
2.1 Common Signals

Continuous-Time Unit Step Signals

Three slightly different definitions of the unit step signal can be found in

engineeringliterature. Two commonlyuseddefinitionsare

�
Note that in the secondcasethe valueof � is not defined.

The third definition, alsoknown asHeaviside’sunit stepsignal, is given by

�
Thefirst two definitionsaresimplerandeasierto work with thanthethird definition.

It will be shownin Chapter3 on Fourier analysisthat the Heavisidedefinition of

the unit step signal will be needed.
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Havingin mind thattheprimaryconcernsof thisbookarelineardynamicsystems

and for the reasonof simplicity, we will usethe definition of the unit stepsignal

asgiven by , exceptwhereexplicitly indicatedthat the presentationholds for

the Heavisideunit stepsignal � . In the entireChapter3 on Fourieranalysis,

the signal � will be usedexclusively.

The graphicalpresentationof the unit stepsignal is given in Figure2.1.
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Figure 2.1: Continuous-time unit step signal
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Continuous-Time Signum Signal—Sign Signal

The Heavisideunit stepsignalcanbe expressedin termsof sign function. The

sign function, well known in mathematics,is definedby

The sign function is also known as the signumfunction. The formula of interest

thatwill beusedin thenextchapteron theFouriertransform,relatesthesignsignal

and the Heavisideunit step signal

�
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Discrete-Time Unit Step Signal

The discrete-timeunit stepsignal can be obtainedby sampling with the

samplingperiod . The discrete unit step signal is definedby (seeFigure2.2)

where standsfor discretetime. Since is a fixed positive constant,we will

usethroughoutthis book only to indicatediscrete-timeinstant , where is

any integer. That is, in our notation,unlessexplicitly indicatedotherwise,for any

discretesignal the following holds: .
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Figure 2.2: Discrete-time unit step signal
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Continuous-Time Ramp Signals

The unit ramp signal is definedin the continuous-timedomainby

The unit rampsignalhasthe slopeequalto one for . We canalsointroduce

the ramp signal that hasan arbitraryslope for as � .

It is easyto observethat in continuoustime we havethe following relationships

betweenthe unit step and unit ramp signals

�
���

Note that the ramp signal is not differentiableat .
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Discrete-Time Ramp Signals

Samplingthe continuous-timeunit ramp signal we get its discretecoun-

terpart as

The correspondinggraphicalrepresentationsaregiven in Figure2.3.
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Figure 2.3: Continuous-time (a) and discrete-time (b) unit ramp signals
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Continuous-Time Parabolic Signal

Similarly, we can introducethe parabolic signal as

	 

and in general,a family of signalsof the form

� �
Thesesignalsappearin somesignalprocessingandcontrol systemapplications.

Discrete-Time Parabolic Signal

The correspondingdiscrete-timeequivalentscanalsobe defined asfollows

	 

and

� �

The slides contain the copyrighted material from Linear Dynamic Systems and Signals, Prentice Hall, 2003. Prepared by Professor Zoran Gajic. 2–7



Rectangular Pulse

The rectangular pulse is mathematicallydefinedby (seeFigure2.4a)

�
p (t)τ

(a)
0 tτ/2−τ/2

1
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Figure 2.4: Rectangular pulses: continuous-time (a) and discrete-time (b)

Another definition of the (Heaviside)rectangularpulse
�
Note that 
� 
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Train of Rectangular Pulses

It is definedby �
����� � � �

In Problem2.43 this train of recangularpulsesis plotted for positive valuesof

using MATLAB (Figure 2.20 of the SolutionsManual)
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FIGURE 2.20 (from Solutions Manual)
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Triangular Pulse

The triangular pulse is defined by

�
The graphicalpresentationof this signal is given in Figure 2.5a.
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Figure 2.5: Triangular pulses: continuous-time (a) and discrete-time (b)
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Discrete-Time Rectangular and Triangular Pulses

Discreteversionsof the rectangularandtriangularpulsescanbeeasilyobtained

by sampling.Two examplesof thesesignalsthat areself explanatoryaredrawnin

Figures2.4band2.5b. In Figures2.4band2.5b, is definedby ,

where standsfor theintegerpartoperationand representsthesamplingperiod.

For example,the discrete-timerectangularpulseis analyticallydefinedasfollows

�
Sinusoidal Signals

Sine and cosine signalsare commonlyusedin engineering.Thesesignalsare

very well known to all collegestudentsfrom basichigh schoolcourses.Note that
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Continuous-Time Sinc Signal

The sinc signal playsa very importantrole in Fourieranalysis,communication

systems,andsignal processing.It is definedby (seeFigure 2.6)

By thewell knowntrigonometriclimit , it follows that .

For , the zerosof the sinc signal are at . When

the sinc signal tendsto zero. Also, .

t-4 -3 -2 -1 0 1 2 3 4

1
tπ

t)π(sin(t)=sinc

Figure 2.6: Continuous-time sinc signal
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Discrete-Time Sinc Signal

The discrete-timesinc signalcanbe obtainedby discretizingthe corresponding

continuous-timesinc signal. The discrete-timesinc signal plot, obtainedby using

MATLAB, is presentedin Figure 2.7.
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Figure 2.7 Discrete-time sinc signal obtained by MATLAB

The formal definition of the discrete-timesinc signal is given by
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The Use of Basic Signals in Linear Systems

In the subsequentchapters,we will show that it is easyto find the responseof

a linear systemdue to basic input signalssuch as step and ramp signals. More

complexsignalscanoften be representedas linear combinationsof stepand ramp

signals. This signal representationin terms of basic signals togetherwith the

linearity (superposition)and time invarianceproperties(introducedin Chapter1)

will help to easily obtain the linear systemresponsedue to the input signalsthat

have complex waveform (shape).

The next exampledemonstrateshow to representa signal in termsof unit step

and ramp signals.
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Example 2.2: Considerthe signal given in Figure 2.8.
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Figure 2.8: A simple signal

It is easyto observethat the signal presentedby the solid lines in Figure 2.8 can

be representedin termsof unit stepandunit rampsignalsas follows

The elementarysignals and are representedin the same

figure usingdashedlines. Note that this signal representationis not unique,hence

other representationsare possible,for example
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2.1.1 Impulse Delta Signal

Theneedfor a newclassof signalswasfor thefirst time observedby theendof the

nineteenthcenturyby O. Heavisidewhile analyzingelectricalcircuits(seeProblems

2.18and2.19andformulas(11.20)and(11.30)in Chapter11 on electricalcircuits).

In the 1920sP. Dirac cameto the sameconclusionstudying someproblemsin

relativistic mechanics.The new classof functions—theso-calleddistributions or

singular functions that,togetherwith ordinaryfunctions,formsthesetof generalized

functions. The generalizedfunctions play a very important role in analysisof

linear dynamicsystems,and they areusedin almostall engineeringandscientific

disciplines.

The impulse delta function is extremely important for linear systemtheory.

Loosely speaking,this “strange” function has no time structure. It is equal to

zero everywhereelseexceptat zero, whereit is equalto .
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However,its integral is well behaved,and it is definedby�
� �

���
���

The impulsedeltasignalcanbe visualizedasa mathematicalartifice of the rectan-

gular pulse,representedin Figure 2.11a,in the limit when the width of the pulse

tendsto zero. In Figure2.11b,we give also the symbolicnotationfor .

δ(t)

−τ/2 τ/2

τ 0

0 0t t

(a) (b)

1/τ

Figure 2.11: Approximation of the impulse delta signal (a)

and symbolic representation for (b)
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Notice that theareaof therectangularpulseis alwaysequalto one. Theimpulse

delta signal is obtainedin the limit when , that is

 "!$#  
In the literature,the impulsedeltasignal is alsocalled the Dirac impulse function,

in honor of the greatphysicistand mathematicianP. Dirac.

Example 2.4: Notethat from thedefinitionof the impulsedeltasignalit follows

that %
&�'

(�)
&*'

In the first casethe impulsedeltasignal is locatedoutsideof the integrationlimits,

whereasin the secondcaseit is within the integrationlimits.
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The shifted impulsedelta signal is definedby

+ ++
,

- , +
.0/1
.321 +

This signal is representedin Figure 2.12.

δ (t-to)

t0 to

Figure 2.12: Shifted continuous-time impulse delta signal
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Mathematical Definition of the Impulse Delta Signal (Sifting Property)

The impulsedeltasignal (function) in mathematics is definedby the integral4
5 4 6 6

where is anordinaryfunction continuousat . In engineering,we prefer

to call this mathematicaldefinition the sifting property of theimpulsedeltafunction

sincethe effect of the impulsedelta function in this integral is to takeout (sift) a

particularvalue of the function at 6 .
Example 2.5: By using the sifting property of the impulse delta signal the

following integral can be calculated4
5 4

5*798 :
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What can be said about the integral;0<
=*> ?

with an ordinaryfunction beingcontinuousat ? ? Note that the impulse

deltafunction is locatedexactlyat the integralupperlimit. This integralsometimes

appearsin actualderivations(suchas in the well-known paperwritten by Athans

andTse in 1967). The following resultwasusedby AthansandTse to deriveone

of the classicresultsof linear control theory:; <
=*> ? ?

Hence ?
?�@

A
= A
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Derivatives of the Impulse Delta Signal

Anothervisualizationof the impulsedeltasignalcanbeobtainedby considering

the triangularpulsein the limit when , Figure 2.13a.
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Figure 2.13: Approximations of the impulse delta signal (a), its derivative (b), and

the symbolic representation of the derivative of the impulse delta signal (c)

It is obvious from this figure that

B"C$D E B
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This representationof the delta signal helps to visualize the derivative of the

impulse delta signal as the limit of the signal representedin Figure 2.13b when

, that is

FHGJI K F K F
The correspondingderivativeis symbolicallyrepresentedin Figure2.13cwith two

impulsesof width zero that tend to plus andminus infinity. The derivativeof the

unit impulsedeltasignal is alsoknown in the literatureas the unit-doublet. Note

that the unit-doublet evaluatedat
L

and M produceszero

valueslike the impulse delta signal.

Mathematically,we can definethe derivativeof the delta impulsesignal using

its integral representationas N

M N
I
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Similarly, we candefinethe secondandhigherorderderivativesof the impulse

delta signal by the following integralsO
P O

Q RQ
The secondderivativeof is called the unit-triplet. The th derivative

of is called the unit-n-tuplet. The unit triplet and unit-n-tupletsare also

graphicallyrepresentedusingexactlythesameplot astheonegivenin Figure2.13c

for the derivativeof the unit impulsedeltasignal. Note that all
Q Q

evaluatedat
S

and
P

producezerovalues.

Other Properties of the Delta Impulse Signal

Time scaling property:O
P O

R R R R
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Proof: Considerfirst thecasewhen andintroducethechangeof variables

T T
which impliesUWVYX

UWV[Z*X T \ V]X
\ V^Z*X

T T

For the samechangeof variablesimplies that the integral definedon the

left side has the form\ V^Z*X
\ V]X

T \ V]X
\ V^Z*X

T T

Putting togetherboth cases and , we obtain the statedtime scaling

result.
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Derivative property: Let
_a`cb

denote , thend
e d

_a`cb f _g`hb f
where

_a`cb f
standsfor evaluatedat

f
. In general,it can also

be shownthat for the th derivativewe haved
e d

_jikb f i _jikb f
Proof: Integratingby parts,we obtaind

e d
_a`cb f
d

e d
_g`cb f _a`cb f

Similarly, integrating –times by parts, we get the generalformula for the th

derivative.
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From the sifting propertythe impulsedelta signal we can get additional prop-

erties of the impulse delta signal as

l l l
This property can be proved as follows. Let be anotherordinary function

continuousat . Then,by using the sifting propertywe havem
n m

m
n mm

n m
Comparingthe first and the last integral in the above expression,the property

follows. Using theaboveproperty,a pretty interestingresultfollows: o
is any positive real number.
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From the sifting andderivativepropertiesthe following propertycanbe estab-

lished

prqtsku pvqtsku pvqtsxwzycu pvqtskw{y|u
It follows from this propertythat for the following is satisfied

, hence is an evenfunction.

Example 2.6: Using the propertiesof the impulsedeltasignalwe canevaluate

the following integralsas}
~ }

~��c� ~��� ~���
�

~ }
� paycu � � �W� y
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Applications of the Delta Impulse Function to SolvingDiffer ential Equations

Considerthe linear systemdefinedin Problem1.13� � ���9�
The forcing function (systeminput) can be representedby �*�9� so

that the right-handside of this differential equationis

�*�|� �*�9� �*�9� �*�9�
By the linearity principle the systemresponsewill havetwo componentscoming

from the forcing function: due to �*�9� and . The problemof finding

thesystemresponseto thedeltaimpulsefunctioninput is oneof thecentralproblems

of linear systemstheory. It will be consideredin Chapters3, 4, 6 and8.
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Discrete-Time Impulse Delta Signal

The samplingtechniquemakesno sensein an attemptto obtain the discrete-

time impulsedelta signal from the continuous-timeimpulsedelta signal sincethe

continuous-timeimpulse delta signal has no time structure. The discrete-time

impulsedeltasignal is definedas a very nice signal which is equalto at

and everywhereelse, that is

The discrete-timeimpulsedeltasignal is alsocalled the Kroneckerdelta function.

This form for the impulsedeltasignal in the discrete-timedomaincanbe justified

by using a discreteversionof the sifting property���z�
���^�*� � �

Sincethis infinite sum hasto produceonly � , the discrete-timeimpulsedelta

signalmustbe zeroeverywhereexceptat � whereit mustbe equalto one.
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The shiftedversionof the discrete-time impulse delta signal is definedby

� ��
Note that it follows from the definition of the discrete-timeimpulse delta signal

that the following property holds

� � �
Thediscrete-timeimpulsedeltasignalandits shiftedversionarepresentedin Figure

2.14.

[ k]

k
(a) (b)
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1 1

kok

δδ  k-k[ ]o

Figure 2.14: Discrete-time impulse delta signal (a) and its shifted version (b)
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Generalized Derivatives

The impulse delta function can be used to define the generalized derivative.

At the point of jump discontinuity ( � � �� ) the function has

no derivative in the ordinary sense.From the geometricpoint of view, since the

derivativestandsfor a slopeof thetangentat thegivenpoint, � , we cansaythatthe

derivativeat the point of jump discontinuityis equalto infinity. Sincethe shifted

impulsedeltasignal � is equalto infinity at � , we canusetheimpulse

delta function in order to definethe generalizedderivative.

Definition 2.1: Considera function that has jump discontinuitiesat the

points � � � . The generalizedderivativeof is definedby�
��� � �� �� � �c������ �¡�£¢c�¥¤¦¤¥¤¥�¡�j§

where standsfor the generalizedderivative,and is theordinary

derivativeat the points where it exists.
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Example 2.7: Find the generalizedderivativeof the signal in Figure2.15.
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δ(t (t+1) -2)

Figure 2.15: Continuous-time signal and its generalized derivative

In this examplewe havetwo pointsof jump discontinuitiesat and2 so that the

generalizedderivativeaccordingto Definition 2.1 is obtainedas¨ª©{«0¬®­¨¯¬ ° ± ©³²µ´·¶¹¸Yº»´ ©�²|´·¶½¼�º9¾�¿À«W¬[Á ¶H­zÁ ± ©�²0ÂÃ¸Yº³´ ©�²WÂk¼�º|¾�¿À«Ä¬Å´ ÂÆ­
ÁÈÇ ©z«W¬®­Ç ¬ ÉËÊ «3¬[Á ¶Ì­[´ Ê «Ä¬³´ ÂÆ­�Í ° ¿À«0¬{Á ¶Ì­�Á ¿À«Ä¬�´ ÂÆ­�´ ÂÎ ÉËÊ «Ä¬^Á ¶H­�´ Ê «W¬»´ ÂÆ­ Í
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2.2 Signal Operations

Signalsare mathematicalfunctions. All known mathematicaloperationswith

functionsareapplicableto signals.A very importantsignaloperationis convolution.

Definition 2.2: Continuous-Time Convolution

For continuous-timesignals and , the convolutionis definedbyÏ
Ð ÏÏ

Ð Ï
wherethe star denotesthe convolutionoperator. The equality of two formulasin

can be easily establishedby using a simple changeof variables. Note that in the

convolutionintegral is a parameterand is a dummyvariableof integration.
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This formula also statesthe commutativitypropertyof the convolution. Other

propertiesof the continuous-timeconvolutionfollows from the propertiesof inte-

grals. They will be studiedin detail in Chapter6. The useof convolutionin the

analysisof linear time invariantsystemswill be consideredin Chapters3–6, 8.

Definition 2.3: Discrete-Time Convolution

Given discrete-timesignals and , the discrete-timeconvolution is

definedby ÑÓÒ]Ô
ÑÕÒ�Ö*ÔÑÓÒ]Ô

ÑÓÒ^Ö*Ô

where is a parameterand is a dummy variableof summation.
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Signal Corr elation

In Chapters9 and10 we will introduceanoperationon signalsthat is important

for both digital signalprocessingandcommunicationsystemsknown asthe signal

correlation. Thesignalcorrelationhasthesimilar form to thesignalconvolutionin

bothcontinuous-anddiscrete-timedomains,but it hascompletelydifferentphysical

meaning.The signal correlationwill be usedto determinethe energy distribution

in the signal. Continuous-and discrete-timesignal correlationsare respectively

definedby

×cØ
Ù

Ú Ù
and

×cØ ÛÓÜ]Ù
ÛÓÜ Ú Ù
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Definition 2.4: Forward Differ ence(Discrete-Time “Derivative”)

The discrete time counter part of the derivative is the forward difference.

Consider a discrete-time signal defined in some discrete-time interval

Ý Þ . Then, the forward difference(discrete-time“derivative”) of

in the given interval is definedby

Thisdefinitioncanbejustifiedby usingthefollowing reasoning.Thecontinuous-

time derivativegeometricallyrepresentsthe slopeof the tangentat the givenpoint,

hencethe derivativecan be approximatedas

Taking , where is an integer,we have

The slides contain the copyrighted material from Linear Dynamic Systems and Signals, Prentice Hall, 2003. Prepared by Professor Zoran Gajic. 2–37



It can be seenthat the approximationof the continuous-timederivative is pro-

portional to the forward difference. In this textbook, we will call the forward

difference“the discrete-timederivative”.

Example 2.9: Using definitions of the discrete-timeunit stepandrampsignals

given in (2.5) and (2.7), it can be observedthat

that is, the discrete-timeunit step signal is the “discrete-timederivative” of the

discrete-timeunit ramp signal.

Example 2.10: It is easyto seethat
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The discrete-timeunit stepsignalcanbeexpressedin termsof the discrete-time

delta impulse signal as follows ß
àÓá^â�ã

where is a dummy variable of summation. Since is equal to one only

for andequalto zero for all other ’s we seethat if the infinite

summationdoesnot includethedeltaimpulseat zero,thusthesumis equalto zero.

If thesummationwill bealwaysequalto onesincethedeltaimpulseat zero

(the only signalequalsto one) is includedwithin the limits of summation.

Similarly, we can establishthe following relationshipß â]ä
àÓá^â*ã

Note that the upper limit is , not . Why? Iterate.
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2.3 Signal Classification

Like mathematicalfunctions signals can be classifiedas: periodic or aperiodic

(nonperiodic), even or odd, real or complex, continuous-timeor discrete-time,

deterministicor stochastic(random),sinusoidal,exponential,andso on.

Let us review here that a periodic signal satisfies

å å
for all andsome å , where å is the periodafter which the signal repeatsitself.

For example,for sine and cosinefunctions å .

Even signals aresymmetricalwith respectto the vertical axis, that is

For example, and are evensignals.

The slides contain the copyrighted material from Linear Dynamic Systems and Signals, Prentice Hall, 2003. Prepared by Professor Zoran Gajic. 2–40



Odd signals aresymmetricalwith respectto the origin, hencethey satisfy

For example, is an odd signal.

Continuous-Time Signal Energy

Recall from elementaryelectricalengineeringcoursesthat the electricalenergy

developedon a resistoris proportionaleither to the squareof the constantcurrent

throughthe resistoror to the squareof the constantvoltageon the resistor.Hence,

the squareof the signal servesas a measureof signal energy. In the casewhen

the signal changesin time, we haveto integrate(or sum in the caseof discrete-

time signals)over given time period of interest. For example,in the caseof a

time varying current , the energy developed(dissipatedasheat)on the resistor

during the time interval from æ to ç is given by
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èêé�ë ì¡é0í�î
é�í
é ë

ï
Definition 2.5: Thecontinuous-time signal energy over the time interval ð ï

of length ï ð is definedby

ñ
é í
é ë

ï
The total continuous-time signal energy is given by

ò
ò

ó ò
ï

Note that thesedefinitions are generaland hold even for complex signals, in

which case ô ï
, where ô denotesthe complex conjugate

signal. In the caseof real signals,the absolutevaluescanbe removed.
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Continuous-Time Signal Power

Recallfrom elementaryphysicsthat thepoweris work (energy) overtime (speed

of work). In orderto gettheexpressionfor theaveragesignalpowerwemustdivide

the correspondingexpressionfor energy by the length of the time interval so that

we have the following definition.

Definition 2.6: The continuous-time signal average power is definedby
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Discrete-Time Signal Energy and Power

Definition 2.7: The discrete-time signal energy over the time interval ü ý
of length ý ü is definedby

þ ÿ��]ÿ��
ÿ��]ÿ�� ý

The total discrete-time signal energy is given by

�

ÿ�� �
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Definition 2.8: The discrete-time signal average power is definedby
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Energy Signals and Power Signals

Basedon their energy andpower,signalsareclassified as follows:

(1) Energy signals havefinite total energy, 
 , andzeroaveragepower,


 .

(2) Power signals have infinite total energy and finite averagepower, that is,


 
 .

For example,the rectangularand triangularpulsesareenergy signals. Periodic

signalshaveinfinite energy andvery oftenfinite averagepower,thus,in mostcases

periodic signalsare power signals.
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Causal and Anticausal signals

Causal signals satisfy for all . If a signal is not causal,that is,

if for some , the signal is called anticausal. Similarly, discrete-

time signals for are causal,otherwisesignalsare anticausal.

Anticausalsignalsare commonin signal processing.Signalsencounteredin real

world dynamic systemsare causal.
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