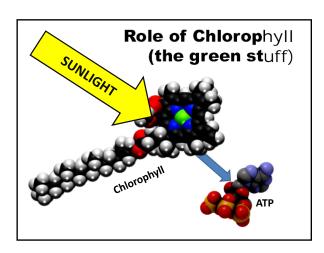
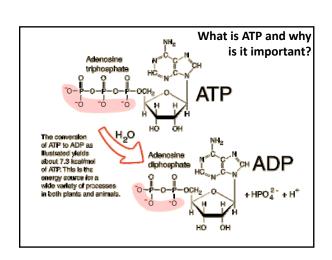
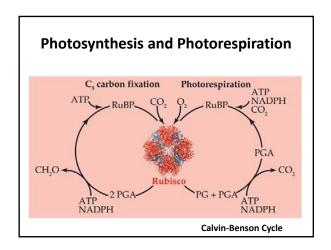


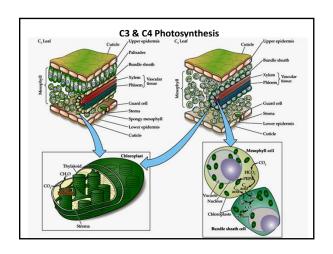
What Does this Mean for the Planet?

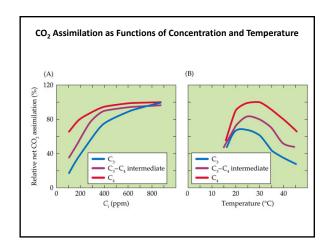
- Only a small fraction (0.001%) of the Earth's crust's total carbon in in the atmosphere
- The rest is in:
 - Limestone (99.924%)
 - Dissolved in the sea (0.063%)
 - Fossil fuels (0.007%)
 - Biomass (0.003%)
- The reason CO₂ is building up in the atmosphere is that we are digging up carbon and burning it faster than photosynthesis (or chemical weathering of rocks and dissolving in the sea) can suck it out of the air

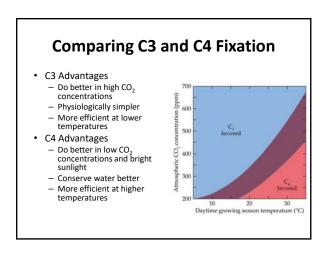


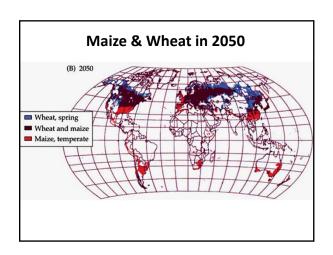


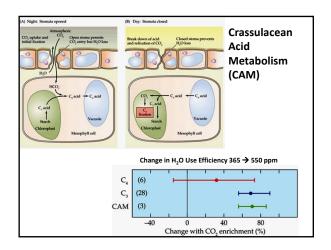

Basics of Photosynthesis

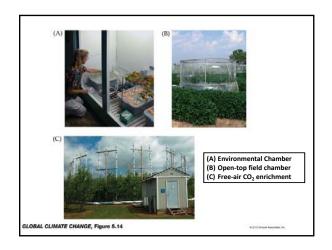

- Simplified reaction CO₂ + H₂O → H₂CO + O₂
 Happens in specialized *Chloroplasts* (organelles in leaves)
- C3 Photosynthesis

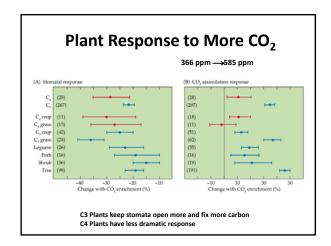

 - Plant takes CO₂ directly from air during the day
 Works best when its cool with plenty of H₂O, sunlight, and CO₂
 - Evaporate 500-1000 H₂O molecules for every CO₂ assimilated
- Rice, wheat, barley
- C4 Photosynthesis
- Plant stores CO₂ in Mesophyll cells
- Pumps CO₂ to bundle-sheath cells for C3 fixation
- Works best when its warm, with lower CO₂, and needs less water
 Evaporate 300-400 H₂O moleculres for every CO₂ assimilated
- Corn, sorghum, sugarcane, millett, amaranth
- CAM (Crassulacean Acid Metabolism) Photosynthesis
- Stomata open at night to let in CO₂
- Close during the day to trap water while photosynthesis rolls
- Mostly in Cacti
- Photorespiration in leaves competes with photosynthesis

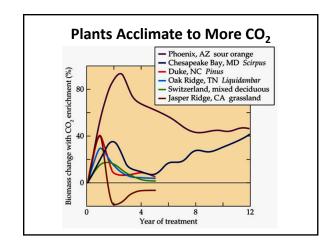


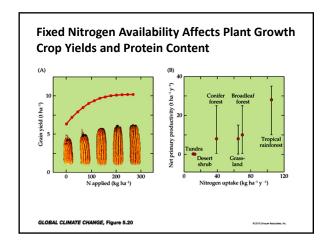


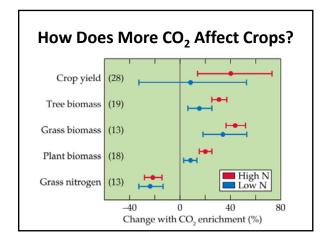


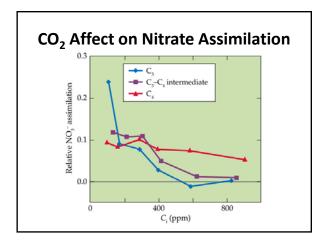











Nitrogen Chemistry

- Haber-Bosch process $N_2 + 3H_2 --> 2NH_3$
 - Makes ammonia for fertilizer & explosives
- Biological equivalent in some bacteria and cyanobacteria
 - N₂ + 8e⁻ +8H⁺ + 16ATP--> 2NH₃ + H₂ + 16ADP + 16Pi
- Dissolves in H₂O to make ammonium ion
 - NH₃ + H₂O --> NH₄⁺ + OH⁻
 - Enters biochemical processes to make Amino Acids (Protein) and Nitrate (NO₃⁻)
 - Plants use NH₄⁺ and NO₃⁻ differently in elevated CO₂

Making Protein From NH₄⁺ and NO₃⁻

- · How to make amino acids for protein:
 - NH₄++ organic acid + 2ATP + e⁻ --> amino acid + 2ADP + 2P_i +H₂O
 - Requires ammonium and uses only 2 ATP --> ADP
- · How to make ammonium from nitrate:
 - $NO_3^- + 10ATP + 10H^+ + 8e^- --> NH_4^+ + 10ADP + 10P_i + 3H_2O$
 - Making amino acid from nitrate eats a total of 12 ATPs; whereas making it from ammonium takes only 2ATPs.
- On the other hand plants can store NO₃⁻ more readily
- If both $\mathrm{NH_4}^+$ and $\mathrm{NO_3}^-$ are available, most plants will prefer $\mathrm{NH_4}^+$, but if fixed nitrogen is scarce, they will use whatever they can get.

Bloom's Hypothesis

- Photorespiration is not an evolutionary relic that wastes energy
- It generates the NADPH needed to convert nitrate to
- In C3 Photosynthesis elevated CO₂ (or low O₂) that inhibits photorespiration also inhibits nitrate availability to make
- This effect makes C3 plants more energy efficient
- But also makes C3 crops poorer in protein on a high CO2
- C4 plants are much less sensitive to high CO₂
- Decreased protein content in C3 forage and food crops (wheat, rice) could be a big deal for our future

Plants and Animals also Use CO2 for **Environmental Signaling**

Anthrax

Aedes aegypti (Dengue

Photosynthesis makes sugars CO₂ + H₂O --> H₂CO + O₂ in chloroplasts of plants

SUMMARY

- Role of ATP

 Made (regenerated ADP --> ATP) when sun shines on Chlorophyll in green pla
 Used in Calvin-Benson cycle to make sugar

 Sugar used in mitochondria (of plants & animals) to make ATP (ADP --> ATP)
- ATP supplies energy for everybody's metabolism (ATP --> ADP)
- ATP supplies energy for everybody's metabolism (ATP -> ADP)
 CS Photosynthesis (rice wheat)
 CO, absorbed directly from air
 Photosynthesis in palisade cells
 Energy efficient, water inefficient
 Better in wetter, cooler, high CO2 environments
 Elevated CO; increase yields, but decreases protein production
- C4 Photosynthesis (maize, corn)

 C0, stored in spongy mesophyll cells as bicarbonate (HCO₃) during the night
 Released as CO₂ in bundle sheath cells
 Photosynthesis in chloroplasts

- Less energy efficient, more water efficient
 Better in dryer, warmer, low CO₂ environments
 Not so responsive to elevated CO₂

- Not so responsive to reverse Cu₂

 CAM Crassuleacean acid metabolism(Cacti)

 Absorb CO, during the night, phorosynthesize during the day

 Bottom line: Higher CO₂ levels and warmer temperatures may extend areas where crops grow.
- But protein content of C3 crops (rice, wheat) may decrease (Bloom's hypothesis)