
78 // Architectures 2.10 Clos-networks

2.10 Clos-networks
Theory of Clos networks came into existence with telephone networks – paper : :

Charles Clos, – “A Study of Non-Blocking Switching Networks”, 1952.

2.10.1 Myrinet

Myrinet (http://www.myri.com)
Standardised network architecture
Aims:

• Max throughput with scalability to large number of processors

• Low latency

• eliminate the need to allocate processors according to network topology

◦ (historical remark: in the same reasons, RAM replaced sequential access
memory (disk, trumble)

In general, good network makes 1/2 cluster cost!

http://www.myri.com


79 // Architectures 2.10 Clos-networks

Myrinet card and switch

128-port Myrinet Clos network switch



80 // Architectures 2.10 Clos-networks

2.10.2 Topological concepts

• Minimum bisection (minimaalne poolitus)
Definition. Minimal number of connections between arbitrary two equally sized
sets of nodes in the network

• Describes minimal throughput, independently from communication pattern

• Upper bound in case of N-node network is N/2 connections

• Network topology achieving this upper bound is called full bisection (täispooli-
tus)



81 // Architectures 2.10 Clos-networks

Example. 8 nodes, network switch has 5 ports:

What is Minimal Bisection in this case?Minimal bisection is 1 – i.e. very bad



82 // Architectures 2.10 Clos-networks

But, if to set the network up as follows:

Question: Does there exist full bisection? If yes, how?



83 // Architectures 2.10 Clos-networks

Answer: minimal bisection: 4. But not in case of each possible communication
pattern! (find!) => not rearrageable network

2.10.3 Rearrangeable networks (ümberjärjestatavad võrgud)

Definition. Network is called rearrangeable, if it can find a route in case of arbi-
trary permutation of communication patterns (or, whichever node wants to talk to with
whichever other node, there is always a way to do it simultaneously)

Theorem. Whichever rearrangeable network has full bisection.
Is the opposite also true or not?The opposite is not true. Network can have full bisection without being rearrange-

able.
(Proof is based on Hall’s Theorem)



84 // Architectures 2.10 Clos-networks

Example: 8-node clos network with 4-port switches.
"Leaf"-switches
"Spine"-switches

Main rule: As many connections to the leaves as many there are to the spine-
switches (enables rearangeability) Therefore: Clos networks are:

• scalable upto a large number of nodes

• rearrangeable (proved, that in each permutation there exists a routing table)

• There exist multiple routes



85 // Architectures 2.10 Clos-networks

In case of too few ports on a switch, it is possible to compose a larger one:



86 // Architectures 2.10 Clos-networks



87 // Architectures 2.11 Beowulf clusters

2.11 Beowulf clusters

• History

•
1993-1994 Donald Becker (NASA) – 16 486 DX4 66MHz processors,
ETHERNET-channel bonding, COTS (Commodity Off The Shelf ) – creat-
ed in CESDIS (The Center of Excellence in Space Data and Information
Sciences), 74 MFlops (4,6 MFlops/node).

• Beowulf – formerly project name, not the system
Dr Thomas Sterling: "What the hell, call it ’Beowulf.’ No one will ever hear of

it anyway."

• Beowulf - first poem in En-
glish based on Scandina-
vian legend about hero who
defeated the monster Gren-
del with his courage and
strength



88 // Architectures 2.11 Beowulf clusters

• Network choice
Ethernet 100Mbps, Gigabit Ethernet, Infiniband, Myrinet (Scali, pathscale, nu-
malink, etc)

• OS – most often linux

• Typical Beowulf cluster Internet

Frontend

Switch

Nodes



89 // Architectures 2.11 Beowulf clusters

• Building a cluster (rack/shelf)?



90 // Architectures 2.11 Beowulf clusters

• console switch?

• Security

Internet

Frontend

Switch

Nodes

The part of the system

needing security measures

• which software.

• Cluster administration

◦ ClusterMonkey

◦ Rocks

◦ Clustermagic

◦ etc.



91 // Performance 3.1 Speedup

3 Parallel Performance
How to measure parallel performance?

3.1 Speedup

S(N,P) :=
tseq(N)

tpar(N,P)

tseq(N) – time for solving given problem with best known sequential algorithm

• In general, different algorithm than the parallel one

◦ If same (and there exist a faster sequential one):

Relative Speedup

• 0 < S(N,P)≤ P



92 // Performance 3.2 Efficiency

• If S(N,P) = P, – linear speedup or optimal speedup (Example, embarras-
ingly parallel algorithms)

• May happen that S(N,P) > P, (swapping; cache effect) – superlinear
speedup

• Often S(N,P)< 1, – is it speedup?slowdown

3.2 Efficiency

E(N,P) :=
tseq(N)

P · tpar(N,P)
.

Presumably, 0 < E(N,P)≤ 1.



93 // Performance 3.3 Amdahl’s law

3.3 Amdahl’s law

In each algorithm ∃ parts that cannot be parallelised

• Let σ (0 < σ ≤ 1) – sequential part

• Assume that the rest 1−σ parallelised optimally

Then, in best case:

S(N,P) =
tseq(

σ + 1−σ

P

)
tseq

=
1

σ + 1−σ

P

≤ 1
σ
.



94 // Performance 3.3 Amdahl’s law

Example 1. Assume 5% of the algorithm is not parallelisable (ie. σ = 0.05) => :

P max S(N,P)
2 1.9
4 3.5

10 6.9
20 10.3

100 16.8
∞ 20

Therefore, not much to gain at all with
huge number of processors!

Example 2. If σ = 0.67 (33% parallelisable), with P = 10:

S(N,10) =
1

0.67+0.33/10
= 1.42



95 // Performance 3.3 Amdahl’s law



96 // Performance 3.4 Gustafson-Barsis’ law

3.4 Gustafson-Barsis’ law

John Gustafson & Ed Barsis (Scania Laboratory) 1988:

• 1024-processor nCube/10 claimed: they bet Amdahl’s law!

• Their σ ≈ 0.004...0.008 • but got S≈ 1000

• (Acording to Amdahl’s S might be 125...250)

How was it possible?
Does Amdahl’s law hold?
Mathematically – yes. But in practice – not very good idea to solve a problem

with fixed size N on whatever number of processors!
In general, σ = σ(N) 6= const
Usually, σ decreases with N growing!
Algorithm is said to be effectively parallel if σ → 0 with N→ ∞

Scaled efficiency to avoid misunderstandings:



97 // Performance 3.5 Scaled efficiency

3.5 Scaled efficiency

ES(N,P) :=
tseq(N)

tpar(P ·N,P)

• Problem size increasing accordingly with adding new processors – does time
remain the same?

• 0 < ES(N,P)≤ 1

• If ES(N,P) = 1 – linear speedup



98 // Performance 3.6 Methods to increase efficiency

3.6 Methods to increase efficiency

Factors influencing efficiency:

• communication time

• waiting time

• additional computations

• changing/improving algorithm

Profiling parallel programs

• MPE - jumpshot, LMPI, MpiP

• Totalview, Vampir, Allinea OPT

• Linux - gprof (compiler switch -pg)

• SUN - prof, gprof, prism

• Many other commercial applications



99 // Performance 3.6 Methods to increase efficiency

3.6.1 Overlapping communication and computations

Example: Parallel Ax-operation for sparse matrices
par_sparse_mat.f90 (http://www.ut.ee/~eero/F95jaMPI/Kood/

mpi_CG/par_sparse_mat.f90.html) (“Fortran95 ja MPI” pp. 119-120)
Matrix partitioned, divided between processors. Starting communication (non-

blocking); calculations at inside parts of the region => economy in waiting times.

3.6.2 Extra computations instead of communication

• Computations in place instead of importing the results over the network

• Sometimes it pays off!

Example: Random number generation. Broadcast ing only seed and generate in par-
allel (deterministic algorithm)

http://www.ut.ee/~eero/F95jaMPI/Kood/mpi_CG/par_sparse_mat.f90.html
http://www.ut.ee/~eero/F95jaMPI/Kood/mpi_CG/par_sparse_mat.f90.html


100 // Performance 3.7 Benchmarks

3.7 Benchmarks

5 main HPC (High Performance Computing) benchmarks:

• NPB

• Linpack

• HINT

• Perf

• IOzone

• Graph 500

3.7.1 Numerical Aerodynamic Simulation (NAS) Parallel Benchmarks (NPB)

MPI, 8 programs (IS,FT,MG,CG,LU,SP,BT,EP) from Computational Fluid Dynam-
ics (CFD) code

• Integer Sort (IS) - integer operations and communication speed. Latency of
critical importance

• Fast Fourier Transform (FT). Remote communication performance; 3D ODV
solution



101 // Performance 3.7 Benchmarks

• Multigrid (MG). Well-structured communication pattern test. 3D Poisson prob-
lem with constant coefficients

• Conjugate Gradient (CG). Irregular communication on unstructured discreti-
sation grid. Finding smallest eigenvalue of a large positive definite matrix

• Lower-Upper diagonal (LU). Blocking communication operations with small
granularity, using SSOR (Symmetric Successive Over-Relaxation) to solve
sparse 5x5 lower and upper diagonal systems. Length of the message varying
a lot

• Scalar pentadiagonal (SP) and block tridiagonal (BT). Balance test between
computations and communication. Needs even number of processes. Solving
a set of diagonally not dominant SP and BT systems. (Although similar, dif-
ference in the ratio of communication and computations – SP having more
communication than BT

• Embarrassingly Parallel (EP). Gauss residual method with some specifics;
showing the performance of the slowest processor.

• + some new tests in version 3, good with networked multicore processors



102 // Performance 3.7 Benchmarks

3.7.2 Linpack

Jack Dongarra. HPL - High Performance Linpack, using MPI and BLAS. Solving
systems of linear equations with dense matrices. The aim is to fit a problem with
maximal size (advisably, utilising 80% of memory).

• Used for http://www.top500.org

◦ Also, http://www.bbc.co.uk/news/10187248

• Rpeak - peak performance in Gflops

• N- size of matrix giving peak per-
formance in Gflops (usually <80%
memory size)

• Rmax - maximal achieved perfor-
mance in Gflops

• NB - blocksize. In general, the
smaller the better, but usually in
range 32...256.

http://www.top500.org
http://www.bbc.co.uk/news/10187248


103 // Performance 3.7 Benchmarks

3.7.3 HINT benchmark

The HINT (Hierarchical INTegration). Quite popular benchmark. Graphical view
of:

• floating point performance

• integer operation performance

• performances with different memory hierarchies

3.7.4 Perf

Measures network latency and banwidth between two nodes

3.7.5 IOzone

Tests I/O performance



104 // Performance 3.7 Benchmarks

3.7.6 Graph 500

• Graph 500 benchmark initiative (http://www.graph500.org/
specifications)

http://www.graph500.org/specifications
http://www.graph500.org/specifications

