
Server Switching: Yesterday and Tomorrow

Je�rey S. Chase �

Department of Computer Science

Duke University

chase@cs.duke.edu

Abstract

Server switches distribute incoming request tra�c

across the nodes of Internet server clusters and Web

proxy cache arrays. These switches are a standard

building block for large-scale Internet services, with

many commercial products on the market. As Inter-

net applications and service architectures continue to

evolve, the role of server switches and the demands on

their request routing policies will also change.

This paper explores interrelated factors shaping the

role of server switching. These factors include the

emergence of content delivery networks, the increas-

ing prevalence of dynamic content, persistent connec-

tions in the HTTP 1.1 standard, the changing nature

of Web server clusters, and the opportunities to apply

server switching techniques to service protocols other

than HTTP. We outline the potential role of server

switches in virtualizing IP-based storage protocols and

as a foundation for adaptive resource provisioning in

server clusters.

1 Introduction

Clustering technologies enable incremental scaling
of Internet server sites at modest cost. It is increas-
ingly common in cluster-based service architectures to
distribute incoming request tra�c among servers using
redirecting switches. These server switches are called
by various names including request distributors, front
ends, redirectors, load balancers, network dispatchers,
L4-L7 switches, interception switches, Web switches,
and content switches. Redirecting switches are also
used in Web proxy cache arrays.

During the last few years an active commercial mar-
ket for server switching products has emerged. Many
of these products are Ethernet switches supplemented

�This work is supported by the National Science Foundation

through grants CCR-00-82912 and EIA-9972879.

with built-in processing power to examine the incoming
packet stream and manage service tra�c intelligently,
assigning requests to servers based on request content,
client session, and/or server status. Server switches
and their request routing (server selection) policies play
a key role in managing content and server resources for
scalable Internet services.

The market for server switches is now relatively
mature, and they are an accepted building block for
large-scale Internet services. However, Internet ser-
vices and their delivery architectures continue to evolve
rapidly. This creates new challenges and opportunities
for server switches, and raises fundamental questions
about the future role of intelligent network switching
elements.

This paper explores several factors shaping the fu-
ture role of server switching.

� The trickle-down e�ect. Demand-side proxy
caching and wide-area content delivery networks
(CDNs) are now ubiquitous in the Web; these
agents �lter the incoming request stream, chang-
ing its properties in fundamental ways that a�ect
request distribution strategies.

� The dynamic Web. Requests for dynamic con-
tent increasingly dominate server tra�c. One fac-
tor driving this shift is that proxy caches and
CDNs absorb an increasing share of the request
stream for static content. At the same time, the
Internet buildout is driving a shift toward server-
based computing; the new generation of Web ser-
vices increasingly incorporate dynamically gener-
ated, personalized content, and act as a basis for
Internet delivery of server-based application utili-
ties through Application Service Providers.

� Persistent connections. Content-aware request
routing policies select the server for each request
independently; some of the key policies in use
(e.g., URL switching) rely on this. However,
new Web standards (HTTP 1.1) emphasize use

of persistent connections, in which multiple re-
quests arrive on a single transport (TCP) connec-
tion. This creates signi�cant new challenges for
future server switches, and may constrain the poli-
cies they can support. Other emerging standards
such as IPSEC may create similar pressures.

� Server resource provisioning. Internet ser-
vices are increasingly hosted in shared data centers
managed by third-party hosting providers. Shared
hosting centers o�er economies of scale and a po-
tential to dynamically adjust capacity provision-
ing to respond to request tra�c, quality-of-service
speci�cations, and network conditions. Recon�g-
urable server switches are an enabling technology
for global load management and resource provi-
sioning in shared server clusters.

� IP-based network storage. Even as the Web
evolves, other large-scale IP-based services are
emerging. This creates new opportunities to ap-
ply server switching techniques to virtualize these
services. In particular, storage is increasingly
network-based, and network storage architectures
are shifting from FibreChannel to IP networks.
Server switching technology could enable scalable
\virtual servers" for IP-based network storage pro-
tocols such as iSCSI and NFS (e.g., [2]).

This paper discusses the interplay of these factors,
and speculates on their implications. These factors
suggest a more limited role for sophisticated content-
based switching features in the future, and an expand-
ing role for server switches as a focal point for managing
server resources rather than content. At the same time,
the potential of server switching beyond HTTP raises
new issues for transport protocols, service structure,
and switch architecture.

This paper is organized as follows. Section 2 gives
an overview of server switching for Internet service ar-
chitectures. Section 3 deals with the changing role
of server switching for delivery of static Web content,
and Section 4 discusses the impact of the shift to dy-
namic content. The next two sections outline new roles
for server switching in adaptive resource provisioning
for hosting centers (Section 5) and scalable IP storage
(Section 6), and research issues raised by those roles.
Section 7 concludes.

2 Service Virtualization with Server

Switches

Server switching is a technique to virtualize services
at the IP level. An ensemble of servers cooperate to

serve the request load. Clients interact with the ser-
vice through a client/server protocol such as HTTP,
addressing their request tra�c to a virtual IP address

representing the service. The server switch intercepts
the incoming tra�c stream and directs each request
to a speci�c server according to some policy. The set
of functioning servers to choose from | the active set

| may grow and shrink dynamically, allowing a site
to manage server resources locally to adapt to load
changes. The switch isolates clients from internal de-
tails of the the service structure, so that the ensemble
appears to clients as a single virtual server host that
is powerful and reliable. Commercial server switches
are available from Nortel (Alteon), Cisco (Arrowpoint),
Extreme, Foundry, F5 Networks, Resonate, IBM, and
other companies.

2.1 Request Routing Policies

Commercial switches use a variety of request routing
policies for HTTP and other TCP-based protocols such
as FTP. For example, a server load balancing (SLB)
policy distributes requests evenly across the servers us-
ing weighted round robin or by monitoring server sta-
tus and directing requests to servers with the lightest
load, the lowest latency, or the smallest number of ac-
tive connections. These SLB switches are often called
L4 switches because they make server selection deci-
sions only at connection setup time, and examine only
the transport (layer 4) headers of the incoming packet
stream.

Content routing policies prefer the servers that can
handle a given request most e�ciently, for example, a
server likely to have the requested content in a cache.
URL hashing is a content-based policy for Web servers
that applies a simple deterministic function on the re-
quest URL to select a server from the active set. URL
hashing is an L7 policy because the switch must parse
HTTP (layer 7) headers to determine the URL (some
view this as layer 5). Content routing policies are
HTTP-speci�c in commercial L7 server switches; thus
they are sometimes called Web switches.

There is a tension between SLB and content routing
policies. SLB policies balance load e�ectively, but they
do not preserve locality in the request stream. In par-
ticular, SLB policies tend to spew repeat requests for a
given object across all of the servers, forcing each server
to fetch the object and cache it redundantly. On the
other hand, content routing policies preserve this local-
ity by preferring the same server for repeat requests,
but they are vulnerable to load imbalances. Recent re-
search [16, 4, 5] has studied this tradeo� in depth, and
developed locality-aware request distribution (LARD)

and related policies to combine the bene�ts of both
approaches. We use the term URL switching to en-
compass URL hashing as well as the more sophisticated
LARD strategies when applied in a server switch.

Dynamic Web services and Web-hosted application
services often route requests based on the identity of
the client. To support this, some HTTP L7 server
switches implement cookie switching, which extracts
one or more named tokens (cookies) from an HTTP
request. The cookie is typically unique to the client or
client session; applying a routing function to the cookie
enables a site to evenly distribute customer load across
a cluster, while concentrating the load from each cus-
tomer on a single server or a small set of servers. This
preserves locality of server access to client-speci�c con-
tent such as user pro�les, shopping carts, mailboxes, or
accounts. Cookie switching also enables the server site
to di�erentiate customer service quality levels.

Some server switches can also enable \transpar-
ent" Web caching through interception proxies. These
switches intercept HTTP request tra�c to arbitrary
IP addresses as it enters the network from a client,
redirecting requests to a proxy cache or cache array.
Transparent caching enables an ISP to bene�t from
the bandwidth savings of Web caching without relying
on users to con�gure their software to use the ISP's
proxies.

2.2 Redirection in the Internet Architecture

Server switching is controversial because the Inter-
net architecture standards implicitly assume that each
IP datagram is addressed and delivered to a speci�c
and uniquely de�ned end host. The concept underlying
virtualized services is that clients address each request
to a logical service endpoint, which may be served by
many hosts.

For example, interception proxies clearly violate the
Internet architecture as it is currently de�ned (e.g., by
RFC 1122 [8]). In particular, they hijack IP packets
addressed to the server IP host and generate responses
that masquerade as the server. A connectivity provider
(ISP) may interpose an interception proxy unilaterally,
without the knowledge or consent of either the client
or the server. One justi�cation for interception proxies
is that HTTP 1.1 standards allow the server to control
or disable caching of any content object in conforming
proxy caches; thus an HTTP server that does not dis-
able caching could be viewed as implicitly permitting
proxy caches to act as agents of the server.

One can reconcile server switching for server clusters
with the assumptions of the Internet architecture is to
view a server cluster with a virtual IP address as a sin-

gle virtual \host" | e�ectively a multicomputer with
internal policies for handling network ows addressed
to it. The redirecting switch acts as an extension of
the service, and must reside (logically) at the service
edge of the connection, rather than in the \middle"
of the network. For example, a key constraint is that
a redirecting switch must receive all packets from a
given client connection initiated through that switch,
since the switch may maintain state associated with the
connection. From the client's perspective, failure of the
switch (or dynamic routing of the packet ow around
the switch) is indistinguishable from failure of a server
host; the connection is dropped, and the service proto-
col must recover by re-initiating the connection.

2.3 Alternatives to Server Switching

Server switching is only one of several ways to virtu-
alize a service. In DNS redirection (e.g., [14]) the target
site's DNS server selects from multiple server host IP
addresses during domain name lookup as the client �rst
connects to the service. DNS lookup is now widely used
as a \hook" to redirect HTTP connections to wide-area
CDN caches or content replicas. However, DNS redi-
rection constrains the possible routing policies because
service request state (e.g., HTTP URL and cookies)
is absent from the DNS lookup request. In dynamic

URL rewriting a Web server transforms URL links em-
bedded in objects returned to a client. By modifying
the domain names in these URLs, the service can in-
duce di�erent clients to direct their subsequent requests
through those URLs to di�erent servers, distributing
the request load without using a server switch.

Server switching o�ers more control over the server
selection function than these alternatives, and it is
fully transparent to clients. DNS redirection and URL
rewriting both expose the server selection choices to
the clients, who then send requests directly to the se-
lected server. The client may cache the selection choice
in a local DNS cache or demand-side Web proxy, and
may reuse the same mapping repeatedly until the cache
entry expires. If other local clients share this cache
then they may direct their requests to the same server
host without o�ering the site an opportunity to select
di�erent servers for their requests. While the service
has some control over the cacheability of these map-
pings, restricting caching can signi�cantly increase the
request load at the servers.

In contrast to these alternatives, server switching
interposes server selection on each request or each con-
nection, making it more responsive to rapid changes
in load or server status. Since server switching vir-
tualizes \on the wire", a client cannot circumvent or

even observe the request switching choices. However,
server switching for high-performance server sites in-
volves proprietary switch hardware and �rmware that
can redirect incoming requests at wire speed. Good
performance is particularly di�cult to achieve for URL
switching and other content routing policies.

2.4 Persistent Connections

It is still not widely recognized that many advanced
server switching schemes in use today are incompatible
with persistent connections in the HTTP 1.1 standard.
All server switches on the market essentially perform
connection switching; they select a target server at con-
nection setup time, i.e., by sni�ng TCP SYN packets.
Common use of HTTP 1.0 sets up a separate connec-
tion for each request, so connection switching is suf-
�cient to route each request independently. However,
connection setup is expensive, and short connections
complicate congestion management. For this reason,
HTTP 1.1 implementations amortize setup costs by
pipelining multiple requests to the same service over
the same persistent connection [15].

The problem with persistent connections is that
server switches cannot independently redirect di�er-
ent requests arriving on a single connection to di�er-
ent servers. In particular, it is more di�cult to route
requests with URL switching to improve server cache
performance. Some content switches now on the mar-
ket support both URL switching and HTTP 1.1, but
they route all requests on each connection to the server
selected to handle the �rst request arriving on the con-
nection. This sacri�ces any cache a�nity bene�t from
URL switching.

Aron et. al. [4], in a follow-on to the LARD
study [16], discuss this problem in detail and propose
a solution using server-to-server transfers of requested
data among the back ends. This approach is simi-
lar to cooperative caching [3, 12] of content objects
among the servers, a solution found to be inferior in
the original LARD study. The authors based these
results on identical trace-based simulation models, ex-
cept that the second study uses di�erent parameters:
it assumes a �xed per-request CPU cost for HTTP
processing and 40% lower per-byte overhead for net-
work transfers. The second paper also shows that an
approach using TCP hando� of persistent connections
among back-end servers may be competitive with front-
end server switching. However, the study does not ex-
plore sensitivity of this scheme to the connection mi-
gration cost. A more recent study of TCP connection
migration [17] suggests that this cost is too high for
request distribution in Web server clusters, although it

is a useful approach for failover.
In short, the relative merits of the various solutions

to the persistent connection problem for �ne-grained
request routing | such as URL switching and other
content routing policies | are still open to debate.
However, Section 3 and Section 4 explore factors that
may render URL switching policies less relevant for to-
morrow's Web services than they were in 1998, when
the traces used in the LARD studies were collected.
Even so, the fact remains that persistent connections
fundamentally limit the range of request routing poli-
cies that a server switch can support with current
transport protocols and switch technology. Section 6
returns to this issue in the context of IP storage virtu-
alization.

3 The Trickle-Down E�ect

The Web research community now accepts that re-
quests to static Web objects follow a Zipf-like popu-
larity distribution [13, 9, 19]. The number of requests
to the ith most popular document is proportional to
1/i^�, for some �. Thus a large majority of requests
target the most popular sites and the most popular ob-
jects, but the distribution has a long, heavy tail of less
popular objects.

One implication of the Web's Zipf-like behavior is
that caching is highly e�ective for the most popular
static (cacheable) objects, assuming that popularity
dominates rate of change [19]. The last two years have
seen an explosion of growth in Web caching and con-
tent delivery (CDN) cache infrastructure. Key devel-
opments include the emergence of Akamai and other
commercial o�erings in the CDN space, growing use of
supply-side surrogate (\reverse") proxy caching among
hosting providers such as Exodus, and aggregation of
content consumers into large ISPs employing demand-
side proxies.

A key impact of these trends is that Web server sites
increasingly receive only the miss stream from these
caches, presumably shifting their dominant loads from
popular static objects to less popular objects and dy-
namic content. We call this the trickle-down e�ect [10].
This section considers the implications for server re-
quest distribution for static content; Section 4 discusses
the demands on server switching for dynamic content.

In the absence of caching, Zipf request patterns are
di�cult for a server cluster to handle e�ectively. Be-
cause the requests are so heavily skewed to the most
popular objects, load imbalances are likely to result
from any request routing policy that is based on a �xed
assignment of objects to servers (e.g., URL hashing).
On the other hand, any request routing policy that

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Objects

R
ef

er
en

ce
s

No Front End Cache
32MB Front End Cache
64MB Front End Cache
128MB Front End Cache

Figure 1. Effect of front-end caching on object
popularity distribution in the 1998 IBM trace
(log-log scales).

is not content-aware (e.g., SLB) does not bene�t fully
from caching the popular objects in server memory,
even if it balances the load.

This observation motivated the LARD strategy for
request distribution in server clusters [16], as discussed
in Section 2. A LARD server switch maintains a cache
of recently requested URLs. If a request URL misses
in the cache, then LARD routes the request using an
SLB policy. If the request hits, then LARD routes
it to a server that recently fetched the URL, if one
exists that is not overloaded. Most commercial con-
tent switches do not yet support LARD, despite the
advantages of this hybrid strategy. Support for any
form of URL switching is relatively recent in commer-
cial switches, and LARD's cached mapping of URLs
to servers is shared across all switch ports, which may
have slowed its adoption.

Caches and CDNs signi�cantly change the proper-
ties of the request stream | or trickle | that �lters
through to server sites. In particular, references to
popular objects | the primary sources of both load
skew and locality | are largely absent, assuming that
those objects are cached e�ectively. To illustrate, Fig-
ure 1 shows the e�ect of front-end caching on the object
popularity distribution for a 1998 trace from ibm.com,
which was also used in the LARD studies. We �ltered
the trace through a simple LRU cache simulator for
small cache sizes, then plotted the number of references
to each object in each miss trace, as a function of its
popularity rank in each trace. As expected, the original
distribution shows a pattern approximating a Zipf-like

4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Back End Servers

Lo
ad

 S
ke

w

0.7 − No Front End Cache − URL Hashing
0.7 − 32 MB Front End Cache − URL Hashing
0.7 − 64 MB Front End Cache − URL Hashing
0.7 − 128 MB Front End Cache − URL Hashing
0.7 − 64 MB Front End Cache − Random Switching
0.8 − No Front End Cache − URL Hashing
0.8 − 64 MB Front End Cache − URL Hashing

Figure 2. Server load skew from request dis-
tribution (synthetic traces: � = 0:7 and � =
0:8).

distribution with � = 0:76. Even small caches e�ec-
tively atten this distribution; the references to popu-
lar and moderately popular objects are now evenly bal-
anced, with most references concentrated in the heavy
tail.

The trickle-down e�ect implies that e�ective caching
architectures and CDNs will tend to narrow the perfor-
mance di�erences between various request routing poli-
cies for Web server clusters. First, load skew caused
by popular objects is largely removed from the miss
stream, so that a simple content routing strategy (e.g.,
URL hashing) is less vulnerable to load imbalances.
Second, there is less locality left in the miss stream be-
cause the caches absorb references to the most popular
objects, leaving the heavy tail. Thus content-aware
policies have less potential to yield better server mem-
ory hit ratios.

To illustrate, Figure 2 shows predicted load imbal-
ances in a server cluster as a function of the server
cluster size N . The experiment distributes requests by
a simple URL hash, which yields server cache e�ective-
ness comparable to LARD, but is vulnerable to load
imbalances. The idle time on the y-axis is predicted
by a simple and conservative simulation parameterized
similarly to the LARD study. It gives the average CPU
idle time of all servers over the interval needed for the
cluster to serve the trace at peak throughput (i.e., all
client requests are present at the beginning of the ex-
periment). For these experiments we used synthetic
input traces (generated by Surge [7]) to show the ef-
fect of varying the Zipf � coe�cient.

With no caching, the load skew for urlhash on the
� = 0:7 Zipf trace with 8 servers is almost 25% and
jumps to over 35% when using 16 servers, con�rming
the lard result that load imbalances under urlhash
can signi�cantly reduce cluster throughput, and that
load imbalances grow with cluster size. However, these
load imbalances are less severe after �ltering the trace
through caches; for example, a small cache drops the
load skew to 7% with 8 servers, even for the more heav-
ily skewed � = 0:8 trace. This e�ect is relatively insen-
sitive to front-end cache size. This indicates that ex-
plicit load balancing for content-based routing in Web
server clusters is less important in the presence of up-
stream caching.

This result is conservative in that we use small cache
capacities relative to the aggregate content size. How-
ever, we also assume that a single cache �lters requests
from all clients; this exaggerates the trickle-down ef-
fect from many proxies serving small populations, but
it fairly approximates multiple proxies serving mod-
est populations [19]. It is clear that Web caches and
CDNs will reshape the request stream for server clus-
ters to the degree that they are e�ective at all, and that
this will reduce the importance of sophisticated request
routing policies. The handling of object updates will
become increasingly dominant in determining server
performance for cacheable objects. For example, one
promising strategy uses a simple SLB switch together
with push-caching of modi�ed popular objects to all
servers before cached copies of those objects expire in
the proxies and CDNs.

This discussion leaves open the question of the role
of server switching in the cache arrays themselves. Zipf
distributions yield cache hit rates that are logarith-
mic with population size, and most of the bene�ts of
caching are obtained at populations in the low tens
of thousands [19]. Small proxy cache arrays can serve
this load easily, and load imbalances are less severe in
small clusters. Moreover, on this scale simple coopera-
tion schemes exist to share content across decentralized
proxy caches (e.g., [11]). Finally, demand-side edge
caches combine objects from all sites accessed by their
user populations. These small cache arrays may switch
on the target site IP address; this policy is simple and
fast, it preserves locality, and it easily accommodates
HTTP 1.1 persistent connections.

4 The Dynamic Web

The boom in wide-area caching reduces the demands
on Web server clusters to serve static, cacheable con-
tent. At the same time, large-scale Web services in-
creasingly incorporate content that is personalized for

the client, or generated dynamically by executing an
application program on the server. Apache and com-
mercial Web service software such as BEA WebLogic
and IBM WebSphere have evolved from simple Web
servers intoWeb application servers extensible through
CGI, Java server technology, Microsoft's Active Server
Pages, and others. These server platforms are growing
a new generation of server-based applications delivered
to customers as \software rentals", and a new industry
segment to host them: Application Service Providers.

Together, these factors suggest that the role of server
switching will shift toward request distribution for dy-
namic content servers. Dynamic servers di�er from
static content servers in several relevant respects:

� The load burden to process each request shifts
away from data movement and toward CPU pro-
cessing and back-end database access. Dynamic
services deliver much of their data to clients in the
form of static templates, wrapped around smaller
amounts of dynamically generated content using
XML/XSL or HTML inlining; content assembly
may occur at the network edge. These factors sug-
gest a lower relative penalty for direct back-end
server-server interaction | or connection migra-
tion | as an alternative to server switching.

� Much of the data driving dynamic services is
customer-speci�c, undermining any advantage
from URL switching for requests within a ses-
sion. Examples include user pro�les, shopping
carts, mailboxes, or accounts. In these cases, the
best way to preserve locality is to assure session
a�nity or session persistence, in which all requests
from a session arrive at the same server, e.g., using
cookie switching or dynamic URL rewriting rather
than URL switching. This also reduces the cost to
manage session encryption keys if the service uses
secure sockets (SSL).

� Dynamic services tend to have a multi-tiered
structure, in which Web application servers ini-
tiate processing for the request at back-end
databases or processing nodes. The level of in-
direction allows content-based request routing fea-
turs to be implemented in software within the Web
application server, rather than in a server switch.

These properties suggest a more limited role for
content-based switching features | such as URL
switching | for HTTP services in the future. How-
ever, cookie switching will continue to be important
for dynamic services.

5 Server Management

While the role of server switches for HTTP content
management may narrow in the future, server switches
have an expanding role as a focal point for manag-
ing server resources. Increasingly, Internet services
are hosted in shared data centers managed by third-
party hosting providers. Shared hosting centers o�er
economies of scale and a potential to dynamically ad-
just capacity provisioning to respond to request traf-
�c, quality-of-service speci�cations, and network con-
ditions. Customers (services) rent resources from the
hosting provider on a \pay as you go" basis; the host-
ing provider insulates its customers from unplanned
demand surges and unnecessary costs for excess capac-
ity.

Hosting centers face resource management chal-
lenges common to any shared computing resource. In
particular, an e�cient hosting center must determine
how much server resource to allocate to multiple in-
dependent services with varying resource requirements
and tra�c loads. Each service consists of a body of
data and software, such as a Web application. Ser-
vice software executes on pools of generic servers with
common hardware/software combinations. The host-
ing center allocates to each service a suitable share of
the server pool(s) that it needs to serve its load. The
center may use operating system enhancements such as
resource containers [6] in the server operating systems
to ensure performance isolation on shared servers.

Resource provisioning in a hosting center must be
continuous and adaptive for maximum e�ciency. In-
dividual server components export interfaces to moni-
tor status and reserve resources; the resource manager
uses these mechanisms to estimate global service load
and react to observed changes in load or resource avail-
ability by adjusting resource allotments. The Oceano
project at IBM Research is one project addressing these
challenges in a comprehensive way. Similar approaches
to automatic resource provisioning have been proposed
in systems for wide-area distributed services [18].

Request redirection through server switches is a fun-
damental enabler for dynamic adaptive resource provi-
sioning in hosting centers and other large-scale server
clusters. Since service load is driven by a large num-
ber of relatively small requests, the resource manager
can implement �ne-grained resource allocation adjust-
ments by recon�guring the server switches to balance
load across the server resources allotted to each service.
To external clients, each service appears as a single vir-
tual server whose power grows and shrinks with request
load and available resources.

The role of server switches in this context is to dy-

namically redirect incoming request tra�c to eligible
servers in the active set for each service. The switches
may use load status to balance incoming request traf-
�c across the servers in the active set. To fully sup-
port adaptive resource provisioning, a server switching
infrastructure must support dynamic, coordinated ad-
justments to the active sets for each service.

Adaptive resource provisioning in server clusters
leads to several important research challenges. For ex-
ample, it motivates load estimation and feedback mech-
anisms to dynamically assess the impact of resource al-
lotments on service quality, and a richer framework for
Service Level Agreements (SLAs) to specify tradeo�s
of service quality and cost. This would enable data
centers to degrade service intelligently during unantic-
ipated load spikes, resource failures, or other resource
constraints.

6 Server Switching Beyond HTTP

Virtualization using redirecting server switches is a
powerful technique for building scalable cluster-based
network services, while isolating clients from the de-
tails of service structure. What is the potential for
server switching for Internet service protocols other
than HTTP? This section discusses the role of virtual-
izing server switches for IP-based storage.

Network storage services share many of the de-
mands and characteristics of Web services, including
a �ne-grained request/response communication struc-
ture. Demand for large-scale storage services is grow-
ing rapidly along with the Web, driven not just by
Web services but also by new content capture devices
(e.g., digital cameras), new digital content standards
such as MP3, and new sources of scienti�c and busi-
ness data. Moreover, there is increasing interest in IP-
based network storage solutions as Gigabit Ethernet
enters widespread deployment and 10 Gigabit Ethernet
approaches its launch. With these standards the net-
work is the fastest path to external storage in IP LANs,
and storage outsourcing over the network is now cost-
e�ective. IP storage is competitive with FibreChannel
from a price/performance standpoint, and will soon ad-
vance with a new crop of devices based on the emerging
iSCSI block storage standard. All of these factors are
feeding demand for scalable IP-based network storage
solutions.

In our work on the Slice storage system [2, 1] we
are using server switching techniques to construct a
scalable \virtual storage appliance". Slice uses content
routing to distribute �le service tra�c across a dynamic
ensemble of servers and network-attached block storage
devices. An important goal of Slice is to automatically

balance the load across the ensemble, without imposing
user-visible �le volume boundaries or a volume man-
agement burden on administrators. The architecture
achieves this goal by interposing a request switching
�lter | called a �proxy | along each client's net-
work path to the storage service. The Slice prototype
supports the Network File System (NFS) V3 protocol,
which is currently the primary storage access protocol
in the Internet.

The Slice �proxy was designed to reside in a server
switch. Like an HTTP server switch, the �proxy in-
tercepts NFS requests addressed to the virtual NFS
server, and routes the request to a physical server
by applying a request routing function. The �proxy
rewrites �elds in the requests and responses to redirect
requests and to represent the ensemble as a uni�ed �le
service.

Experiments with the Slice prototype show the po-
tential of server switching for IP storage. The Slice
prototype scales to a terabyte of storage with aggre-
gate disk access bandwidths approaching one gigabyte
per second. It delivers scalable request throughput
(NFSOPS) on SPECsfs97, an industry-standard NFS
benchmark, demonstrating compatibility with stan-
dard NFS V3 clients.

The Slice experience illustrates three important
properties for server switching targeted to NFS V3,
which may extend to other storage protocols:

� E�ective content partitioning. Most NFS V3
operations apply to a single content item | a di-
rectory, name entry, or �le | which is readily de-
termined by examining the request type and ar-
guments. These arguments include the NFS �le
ID (�le handle); Slice places keys in the �le han-
dle to index content routing tables in the �proxy.
NFS does not impose unnecessary response order-
ing constraints that might prevent operations on
di�erent content items from proceeding in paral-
lel on di�erent servers. Although some operations
that cross content partition boundaries are more
expensive, they are relatively rare in practice.

� Simple request routing. The content rout-
ing policies in the Slice �proxy are simple and
fast. The amount of data that the �proxy must
maintain and examine in each request is tightly
bounded, and traversal of variable-length strings
is never required as in HTTP URL switching or
cookie switching. While �le system protocols are
more complex than HTTP, most of these can be
resolved without cluttering the �proxy, by push-
ing more responsibility for coordination into the
back-end servers. File system issues faced by the

Slice architecture include reliable block allocation,
recon�guration of the active server set, and trans-
parent scaling of the directory name space while
preserving ordering and reliability guarantees.

� Scalable and robust switching functions.

The Slice �proxy maintains a limited amount of
state for each client session. Because this state is
soft, transient failure of a �proxy does not com-
promise correctness. Because the �proxy requires
no state that is shared across clients, it is not a
barrier to scalability. The �proxy functions are
freely replicable: each port of a server switch may
function autonomously, and client tra�c may be
partitioned across multiple switches.

The key limitation of the Slice �proxy architec-
ture is that it is subject to the persistent connection
problem discussed with reference to HTTP 1.1 in Sec-
tion 2.4. The Slice prototype works with NFS/UDP,
but if clients use a connection-based transport such as
TCP then a switch-based �proxy cannot route multi-
ple requests arriving on the connection independently.
This is necessary for any content routing policy with
persistent connections. One alternative is to run the
�proxy as a full proxy acting as a terminal endpoint for
connections to the clients and servers, but this entails
signi�cant bu�ering and protocol overhead, which is
unacceptable given the performance demands for net-
work storage.

NFS V4 and other important IP services assume
that their transport layers provide reliable and se-
quenced delivery with congestion control, such as TCP.
How can we support these properties while accommo-
dating server switching with persistent connections?
Achieving this goal requires a transport protocol that
explicitly permits a more decentralized notion of what
constitutes a connection \endpoint", in which multi-
ple IP hosts join together in an ensemble that appears
to the connection peer as a single virtual host. We
call this Anypoint communication, because the switch
may route tra�c on the connection to any of several
end nodes, at the discretion of a service-speci�c routing
policy. A key aspect of an Anypoint-capable transport
is that connection endpoint state and functions are dis-
tributed between the edge switch and the physical end
nodes, and some protocol properties and guarantees are
de�ned as end-to-edge rather than end-to-end. For ex-
ample, to perform �ne-grained request routing, a server
switch must be capable of distinguishing independent
request and response frames in the tra�c stream, and
it must be permitted to weaken end-to-end ordering
guarantees for frames routed to di�erent end nodes.

Explicit support for Anypoint communication would

enable �ne-grained request routing for HTTP 1.1, NFS,
and other service protocols using the transport. It
could also be a basis for a general approach to extend-
ing services by interposing \wrapper" functions in the
network, transparently to clients. It is an open re-
search problem to de�ne such a transport model, and
to evaluate its bene�ts relative to other virtualization
approaches for the next generation of IP-based services.

7 Conclusion

This paper explores interrelated factors shaping the
role of server switching and request distribution for
server clusters. It outlines several factors a�ecting the
demands on mechanisms and policies for server switch-
ing in the Web.

Wide-area cache infrastructures and Content Deliv-
ery Networks are absorbing a larger share of requests
for cacheable static objects. Simulation results sug-
gest that this creates a \trickle-down e�ect" undermin-
ing the key sources of load skew and locality in Web
server clusters. This reduces the potential bene�t from
content-based server switching | URL switching | at
the same time that HTTP 1.1 deployments invalidate
the assumptions on which URL switching implementa-
tions are based.

Dynamic content constitutes an increasing share of
server cluster tra�c, as a result of the trickle-down ef-
fect and because the most popular Web sites are incor-
porating more dynamic content. Web-based applica-
tion services will accelerate the shift to server clusters
dominated by dynamic content. This will also a�ect
the choices for server switching policies: a combination
of cookie (session) switching and simple server load bal-
ancing may o�er the best request routing solution for
tomorrow's Web clusters. These approaches are well-
understood and scalable, and they are compatible with
HTTP 1.1 persistent connections. While content rout-
ing policies such as URL hashing may continue to be
attractive, they must be re-evaluated in light of recent
shifts.

In addition to these changes, server switching may
play an increasingly prominent role in dynamic re-
source provisioning for shared hosting centers. To ad-
equately support this need, server switches must sup-
port exible recon�guration.

Experience with server switching in the Web shows
that network-based request redirection is a powerful
technique for virtualizing services. In the future, server
switches may play a role in virtualizing IP storage and
other services. Experience with the Slice storage sys-
tem project has shown that server switches can virtual-
ize an NFS service in the network, enabling a scalable

storage architecture that is compatible with existing
NFS clients. However, supporting this approach in a
fully general way requires addressing the challenge of
independently routing multiple requests arriving on the
same transport connection, which is also necessary to
support content routing policies over HTTP 1.1 with
persistent connections.

Acknowledgements

The ideas and research issues in this paper are a
product of collaborations with Darrell Anderson, Ron
Doyle, Syam Gadde, Richard Kisley, Amin Vahdat,
and Ken Yocum.

References

[1] Darrell C. Anderson and Je�rey S. Chase. Failure-

atomic �le access in an interposed network storage sys-

tem. In Proceedings of the Ninth IEEE International

Symposium on High Performance Distributed Comput-

ing (HPDC), August 2000.

[2] Darrell C. Anderson, Je�rey S. Chase, and Amin M.

Vahdat. Interposed request routing for scalable net-

work storage. In Proceedings of the Fourth Sympo-

sium on Operating System Design and Implementation

(OSDI), October 2000.

[3] T. Anderson, M. Dahlin, J. Neefe, D. Patterson,

D. Roselli, and R. Wang. Serverless network �le sys-

tems. In Proceedings of the ACM Symposium on Op-

erating Systems Principles, pages 109{126, December

1995.

[4] M. Aron, P. Druschel, and W. Zwaenepoel. E�cient

support for P-HTTP in cluster-based Web servers. In

In Proceedings of USENIX'99 Technical Conference,

1999.

[5] Mohit Aron, Darren Sanders, Peter Druschel, and

Willy Zwaenepoel. Scalable content-aware request dis-

tribution in cluster-based network servers. In In Pro-

ceedings of the USENIX 2000 Technical Conference,

2000.

[6] Gaurav Banga, Peter Druschel, and Je�rey C. Mogul.

Resource containers: A new facility for resource man-

agement in server systems. In Third Symposium on

Operating Systems Design and Implementation, Febru-

ary 1999.

[7] Paul Barford and Mark E. Crovella. Generating rep-

resentative Web workloads for network and server

performance evaluation. In Proceedings of Perfor-

mance '98/ACM SIGMETRICS '98, pages 151{160,

June 1998.

[8] Bob Braden. Internet Engineering Task Force, Net-

work Working Group, RFC 1122: Requirements for In-

ternet hosts { communication layers, 1989.

[9] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and

Scott Shenker. Web caching and Zipf-like distribu-

tions: Evidence and implications. In Proceedings of

IEEE Infocom '99, March 1999.

[10] Ronald P. Doyle, Je�rey S. Chase, Syam Gadde, and

AminM. Vahdat. The trickle-down e�ect: Web caching

and server request distribution. In Proceedings of the

Sixth International Workshop on Web Caching and

Content Distribution, 2001.

[11] Li Fan, Pei Cao, Jussara Almeida, and Andrei Broder.

Summary Cache: A scalable wide-area Web cache

sharing protocol. In Proceedings of ACM SIG-

COMM98, September 1998.

[12] Michael J. Feeley, William E. Morgan, Frederic H.

Pighin, Anna R. Karlin, and Henry M. Levy. Imple-

menting global memory management in a workstation

cluster. In Proceedings of the Fifteenth ACM Sympo-

sium on Operating Systems Principles, 1995.

[13] Steve Glassman. A Caching Relay for the World Wide

Web. In First International World Wide Web Confer-

ence, 1994.

[14] Eric Dean Katz, Michelle Butler, and Robert Mc-

Grath. A Scalable HTTP Server: The NCSA Proto-

type. In First International Conference on the World-

Wide Web, 1994.

[15] J. Mogul. The case for persistent HTTP connections.

In In Proceedings of SIGCOMM, pages 299{313, 1995.

[16] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael

Svendsen, Peter Druschel, Willy Zwaenopoel, and

Erich Nahum. Locality-aware request distribution in

cluster-based network servers. In Proceedings of the

Eighth International Conference on Architectural Sup-

port for Programming Languages and Operating Sys-

tems, October 1998.

[17] Alex C. Snoeren, David G. Andersen, and Hari Balakr-

ishnan. Fine-grained failover using connection migra-

tion. In Proc. of the Third Annual USENIX Sympo-

sium on Internet Technologies and Systems (USITS),

2001.

[18] Amin Vahdat, Thomas Anderson, Michael Dahlin, Es-

hwar Belani, David Culler, Paul Eastham, and Chad

Yoshikawa. WebOS: Operating System Services for

Wide-Area Applications. In Proceedings of the Seventh

IEEE Symposium on High Performance Distributed

Systems, Chicago, Illinois, July 1998.

[19] Alec Wolman, Geo� Voelker, Nitin Sharma, Neal

Cardwell, Anna Karlin, and Henry Levy. On the scale

and performance of cooperative Web proxy caching. In

Proceedings of the 17th ACM Symposium on Operating

Systems Principles, December 1999.

