2.1 Common Signals

Continuous-Time Unit Step Signals
Three slightly different definitions of the unit step signal can be found in
engineeringliterature. Two commonly useddefinitionsare

1 t>0
“(t)_{o t<0

1 t>0
ul(t):{o t<0

Note thatin the secondcasethe value of u;(0) is not defined.

The third definition, also known as Heaviside’sunit stepsignal,is given by

1, t>0
up(t) = { 0.5, t=0
0, t<0
Thefirst two definitionsaresimplerandeasierto work with thanthethird definition.

It will be shownin Chapter3 on Fourieranalysisthat the Heavisidedefinition of

the unit step signal will be needed.
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Havingin mind thatthe primaryconcernf thisbookarelineardynamicsystems
and for the reasonof simplicity, we will usethe definition of the unit stepsignal
asgiven by u(t), exceptwhereexplicitly indicatedthat the presentatiorholds for
the Heavisideunit stepsignal up(t). In the entire Chapter3 on Fourier analysis,

the signal up(t) will be usedexclusively.

The graphicalpresentatiorof the unit stepsignal w(t) is givenin Figure2.1.

u(t)

ol

Figure 2.1: Continuous-time unit step signal w(t)
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Continuous-Time Signum Signal—Sign Signal

The Heavisideunit stepsignal canbe expressedn termsof sign function. The

sign function, well known in mathematicsis definedby

1, t>0
sgn(t) = {0, t=20
1, t<0

The sign function is also known as the signumfunction. The formula of interest
thatwill be usedin the nextchapteron the Fouriertransform,relatesthe signsignal

and the Heavisideunit step signal

1 1
un(t) =  + Jsgn(?)
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Discrete-Time Unit Step Signal

The discrete-timeunit step signal can be obtainedby samplingu(t) with the
samplingperiodT'. The discrete unit step signal is definedby (seeFigure 2.2)

1, k>0
u(kT)éu[k]:{(): k=0

where kT standsfor discretetime. SinceT is a fixed positive constant,we will
usethroughoutthis book only k to indicate discrete-timeinstantkT’, wherek is

any integer. Thatis, in our notation,unlessexplicitly indicatedotherwise,for any

discretesignal the following holds: f(kT) = f[k].

u[K]

Figure 2.2: Discrete-time unit step signal u[k]
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Continuous-Time Ramp Signals

The unit ramp signal is definedin the continuous-timedomainby

_ft, t>0
r(t)_{o, t<0

The unit ramp signal hasthe slopeequalto onefor ¢ > 0. We canalsointroduce
the ramp signal that hasan arbitraryslopea for ¢ > 0 asrq(t) = ar(t).

It is easyto observethatin continuoustime we havethe following relationships

betweenthe unit step and unit ramp signals

u(t) = d’;it), t+£0
r(t) = / u(r)dr = {f;, t20

Note that the ramp signal is not differentiableat ¢ = 0.
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Discrete-Time Ramp Signals

Samplingthe continuous-timeunit ramp r(t) signal we get its discretecoun-

terpart as

k, k>0
r(kT)ér[k]z{O: k<0

The correspondinggraphicalrepresentationare given in Figure 2.3.

) 10 .
45° . ’
t K
0 2 1 o 1 2 3 4
(@) (b)

Figure 2.3: Continuous-time (a) and discrete-time (b) unit ramp signals
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Continuous-Time Parabolic Signal
Similarly, we canintroducethe parabolic signal as

2, t>0
o) ={8 129
9

andin general,a family of signalsof the form

tn, t>0
fﬂﬂ={m’t20,n=3Aﬁwu

Thesesignalsappearnn somesignal processingand control systemapplications.
Discrete-Time Parabolic Signal

The correspondingliscrete-timeequivalentscan also be defined as follows

[k k>0

and
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Rectangular Pulse

The rectangular pulse is mathematicallydefinedby (seeFigure 2.4a)

1 —r/2<t< T/2
t — ? —_ —_
pr(t) { 0, elsewhere
R® RIK]
— LI A
-t/2 o 1/2 t -m2 o m/2 k
(@) (b)

Figure 2.4. Rectangular pulses: continuous-time (a) and discrete-time (b)

Another definition of the (Heaviside)rectangularpulse

1, —T/2<t< T/2
ph(t)y={ 0.5, t=+1/2
0, elsewhere

Note that

(o) o)
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Train of Rectangular Pulses

It is defined by

o0

Z pT(t - kTO)

k=—oc

In Problem2.43 this train of recangularmpulsesis plotted for positive valuesof k

using MATLAB (Figure 2.20 of the SolutionsManual)

15

0.5 : : _

Train of rectangular pulses

05 I I I I I I I I I
0 0.5 1 15 2 25 3 35 4

Time

FIGURE 2.20 (from Solutions Manual)
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Triangular Pulse

The triangular pulse is ddfined by

0, t< —7/2
14+2t/r, —7/2<t<0
1—2t/r, 0<t<T/2
0, /2 <t

AT(t) =

The graphicalpresentatiorof this signalis givenin Figure 2.5a.

A () A[K]
1 1e
[ ] o
[ ) [ ]
[ ] [ ]
2 0 2t M2 o m2 . Kk
(@) (b)

Figure 2.5: Triangular pulses: continuous-time (a) and discrete-time (b)
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Discrete-Time Rectangular and Triangular Pulses

Discreteversionsof the rectangulamndtriangularpulsescanbe easily obtained
by sampling. Two examplesof thesesignalsthat are self explanatoryare drawnin
Figures2.4band2.5b. In Figures2.4band2.5b, m is definedby m = 2[r/2T],
where[ - | standdor theintegerpartoperatiorand? representshe samplingperiod.

For example the discrete-timerectangulampulseis analytically definedasfollows

1, —m/2<k<m/2
0, elsewhere

pm[k] = {

Sinusoidal Signals

Sne and cosine signalsare commonly usedin engineering. Thesesignalsare

very well known to all collegestudentsdrom basichigh schoolcourses.Note that

T T
cos (0t) = sin (Ht + 5), sin (6t) = cos (Ht — 5)
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Continuous-Time Sinc Signal

The sinc signal playsa very importantrole in Fourier analysis,communication

systemsand signal processing.It is definedby (seeFigure 2.6)
sin (7t)

sinc(t) = —

By thewell knowntrigonometriclimit sin (0) /0 = 1, it follows thatsinc(0) = 1.
Fort # 0, the zerosof the sincsignalareatt = +n, n = 1,2,3,.... When
t — ZLoo thesinc signaltendsto zero. Also, sinc(—t) = sinc(t).

sing(t)= SIN(t)

4 3 -2\/1 0 1\/2 3 4t

Figure 2.6: Continuous-time sinc signal
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Discrete-Time Sinc Signal

The discrete-timesinc signal canbe obtainedby discretizingthe corresponding
continuous-timesinc signal. The discrete-timesinc signal plot, obtainedby using

MATLAB, is presentedn Figure 2.7.

12

ir o

0.8

0.6

sinc(kT)

0.4

0.2

o® ©} o e} o (=] [} o o3 4

-0.2- o o

-0.4
discrete time kT

Figure 2.7 Discrete-time sinc signal obtained by MATLAB

The formal definition of the discrete-timesinc signalis given by
sin (wkT') , sin (w[k]) A

sinc(kT) = T k] = sinc[k]
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The Use of Basic Signalsin Linear Systems

In the subsequenthapterswe will showthatit is easyto find the responseof
a linear systemdue to basicinput signalssuch as step and ramp signals. More
complexsignalscan often be representeds linear combinationsof stepand ramp
signals. This signal representationin terms of basic signals togetherwith the
linearity (superposition)and time invarianceproperties(introducedin Chapterl)
will help to easily obtain the linear systemresponsedue to the input signalsthat
have complex waveform (shape).

The next exampledemonstratefiow to representa signalin termsof unit step

and ramp signals.
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Example 2.2: Considerthe signal givenin Figure 2.8.

f(t) ()
N EE TGN
, t
of~. 1
® N \-I’(t)

Figure 2.8: A simple signal

It is easyto observethat the signal presentedy the solid lines in Figure 2.8 can
be representedn termsof unit stepand unit ramp signalsas follows
f@t) =u(t) —r(t)+r(t—1)
The elementarysignalsu(t), —r(t), and r(t — 1) are representedn the same
figure usingdashedines. Note that this signal representatioms not unique,hence
other representationare possible,for example
f@)=r(—t+1) —r(—t) —u(-t)
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2.1.1 Impulse Delta Signal

The needfor a newclassof signalswasfor thefirst time observedy the endof the
nineteenttcenturyby O. Heavisidewhile analyzingelectricalcircuits (seeProblems
2.18and2.19andformulas(11.20)and(11.30)in Chapterll on electricalcircuits).
In the 1920sP. Dirac cameto the sameconclusionstudying some problemsin
relativistic mechanics.The new classof functions—theso-calleddistributions or
singular functions that,togethemwith ordinaryfunctions,formsthe setof generalized
functions. The generalizedfunctions play a very important role in analysis of
linear dynamicsystemsandthey are usedin almostall engineeringand scientific
disciplines.

The impulse delta function is extremely important for linear systemtheory.
Loosely speaking,this “strange” function has no time structure. It is equal to

zero everywhereelse exceptat zero, whereit is equalto occ.
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However,its integralis well behavedandit is definedby

7 8(t)dt = 76(t)dt =1

The impulsedeltasignalcanbe visualizedasa mathematicahtrtifice of the rectan-
gular pulse,representedn Figure2.11a,in the limit when the width of the pulse

tendsto zero. In Figure2.11b,we give alsothe symbolic notationfor §(t).

11 i o(t)

T—=20

-2 0 1/2 T 0 T

(a) (b)

Figure 2.11: Approximation of the impulse delta signal (a)

and symbolic representation for 6(t) (b)
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Notice thatthe areaof the rectangulapulseis alwaysequalto one. Theimpulse

delta signal is obtainedin the limit when+ — 0, thatis

—0

1
6(t) = lim {—pT(t)}
T T
In the literature,the impulsedeltasignalis also called the Dirac impulse function,

in honor of the greatphysicistand mathematiciarP. Dirac.

Example 2.4: Notethatfrom the definition of theimpulsedeltasignalit follows

that
3 4+
/6(t — 4)dt =0, /6(t — 4)dt =1
-5 -5

In the first casethe impulsedeltasignalis locatedoutsideof the integrationlimits,

whereasin the secondcaseit is within the integrationlimits.
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The shifted impulse delta signal is definedby

o ty
oo, t=1t

6(t—t0)={0, i, 20D /6(t—t0)dt=/6(t—t0)dt=1

This signal is representedn Figure 2.12.

0 (t'to)

0 to t

Figure 2.12: Shifted continuous-time impulse delta signal
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Mathematical Definition of the Impulse Delta Signal (Sifting Property)

The impulsedeltasignal (function) in mathematics is definedby the integral
/ F(£)8(t — to)dt = f(to)

where f(t) is anordinaryfunction continuousat ¢t = 0. In engineeringwe prefer
to call this mathematicatlefinitionthe sifting property of theimpulsedeltafunction
sincethe effect of the impulsedeltafunctionin this integralis to take out (sift) a

particularvalue of the function f(t) att = to.

Example 2.5: By using the sifting property of the impulse delta signal the

following integral can be calculated

/ {[e7% cos (2t) + t*]6(t) + (2t + 1)6(¢ — 2)} dt

=[14+0]+[4+1]=6
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What can be said aboutthe integral

/ FO)8(t — to)dt = 7

with anordinaryfunction f(t) beingcontinuousatt = to? Note thatthe impulse
deltafunctionis locatedexactlyat the integralupperlimit. This integralsometimes
appeardan actualderivations(suchasin the well-known paperwritten by Athans
andTsein 1967). The following resultwasusedby Athansand Tseto derive one

of the classicresultsof linear control theory:

/ f()é(t — to)dt = %f(to)

Hence 0 )
[ewar=2, [ ot-nswat=_fa)
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Derivatives of the Impulse Delta Signal

Anothervisualizationof the impulsedeltasignalcanbe obtainedby considering

the triangularpulsein the limit when+ — 0, Figure 2.13a.

d
1050 Q{Lnx(v} aol
A
-1 0| +1 t -t 0 +t 0 t
—-1/12 Y
a) b) C)

Figure 2.13: Approximations of the impulse delta signal (a), its derivative (b), and

the symbolic representation of the derivative of the impulse delta signal (c)

It is obviousfrom this figure that
. 1
6(t) = lim {—AZT(t)}
T

7—0
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This representatiorof the delta signal helpsto visualize the derivative of the
impulse delta signal as the limit of the signal representedn Figure 2.13bwhen
T — 0, thatis

dé(t) 5 {1 (H_T) 1 (t 7-)}
— = 11 —Pr — — —Pr _—
dt 0 | 727 2 w20 2
The correspondinglerivativeis symbolicallyrepresented Figure 2.13cwith two
impulsesof width zerothat tendto plus and minusinfinity. The derivative of the
unit impulsedeltasignalis alsoknown in the literatureasthe unit-doublet. Note

that the unit-doubletdé(t) /dt evaluatedat ¢ = 01 andt = 0~ produceszero

valueslike the impulse delta signal.

Mathematically,we can definethe derivative of the deltaimpulse signal using

its integral representatioras

/ f(t)dé(td; tO)dt
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Similarly, we candefinethe secondandhigherorderderivativesof the impulse

delta signal by the following integrals
i d'6(t — to) _
t ——dt, =1,2,..
[ o= i

The secondderivativeof 6(t) is calledthe unit-triplet. The (n — 1)th derivative

of 6(t) is called the unit-n-tuplet. The unit triplet and unit-n-tupletsare also
graphicallyrepresentedsingexactlythe sameplot asthe onegivenin Figure2.13c
for the derivativeof the unit impulsedeltasignal. Note that all d*6(t)/dt?, i =
1,2,..., evaluatedat t = 0T andt = 0~ producezerovalues.

Other Properties of the Delta Impulse Signal

Time scaling property:

to

7 f(t)é(at — tp)dt = l%f (_) = §(at — tg) = i(g (t _ _)

| a
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Proof: Consideffirst thecasewhena > 0 andintroducethe changeof variables

o+t do
at —tg =0 = t = +°, dt = =2
a a

which implies

700 F(8)6(at — to)dt = % /oo f(a JC: to)é(a)da - %f (%")

t=—0o0 o—=——00

For a < 0 the samechangeof variablesimplies that the integral definedon the

left side hasthe form

og=—00 =00

(e sorta ==L [ (5ot = 1(2)

o=00 o=—00

Putting togetherboth casesa > 0 anda < 0, we obtainthe statedtime scaling

result.
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Derivative property: Let 6V)(t) denotedé(t)/dt, then
/ F)W (&t — to)dt = — FV(1g)

where (1) (ty) standsfor df (t)/dt evaluatedat t = ty. In general,it canalso

be shownthat for the nth derivative we have
/ F)6M™ (& — to)dt = (—1)"F™ (1)
Proof. Integratingby parts, we obtain

[ #©80@ — to)dt = £(o0)8(c0) — F(—00)8(—00)

_ / FO)8(t — to)dt =0 — 0 — £ ()

Similarly, integratingn—times by parts, we get the generalformula for the nth

derivative.
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From the sifting propertythe impulse delta signal we can get additional prop-

erties of the impulse delta signal as

F(£)6(t) = £(0)8(t);  F(1)6(t —to) = f(t0)6(t — to)

This property can be proved as follows. Let ¢(t) be anotherordinary function

continuousatt = 0. Then, by usingthe sifting propertywe have

| 10e@etdt = £0)6(0) = £0) [ pe(t)at

= [ s©emswat

Comparingthe first and the last integral in the above expression,the property
follows. Usingthe aboveproperty,a pretty interestingresultfollows: t"é(t) = 0,

n IS any positive real number.
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From the sifting and derivative propertiesthe following propertycan be estab-

lished
6(2n)(—t) — 6(2n)(t), 6(2n+1)(—t) — _6(2n+1)(t), n=0,1,2,...

It follows from this propertythat for n = 0 the following is satidied
6(—t) = 6(t), henceé(t) is an evenfunction.
Example 2.6: Using the propertiesof the impulsedeltasignal we canevaluate

the following integralsas

o e}
1 T 1
/ 8(2t — 1)e * sin (wt)dt = ~e~ % sin (—) — —e2
2 2 2
—00

/ (£ + 2sin (wt) — 2)6W (¢t — 1)dt = (—1)%(#” + 2sin (7t) — 2),_,

= —(3427cos(w)) = —3
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Applications of the Delta Impulse Function to Solving Differ ential Equations

Considerthe linear systemdefinedin Problem1.13

d*y(t) y( ) f( )

az 0 +2y(t) = ——=+3f(t), f(t)=e", t>0

The forcing function (systeminput) can be representedy f(t) = e **u(t) so

that the right-handside of this differential equationis

f( )-|-3f(t) = —5e Mu(t)+ e ?6(t) +3e u(t) = —2etu(t) + 6(t)

By the linearity principle the systemresponsewill havetwo componentsoming
from the forcing function: dueto —2e~>*w(t) andé(t). The problemof finding
the systenresponséo thedeltaimpulsefunctioninputis oneof the centralproblems

of linear systemstheory. It will be consideredn Chapters3, 4, 6 and 8.
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Discrete-Time Impulse Delta Signal

The samplingtechniquemakesno sensein an attemptto obtain the discrete-
time impulse delta signal from the continuous-tima@mpulse delta signal sincethe
continuous-timeimpulse delta signal has no time structure. The discrete-time
Impulsedeltasignalis definedas a very nice signalwhich is equalto 1 atk = 0

and 0 everywhereelse, that is

s ={o voo

The discrete-timeémpulsedelta signal is also called the Kroneckerdelta function.
This form for the impulsedeltasignalin the discrete-timedomaincan be justified

by using a discreteversionof the sifting property

k=cc

Z flk]6[k — ko] = f[ko]
k=—cc

Sincethis infinite sumhasto produceonly f[ko], the discrete-timempulsedelta

sighal mustbe zero everywhereexceptat ko whereit mustbe equalto one.
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The shifted versionof the discrete-time impulse delta signal is definedby

1, k=k
6[k—k0]={0: k#kg

Note that it follows from the definition of the discrete-timeimpulse delta signal

that the following property holds
flk]6[k] = f[0]6[k] or f[k]é[k — ko] = f[ko]6[k — ko]

Thediscrete-timempulsedeltasignalandits shiftedversionarepresentedn Figure

2.14.

Figure 2.14: Discrete-time impulse delta signal (a) and its shifted version (b)
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Generalized Derivatives

The impulse delta function can be usedto define the generalized derivative.
At the point of jump discontinuity (f (tf) % f(t;)) the function f(t) has
no derivativein the ordinary sense.From the geometricpoint of view, sincethe
derivativestanddor a slopeof thetangentatthe givenpoint, t;, we cansaythatthe
derivative at the point of jump discontinuityis equalto infinity. Sincethe shifted
impulsedeltasignalé(t — t1) is equalto infinity att = ¢, we canusetheimpulse
deltafunction in orderto definethe generalizedderivative.

Definition 2.1: Considera function f(t) that hasjump discontinuitiesat the

pointsty, ta, ...t;. The generalizederivativeof f(t) is definedby

Dlj;stt) - Zzi: (f (t:_> - f(ti_>>‘5(t —t;) + dj;(tt)|t7£t1,t2,...,tj

whereD f(t)/ Dt standsfor the generalizedderivative,anddf /dt is the ordinary

derivative at the points whereit exists.
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Example 2.7: Find the generalizedderivativeof the signalin Figure2.15.

(t)

\1--
N

1 0 \2 ;
14

@
Df(t)
o(t+]) ‘ Dt ' o(t-2)
. 0-2/3 i f t
(b) 1

Figure 2.15: Continuous-time signal and its generalized derivative

In this examplewe havetwo pointsof jump discontinuitiesat —1 and?2 sothatthe
generalizederivative accordingto Definition 2.1 is obtainedas

D;;it) = [f(=17) = F(=17)]6(t+ 1) + [£(2F) — F(27)]6(t — 2)

F P e 1) — e - 2)) = 6+ 1) + 56— 2) = Zfult + 1) - u(t - 2)]
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2.2 Signal Operations

Signalsare mathematicalfunctions. All known mathematicaloperationswith
functionsareapplicableto signals.A veryimportantsignaloperations convolution.

Definition 2.2: Continuous-Time Convolution

For continuous-timesignalsg(t) andv(t), the convolutionis definedby

g(t) xv(t) = / v(T)g(t — 7)dr
= / v(t — 7)g(7)dT = v(t) * g(t), —o00 < t< oo

wherethe star denotesthe convolutionoperator. The equality of two formulasin
can be easily establishedy using a simple changeof variables. Note that in the

convolutionintegralt is a parameteiand = is a dummy variableof integration.
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This formula also statesthe commutativity property of the convolution. Other
propertiesof the continuous-timeconvolutionfollows from the propertiesof inte-
grals. They will be studiedin detail in Chapter6. The useof convolutionin the
analysisof linear time invariantsystemswill be consideredn Chapters3—6, 8.

Definition 2.3: Discrete-Time Convolution

Given discrete-timesignals g[k] and v[k], the discrete-timeconvolution is

defined by
glk] x v[k] = z_: g[m]uv[k — m]
= z_: glk — m]v[m] = v[k] % g[k], —o0 < k< o0

wherek is a parameteland m is a dummy variable of summation.

The slides contain the copyrighted material from Linear Dynamic Systems and Signals, Prentice Hall, 2003. Prepared by Professor Zoran Gajic. 2—35



Signal Correlation

In ChaptersQ and10 we will introducean operationon signalsthatis important
for both digital signal processingand communicatiorsystemsknown asthe signal
correlation. The signalcorrelationhasthe similar form to the signalconvolutionin
both continuous-anddiscrete-timedomains but it hascompletelydifferentphysical
meaning. The signal correlationwill be usedto determinethe enegy distribution

in the signal. Continuous-and discrete-timesignal correlationsare respectively

defined by
Ryy(t) = / v(t)g(t +t)dr, —oco0o<t< o0
and
Rylk] = ) wlmlglm+k], —oco<k<oo

m=—0ocC
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Definition 2.4: Forward Difference(Discrete-Time “Derivative”)

The discrete time counter part of the derivative is the forward difference.
Consider a discrete-time signal f[k] defined in some discrete-time interval
k € [k1 k2]. Then, the forward difference(discrete-time“derivative’) of f[k]

in the given interval is definedby
Aflk] = flk + 1] — F[k]
This definitioncanbejustified by usingthefollowing reasoning.Thecontinuous-

time derivativegeometricallyrepresentshe slopeof the tangentat the given point,

hencethe derivative can be approximatedas

df(t) _ f(t+ At) — f(¥)
dt At

Takingt = kAt, wherek is an integer,we have

A Y (kAY)

—— = f((k+ 1)A1) — f(kAD)
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It can be seenthat the approximationof the continuous-timederivative is pro-
portional to the forward difference. In this textbook, we will call the forward
difference“the discrete-timederivative”.

Example 2.9: Using ddfinitions of the discrete-timeunit stepand ramp signals

givenin (2.5) and (2.7), it can be observedthat
Ar[k] = r[k + 1] — r[k] = ulk]

that is, the discrete-timeunit step signal is the “discrete-timederivative” of the
discrete-timeunit ramp signal.

Example 2.10: It is easyto seethat

1, k=20
Au[k—l]:u[k]—u[k—l]:{ }zé[k]
0, k#£0
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The discrete-timeunit stepsignalcanbe expressedn termsof the discrete-time
delta impulse signal as follows

k
uk] = > 6[m]

m=—oco

wherem is a dummy variable of summation. Since §[m] is equalto one only
for m = 0 andequalto zerofor all otherm’s we seethatif &k < 0 the infinite
summationdoesnot includethe deltaimpulseat zero,thusthe sumis equalto zero.
If & > 0 thesummatiorwill bealwaysequalto onesincethe deltaimpulseat zero

(the only signalequalsto one)is includedwithin the limits of summation.

Similarly, we can establishthe following relationship

k—1

rlk] = > u[m]

m=—0o0

Note that the upperlimit is & — 1, not k. Why? Iterate.

The slides contain the copyrighted material from Linear Dynamic Systems and Signals, Prentice Hall, 2003. Prepared by Professor Zoran Gajic. 2—39



2.3 Signal Classification

Like mathematicalfunctions signals can be classifiedas: periodic or aperiodic
(nonperiodic), even or odd, real or complex, continuous-timeor discrete-time,

deterministicor stochastiqrandom),sinusoidal,exponential,andso on.

Let us review herethat a periodic signal satisfies
f(t)=ft+1Tp), Tp<oo

for all t andsomeT},, whereT, is the periodafter which the signalrepeatstself.

For example,for sine and cosinefunctionsT), = 2.

Even signals are symmetricalwith respectto the vertical axis, thatis

f(=t) = f(1)

For example,cos (t) andsinc(t) are evensignals.
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Odd signals are symmetricalwith respectto the origin, hencethey satisfy

f(=t) = —f(1)

For example,sin () is an odd signal.

Continuous-Time Signal Energy

Recallfrom elementaryelectricalengineeringcoursesthat the electricalenepgy
developedon a resistoris proportionaleitherto the squareof the constantcurrent
throughthe resistoror to the squareof the constantvoltageon the resistor. Hence,
the squareof the signal servesas a measureof signal enegy. In the casewhen
the signal changesn time, we haveto integrate(or sumin the caseof discrete-
time signals)over given time period of interest. For example,in the caseof a
time varying currentz(t), the enegy developeddissipatedas heat)on the resistor

during the time interval from ¢; to t» is given by
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t2
E[t1,t2] == R/lz(t)dt
t

Definition 2.5: The continuous-time signal energy overthetime interval[t;, ¢2]

of length L = t5 — t; is definedby
2
B = [ 150 dt
t1
The total continuous-time signal energy is given by
Bw= [ I5(0)dt

Note that thesedefinitions are generaland hold evenfor complex signals,in
which case f(t)f*(t) = |f(t)|*, where f*(t) denotesthe complex conjugate

signal. In the caseof real signals,the absolutevaluescan be removed.
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Continuous-Time Signal Power

Recallfrom elementarnphysicsthatthe poweris work (enegy) overtime (speed
of work). In orderto getthe expressioror the averagesignalpowerwe mustdivide
the correspondingexpressiorfor enepgy by the length of the time interval so that

we have the following definition.

Definition 2.6: The continuous-time signal average power is definedby

L/2

P = li ! )2 dt

= fim - [ 15(0)
—L/2
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Discrete-Time Signal Energy and Power

Definition 2.7: The discrete-time signal energy over the time interval k1, k2]

of length M = k, — k; is definedby

k=ko

Eyv = ) £k

k=Ek,q
The total discrete-time signal energy is given by

k=cc

k=—oc

Definition 2.8: The discrete-time signal average power is definedby

k=M

P= lim — > IfIK]

M—oco2M + 1 'y
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Energy Signals and Power Signals

Basedon their enegy and power, signalsare classfied as follows:

(1) Energy signals havefinite total enegy, E., < oo, andzeroaveragepower,
P, = 0.

(2) Power signals haveinfinite total enegy and finite averagepower, that is,
Esop = 00, Py < oc.

For example,the rectangularandtriangular pulsesare enegy signals. Periodic
signalshaveinfinite enegy andvery oftenfinite averagepower,thus,in mostcases

periodic signalsare power signals.
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Causal and Anticausal signals

Causal signals satisfy f(t) = 0 for all t < 0. If asignalis not causal thatis,
if f(t) # 0 for somet < 0, the signalis called anticausal. Similarly, discrete-
time signals f[k] = 0 for £ < 0 are causal,otherwisesignalsare anticausal.
Anticausalsignalsare commonin signal processing. Signalsencounteredn real

world dynamic systemsare causal.
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