78 /! Architectures 2.10 Clos-networks

2.10 Clos-networks

Theory of Clos networks came into existence with telephone networks — paper : :
Charles Clos, — “A Study of Non-Blocking Switching Networks”, 1952.

2.10.1 Myrinet

Myrinet (http://www.myri.com)
Standardised network architecture
Aims:

e Max throughput with scalability to large number of processors
e Low latency

e climinate the need to allocate processors according to network topology

o (historical remark: in the same reasons, RAM replaced sequential access
memory (disk, trumble)

In general, good network makes 1/2 cluster cost!


http://www.myri.com

79 /I Architectures 2.10 Clos-networks

Myrinet card and switch




80 // Architectures 2.10 Clos-networks

2.10.2 Topological concepts

e Minimum bisection (minimaalne poolitus)
Definition. Minimal number of connections between arbitrary two equally sized
sets of nodes in the network

N/2 Vérk N/2

e Describes minimal throughput, independently from communication pattern
e Upper bound in case of N-node network is N/2 connections

e Network topology achieving this upper bound is called full bisection (téispooli-
tus)



81 // Architectures 2.10 Clos-networks

Example. 8 nodes, network switch has 5 ports:

Minimal bisection is 1 —i.e. very bad



82 // Architectures 2.10 Clos-networks

But, if to set the network up as follows:

Question: Does there exist full bisection? If yes, how?



83 // Architectures 2.10 Clos-networks

Answer: minimal bisection: 4. But not in case of each possible communication
pattern! (find!) => not rearrageable network

2.10.3 Rearrangeable networks (ilimberjarjestatavad vorgud)

Definition. Network is called rearrangeable, if it can find a route in case of arbi-
trary permutation of communication patterns (or, whichever node wants to talk to with
whichever other node, there is always a way to do it simultaneously)

Theorem. Whichever rearrangeable network has full bisection.

The opposite is not true. Network can have full bisection without being rearrange-
able.

(Proof is based on Hall’s Theorem)



84 // Architectures 2.10 Clos-networks

Example: 8-node clos network with 4-port switches.
"Leaf"-switches
"Spine"-switches

AN
00000000

Main rule: As many connections to the leaves as many there are to the spine-
switches (enables rearangeability) Therefore: Clos networks are:

e scalable upto a large number of nodes
e rearrangeable (proved, that in each permutation there exists a routing table)

e There exist multiple routes



85 // Architectures 2.10 Clos-networks

In case of too few ports on a switch, it is possible to compose a larger one:

X)
RN

VMW{




86 // Architectures 2.10 Clos-networks

All Spine

2N TN TN T T T T Compute
4 32 racks

Lonestar: 312 Compute Nodes



87 // Architectures 2.11 Beowulf clusters

2.11 Beowulf clusters

e History

1993-1994 Donald Becker (NASA) — 16 486 DX4 66MHz processors,
ETHERNET-channel bonding, COTS (Commodity Off The Shelf) — creat-
ed in CESDIS (The Center of Excellence in Space Data and Information
Sciences), 74 MFlops (4,6 MFlops/node).

e Beowulf — formerly project name, not the system
Dr Thomas Sterling: "What the hell, call it '‘Beowulf” No one will ever hear of
it anyway."

e Beowulf - first poem in En-
glish based on Scandina-
vian legend about hero who
defeated the monster Gren-
del with his courage and
strength




88 // Architectures 2.11 Beowulf clusters

e Network choice
Ethernet 100Mbps, Gigabit Ethernet, Infiniband, Myrinet (Scali, pathscale, nu-

malink, etc)
e OS — most often linux

e Typical Beowulf cluster

Frontend
Switch




89 // Architectures 2.11 Beowulf clusters

e Building a cluster (rack/shelf)?




90 // Architectures

2.11 Beowulf clusters

e console switch?

e Security

The part of the system

needing security measures

e which software.

e Cluster administration

e}

e}

O

ClusterMonkey
Rocks
Clustermagic

etc.



91 // Performance 3.1 Speedup

3 Parallel Performance
How to measure parallel performance?

3.1 Speedup

tseq(N)

SN = (V. P)

tseq(N) — time for solving given problem with best known sequential algorithm

e In general, different algorithm than the parallel one
o If same (and there exist a faster sequential one):

Relative Speedup

e 0<S(N,P)<P



92 // Performance 3.2 Efficiency

e If S(N,P) = P, — linear speedup or optimal speedup (Example, embarras-
ingly parallel algorithms)

e May happen that S(N,P) > P, (swapping; cache effect) — superlinear
speedup

e Often S(N,P) < 1, — slowdown

3.2 Efficiency

tseq(N)

E(N,P) = —————.
( 7 ) P'tpar(N7P)

Presumably, 0 < E(N,P) < 1.



93 // Performance 3.3 Amdahl’s law

3.3 Amdahl’s law

In each algorithm d parts that cannot be parallelised

e Let o (0 < o < 1)-sequential part

e Assume that the rest 1 — o parallelised optimally
G o—1
Then, in best case:

t 1
S(N,P) = e — <

1
(6+59 1 o0+52 o




94 // Performance 3.3 Amdahl’s law

Example 1. Assume 5% of the algorithm is not parallelisable (ie. 0 = 0.05) => :

| P [ maxS(N,P) |

2 1.9 Therefore, not much to gain at all with
4 3.5 huge number of processors!
10 6.9
20 10.3
100 16.8
) 20

Example 2. If 0 = 0.67 (33% parallelisable), with P = 10:

1
S(N,10) = =1.42
(N, 10) 0.67+40.33/10




95 // Performance 3.3 Amdahl’s law

Amdahl’s Law
20.00 —
]
18.00 //
/ Parallel Portion
16.00 74 50%
/ — 75%
14.00 90%
/ — 95%
12.00 vi
N /
=]
glo.oo 7 —
) / 1
8.00 -
6.00 //
4.00 //,/ —
//
2.00+
PEETRTE R E S s § 85 85 2805 8 8 g
— o~ [T} [=] o o — m ~ [Ts]
— ~ <t [e2] [+ o wn
— m [{e]
Number of Processors




96 // Performance 3.4 Gustafson-Barsis’ law

3.4 Gustafson-Barsis’ law
John Gustafson & Ed Barsis (Scania Laboratory) 1988:

e 1024-processor nCube/10 claimed: they bet Amdahl’s law!
e Their 6 ~ 0.004...0.008 e but got S~ 1000
e (Acording to Amdahl’'s S might be 125...250)

How was it possible?

Does Amdahl’s law hold?

Mathematically — yes. But in practice — not very good idea to solve a problem
with fixed size N on whatever number of processors!

In general, 6 = 6(N) # const

Usually, o decreases with N growing!

Algorithm is said to be effectively parallel if c — 0 with N — oo

Scaled efficiency to avoid misunderstandings:



97 // Performance 3.5 Scaled efficiency

3.5 Scaled efficiency

E (N P) N tseq(N)
S (PN, P)

e Problem size increasing accordingly with adding new processors — does time
remain the same?

e 0<Es(N,P)<1

e If E¢(N,P) =1 —linear speedup



98 // Performance 3.6 Methods to increase efficiency

3.6 Methods to increase efficiency

Factors influencing efficiency:

e communication time

waiting time

additional computations

changing/improving algorithm
Profiling parallel programs

e MPE - jumpshot, LMPI, MpiP

Totalview, Vampir, Allinea OPT

e Linux - gprof (compiler switch -pg)

SUN - prof, gprof, prism

Many other commercial applications



99 // Performance 3.6 Methods to increase efficiency

3.6.1 Overlapping communication and computations

Example: Parallel Ax-operation for sparse matrices

par_sparse_mat.fo0 (http://www.ut.ee/~eero/F95jaMPI/Kood/
mpi_CG/par_sparse_mat.f90.html) (“Fortran95 ja MPI” pp. 119-120)

Matrix partitioned, divided between processors. Starting communication (non-
blocking); calculations at inside parts of the region => economy in waiting times.

3.6.2 Extra computations instead of communication

e Computations in place instead of importing the results over the network

e Sometimes it pays off!

Example: Random number generation. Broadcasting only seed and generate in par-
allel (deterministic algorithm)


http://www.ut.ee/~eero/F95jaMPI/Kood/mpi_CG/par_sparse_mat.f90.html
http://www.ut.ee/~eero/F95jaMPI/Kood/mpi_CG/par_sparse_mat.f90.html

100 // Performance 3.7 Benchmarks

3.7 Benchmarks

5 main HPC (High Performance Computing) benchmarks:

e NPB e Perf
I
e Linpack * 10zone
e Graph 500
e HINT

3.7.1 Numerical Aerodynamic Simulation (NAS) Parallel Benchmarks (NPB)

MPI, 8 programs (IS,FT,MG,CG,LU,SP,BT,EP) from Computational Fluid Dynam-
ics (CFD) code

e Integer Sort (IS) - integer operations and communication speed. Latency of
critical importance

e Fast Fourier Transform (FT). Remote communication performance; 3D ODV
solution



101

/| Performance 3.7 Benchmarks

Multigrid (MG). Well-structured communication pattern test. 3D Poisson prob-
lem with constant coefficients

Conjugate Gradient (CG). Irregular communication on unstructured discreti-
sation grid. Finding smallest eigenvalue of a large positive definite matrix

Lower-Upper diagonal (LU). Blocking communication operations with small
granularity, using SSOR (Symmetric Successive Over-Relaxation) to solve
sparse 5x5 lower and upper diagonal systems. Length of the message varying
a lot

Scalar pentadiagonal (SP) and block tridiagonal (BT). Balance test between
computations and communication. Needs even number of processes. Solving
a set of diagonally not dominant SP and BT systems. (Although similar, dif-
ference in the ratio of communication and computations — SP having more
communication than BT

Embarrassingly Parallel (EP). Gauss residual method with some specifics;
showing the performance of the slowest processor.

+ some new tests in version 3, good with networked multicore processors



102 // Performance 3.7 Benchmarks

3.7.2 Linpack

Jack Dongarra. HPL - High Performance Linpack, using MPI and BLAS. Solving
systems of linear equations with dense matrices. The aim is to fit a problem with
maximal size (advisably, utilising 80% of memory).

e Usedforhttp://www.top500.0rg
o Also, http://www.bbc.co.uk/news/10187248

® R,.qr - peak performance in Gflops ® R,. - maximal achieved perfor-
mance in Gflops

e N- size of matrix giving peak per- e NB - Dblocksize. In general, the
formance in Gflops (usually <80% smaller the better, but usually in
memory size) range 32...256.


http://www.top500.org
http://www.bbc.co.uk/news/10187248

103 // Performance 3.7 Benchmarks

3.7.3 HINT benchmark

The HINT (Hierarchical INTegration). Quite popular benchmark. Graphical view
of:

e floating point performance
e integer operation performance

e performances with different memory hierarchies

3.7.4 Perf

Measures network latency and banwidth between two nodes

3.7.5 10zone

Tests 1/0 performance



104 // Performance 3.7 Benchmarks

3.7.6 Graph 500

e Graph 500 benchmark initiative (http://www.graph500.0org/
specifications)


http://www.graph500.org/specifications
http://www.graph500.org/specifications

