies the differential equation

 $\left(\frac{dy}{dx} - \sqrt{\tan x}\right)\sin 2x = y \,.$

Find an equation for the curve in the form y = f(x).

 $y = x\sqrt{\tan x}$

Y.C.P.

1+

Question 25

è.

alasmaths.com

adasmans.com

l.Y.C.p

G

The variables x and y satisfy

$$(2y-x)\frac{dy}{dx} = y, \quad y > 0, \quad x > 0$$

If y = 1 at x = 2, show that x = y + 1

asuidus Col

4.60

6

11303ST131

nadasmaths.com

naths.com

proof

Created by T. Madas

COM

I.F.G.B.

11₃₀₃₅

Adasmaths.com

Question 26

F.C.B.

i C.B.

The variables x and y satisfy

$$\frac{dy}{dx} = \frac{y(y+1)}{y-x-xy-1}, \quad y > 0.$$

If y = 1 at $x = 1 - \ln 4$, show that $y + \ln(y+1) = 0$ at x = 3.

$\frac{dy}{dx} = \frac{g(g_{H})}{g_{-1} - xg_{-1}} = \frac{1}{2}$	<u>9(3+1)</u> 3-1) - 2 (3+1)
TO SHORE DERETING TO SHORE DERETURAT	4 WINGOWER VARABLE
$\frac{dx}{dy} = \frac{(y-1) - x(y+1)}{y(y+1)}$	
SPUTTING R.H.S.	an and a second to be a second as a second as
e day - y-1 - x C	1201
$y \frac{dx}{dy} = \frac{y-i}{y+i} - x$	
$y \frac{dx}{dy} + x = \frac{y-1}{y+1}$	
1000 THE LUYS IS BOAT IN Y	(or withoranni fakitor)
· dy (24) = dx . y + 2.	• y da + 2 = 4-1
5 リ岩+1	$\frac{d_2}{dr_1} + \frac{x}{g} = \frac{g}{g/g_{+1}}$
: d (24) = 9-1 11+1	و الخطير و لايا ديا
a a constant from a from an	$\left(\frac{\partial q}{\partial t}(\partial \hat{n})\right) = \frac{\partial (n + 1)}{\partial t(n + 1)} (n + 1)$
	of (24) = 4-1 to opposite
NOTESRATING W. R. T. Y	

12.	٩
$\Rightarrow 2y = \int 1 - \frac{2}{3+1} dy$	
\Rightarrow $zy = y - 2h(y+i) + A = y>0$	
APPLY BOUNDARY CANDITON GARA	
a=1- hut, y=1	
$ \Rightarrow (1 - h_{4} +)_{\times} i = 1 - 2H_{2} + A \Rightarrow 1 - h_{4} + = 1 - h_{4} + A \Rightarrow A = 0 $	
$\therefore \underline{ag} \sim \underline{g} - 2h(\underline{g}_{+})$	
WHE 203	
-> 3y = y - 2h(y+1)	
$\Rightarrow 2y = -2h(y + i)$	
\rightarrow $y = -h(y_{H})$	
\Rightarrow $9 + \ln(9+1) = 0$	
این در این در این سال و بر به ویه و این این در از ۲۰۱۰ این این این این این سال می و در میشند. این این بر در این این این این این و بر این	
المتعلم المتعادين والمراجع والمتعادين والمتعادين والمتعادين والمتعادين	
n an an an an the an	
د د تطویر همای در از شرو دارند. است شور دیشت به از این و ایرو از در والی با در از مان در در در از در در این از به همای مانوان از در این از در این از در این این این این این این این در این این این این از در این این این اور ا	
	÷. *
الديد المراجعة الموجيعة والمراجعة عند الرجم عنه في المحمد من منهم من المحمد المحمد المحمد المحمد الم	
والمتحجم والمراجمين المشاه والمراجد والمترادي	

nadasmaths.

I.C.P.

nn

2028m

Madasn.

Con

ns.com

proof

Question 27 (*****)

Ĉ.

The curve with equation y = f(x) has the line y = 1 as an asymptote and satisfies the differential equation

$$x^3 \frac{dy}{dx} - x = xy + 1, \ x \neq 0$$

Solve the above differential equation, giving the solution in the form y = f(x).

Question 28 (*****)

I.C.p

It is given that a curve with equation x = f(y) passes through the point $(0, \frac{1}{2})$ and satisfies the differential equation

$$(2y+3x)\frac{dy}{dx} = y.$$

 $x = 4y^3 - y$

i C.B.

M2(12)

Find an equation for the curve in the form x = f(y)

HTHO A METHOD B 50:660 BY A SI REARDANCE 4 9= 2 V(2) 4= V(2)+ 2 4 dit : 24+32 ==>(2y+3x) dy = ⇒ 24+32 = y at $=\frac{3\sqrt{2}}{28\sqrt{2}+38}$ 고콵 = y== - 3x = 2y $\frac{4^3}{3+2} = \frac{1}{4}$ $\frac{1}{2} \frac{du}{d\Omega} = \frac{v}{2v+3} - v$ $\Rightarrow \frac{dx}{dy} - \frac{3}{y}a$ 4y² = :9+2 $\frac{d\omega}{dx} = \frac{\sqrt{-2x^2 - 3t}}{2x + 3} =$ $\frac{-2^{N^2}-2N}{2^{N+3}} = \frac{-2^{N}(n+1)}{2^{N+3}}$ 493- y As BHERE SEPARATINO UARIABLES j-≩d e 4 44 = 1/42 - = da 2v+3 du $\int \frac{3}{v} - \frac{v}{v+1} dv = \int -\frac{2}{3t} dx$ (PARTIAL REACTION)S BY INSPECTION) $\frac{d}{dy}\left(x \cdot \frac{1}{y^s}\right) = 2 \cdot \frac{1}{y^s}$ 3|w|v| - |v|v+1| = -2|w|x| + |wAdy $\left| \eta \left| \frac{\gamma_{2}}{\gamma_{+1}} \right| = \left| \eta \left| \frac{A}{\beta_{2}} \right| \right|$ $\frac{V^3}{V^{+1}} = \frac{A}{\chi^2}$ тоц" оf 446. BV al³ A 22 = 0 = A = A = 4 a = 4y3-y

Question 29 (*****)

2

I.G.B.

I.F.G.B.

か

Use suitable manipulations to solve this **exact** differential equation.

21/2

$$4x\frac{dy}{dx} + \sin 2y = 4\cos^2 y, \quad y\left(\frac{1}{4}\right) = 0$$

01

Given the answer in the form y = f(x).

20

I.V.C.B. Madası

23

1.10

è