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2.29 Self-Tuning Controllers

P. E. WELLSTEAD (1995) B. G. LIPTÁK, S. RENGANATHAN (2005)

Types of Products A. Stand-alone hardware mostly for temperature control
on the Market: B. Stand-alone hardware for tuning all process loops

C. Offered as part of DCS supplier’s package
D. Self-tuning software package

Partial List of Suppliers ABB Process Automation, U.S. (MC 5000) (B) (www.abb.com/us/instrumentation)
(Product Names): Asea Brown Boveri, Sweden (Novatune) (B, C) (www.abb.com)

CAL Controls, U.S. (9900 Autotune) (A) (www.cal-controls.com) 
Control Techniques, U.K. (“Expert”) (B) (www.controltech.co.uk) 
Eagle Controls, U.K. (Eagle Mini 948) (A) (www.applegate.co.uk) 
Emerson Process Measurement, U.S. (RS3) (B) (www.emersonprocess.com)
Eurotherm, U.S. (815, 8181) (A) (www.eurotherm.com)
FGH Controls, U.K. (5900, 556) (A) (www.fgh.co.uk) 
Fuji Electric, Japan (CC-S) (B) (www.fujielectric.co.jp) 
Honeywell, U.S. (UDC 6000, E-Max, D-Max) (B) (www.iac.honeywell.com) 
Invensys, Foxboro, U.S. (“Exact” 761, 760) (B) (www.foxboro.com) 
Jumo, U.S. (Dicon 5) (A) (www.jumousa.com)
Philips, U.K. (KS 4290) (A) (www.philips.co.uk) 
Self-Tuning Friend, U.K. (D) (www.csc.umist.ac.uk) 
Siemens, Germany (Sipart dr) (B) (www.sea.siemens.com) 
Toshiba, Japan (EC300, 2150) (B) (www.tic.toshiba.com) 
Yokogawa, U.S. (UP25, YEW80) (A) (www.yokogawa.com/us)

INTRODUCTION

In Section 2.18, the methods of process modeling using arti-
ficial neural networks (ANN) were described. Some of the
concepts used in designing self-tuning controllers use the
concepts of the ANN family (Figure 2.29a). Before reading
this section, it is advisable to become familiar not only with
ANN, but also with the basics of PID controllers, their tuning,
and the related subjects of model-based and adaptive con-
trols, which are all covered in this section.

The selection of controller settings that will provide opti-
mum performance is called controller tuning. If the controller
is manually tuned and the dynamics of the controlled process
change, the tuning has to be done again. If on the other hand,
the tuning is done automatically periodically, then it is known
as self-tuning. Some DCS and other control system suppliers
provide the means to allow the operator or a timer to initiate
controller tuning. 

Self-tuning controllers are capable of automatically read-
justing the controller tuning settings. They are also referred
to as auto-tuning controllers and can be stand-alone products,

integral parts of distributed computer control systems (DCS),
or software packages. The market is dominated by stand-
alone products, most of which are able to communicate with
other systems or other controllers. 

The standard operating principles include self-tuning reg-
ulators (STR) and self-tuning temperature controllers using
feature-extraction–type tuning methods, which are obtained
from step response information taken at startup or when load
changes occur. General-purpose stand-alone units can tune
by pattern recognition methods (e.g., Foxboro Exact) or by
model-based methods (e.g., ABB Novatune).

EVOLUTION

The first self-tuning controllers came from Europe in the early
1970s. The original methods used optimal regulation1,2 with
optimal control,3 followed by pole-placement4 somewhat later.
The subsequent development involved new algorithms,5,6 stabil-
ity theory,7 and the industrial development of commercial self-
tuning controllers. A comprehensive treatment of algorithms
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for self-tuning control is provided in Reference 8, while non-
linear and adaptive controls are covered in another section of
this chapter. 

The general principle of operation of the family of self-
adaptation is described in Figure 2.29b. This approach is
applied when the cause of changes in the control loop
response is either unknown or unmeasurable and the adapta-
tion therefore must be based on the response of the loop itself.
Several self-adaptive systems are described in the paragraphs
that follow, including the self-tuning regulator, the model
reference controller, and the pattern-recognizing adaptive
controller.

Self-Tuning Regulator (STR)

The main components of a self-tuning regulator are shown
in Figure 2.29c. They are as follows:

1. A system identifier — This element consists of a process
parameter estimation algorithm, which estimates the
parameters of the process.

2. A controller synthesizer — This synthesizer calculates
the new controller parameters as a function of the

estimated process parameters specified by the control
objective function.

3. A controller implementation block — This is the con-
troller whose parameters are updated at periodic inter-
vals by the controller parameter calculator.

The STRs are distinguished on the basis of their identifiers
and synthesizers. Popular varieties include the minimum-
variance, generalized minimum-variance, detuned minimum-
variance, dead-beat, and generalized pole-placement controllers. 

As shown in Figure 2.29c, the system identifier deter-
mines the response of the controlled variable (c) to a change
in the manipulated variable (m). Model-based self-tuning
algorithms use some method based on recursive estimators.
Many commonly used industrial products, however, use pat-
tern recognition or expert/fuzzy logic methods to extract key
dynamic response features from a transient excursion in the
system dynamics. 

The transient excursion can be deliberately introduced
by the controller, or preferably, it is the start-up transient or
a normally occurring transient of the process. The desired
tuning settings for PID, optimal, or other types of control are
determined by the control synthesis block, which is also

FIG. 2.29a 
A hierarchical classification of ANN-based control algorithms. Self-tuning controllers belong to the family of neural controllers, which are
distinguished from each other by the way they use the error signal to train the ANN.
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FIG. 2.29b 
In self-adaptation, the correction is based on the response of the
loop itself. One can view a self-adaptive system as a control loop
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called the controller parameter calculator. The control syn-
thesizer can be simple or sophisticated depending on the rules
used.

MODEL-BASED METHODS

There are two classes of model-based self-tuners: optimal and
response specification types. Both of these controllers are com-
posed of a reference model, which specifies the desired perfor-
mance; an adjustable controller, which sets the manipulated so
as to bring the process performance as close as possible to that
of the reference model; and an adaptation mechanism. 

Figure 2.29d schematically shows the organization of the
reference model controller. 

Optimal Self-Tuning  Optimal self-tuning algorithms use
optimal regulation theory as their design rule in the controller
parameter calculator. The design methods used are minimum
variance (MV), generalized minimum variance (GMV), and
generalized predictive control (GPC). The MV and GMV
methods are, as the names imply, aimed at minimizing the
mean square deviation of a process variable from its set point.
The minimum variance methods have deficiencies when the
process time delay is unknown or variable because they can,
if unprotected, become unstable. 

The related optimal method GPC was developed to over-
come this deficiency by using prediction horizon ideas that
occur in DMC (dynamic matrix control).9 These methods are
used in turn-key applications by research and consulting com-
panies. Few industrial controllers use them because of the
sophisticated knowhow required, although the ABB Nova-
tune is a widely installed and respected product that uses
optimal methods.

Transient Response Self-Tuner  Another class of model-
based self-tuners uses the desired closed-loop frequency or
the transient response characteristics of the loop as the basis
for operating the self-tuning algorithm. The accepted tech-
nique for this is pole-placement (PP) or pole-assignment
(PA). This procedure asks the designer to select the desired
closed-loop pole positions, and the self-tuner selects a con-
troller that does this. 

The response specification methods can be linked to the
optimization methods via various techniques.8 Pole-placement
can handle systems with unknown and variable dead times
but requires more computational effort than most optimiza-
tion-based methods do. Several commercial products offer
these methods in one form or another, usually tailored to the
requirements of the specific applications. 

The model-based methods require that a persistent exci-
tation or “dither” signal be injected into the process. This is
normally done in the open loop or at startup, but start-up
transients alone are not normally considered sufficient for
these self-tuners. The form of the control law is usually a
discrete time difference equation that is suitable for digital
implementation.

Pattern Recognition Methods

The self-tuning of controllers that utilize pattern recognition
procedures is widely used in industrial applications. This
method relies upon the introduction of a perturbation of a
specified form into the process. This usually is a step or pulse
signal. Often the start-up transient is used, which is particu-
larly useful in systems where a special start-up procedure
exists, such as the one with temperature controllers. 

The process response is then analyzed to extract the key
transient performance indicators of the process, which are then
used to select the correct controller tuning values. The transient
performance indicators can be estimates of rise time, dead
time, peak-overshoot, and so on. Some methods use fuzzy or
qualitative performance measures, such as the criterion of
whether “the time to first overshoot” is very fast, fast, medium,
or slow. 

The main difference between pattern recognition and the
model-based methods is that in the case of pattern recognition
no model of the process is constructed. This eliminates prob-
lems due to incorrect modeling but limits the usefulness of these
methods to processes that can be handled in this way. For
example, some of these methods might only work if a dead
time and time constant can fully describe the controlled process.

Self-tuners of this type are restricted to three-term (PID)
control algorithm applications. In these systems, the PID
tuning constants are adjusted according to some tuning rules
based upon the measured open-loop transient behavior of the
process. The tuning rules are often proprietary variations of
such well-known process tuning procedures as the Zeigler
Nichols method or others. 

A subclass of algorithms is based on testing the stability
of the loop. These methods will usually cause the loop to
oscillate as in the Zeigler Nichols periodic oscillation
(closed-loop) method. Special precautions are applied to
avoid runaway oscillation. The period and the controller gain
that caused the oscillations are then measured and used to
tune the controller.

Eliminating Process Upsets  Self-tuning controllers that
operate by introducing pulses or other forms of perturbations

FIG. 2.29d 
The main building blocks of a model reference adaptive controller.
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are not widely accepted in the process control industry. It is
felt that the control loops are unstable enough as it is, and
nobody wants additional sources of perturbation.

Therefore, preference is given to self-tuning controllers
that do not introduce any upsets but evaluate the controller’s
response to set-point changes or to other, naturally occurring
load variations and other upsets as they take place. In such
cases the self-tuning algorithm is usually kept “dormant”
(inactive) until an error of some predetermined value (usually
at least 1%) develops. 

At that point the self-tuning subroutine is activated. After
the error has evolved, the self-tuning subroutine checks the
response of the controller in terms of the controlled variable’s
period of oscillation, damping, and overshoot (Figure 2.29e).

Start-Up Sequence  As shown in Figure 2.29f, when starting
up a control loop for the first time (the pretune phase), the
controller is first manually brought to its normal load level of
operation. After that, an adjustable-size step change in its out-
put signal to the control value (m) is introduced. This step
change in the manipulated variable (m) will cause the con-
trolled variable (c) to draw an S-shaped steady-state reaction
curve. From this response curve one can obtain the steady-
state process dead time, process sensitivity, and process gain
in response to a load increase. 

The pretune sequence is continued, as shown in Figure 2.29g,
by moving the controller output (m) through another step change
back to its original value and determining again the steady-
state gain, dead time, and process sensitivity in response to a
decrease in load. After these data have been collected and after
the “noise-band” of the measurement been identified, these
readings are used to automatically determine the start-up PID
settings of the controller. 

After this pretune or start-up sequence, the self-tuning
controller reevaluates its performance after each upset, using
the criteria given in Figure 2.29e. 

FIG. 2.29e 
The control loop tuning is diagnosed by evaluating the period of
oscillation (T), the decay or damping ratio, and the amount of
overshoot to determine whether the controller is correctly tuned.10
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FIG. 2.29g 
After evaluating the process response to a step change that increased
the process load, another step change is introduced to return the
process load to its original value.10
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FIG. 2.29f
In the start-up or pretune phase, the self-tuning controller determines the dead time, gain, and sensitivity of the controlled process variable
by evaluating its response to a step change.10
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PERFORMANCE

The performance of such self-tuning controllers has been
evaluated on different types of processes. The test results are
shown in Figure 2.29h, where the performance ratio between
conventionally tuned and self-tuned loops is on the vertical. 

The conventionally tuned controllers were tuned for the
worst condition, and their performance relative to the self-
tuning controllers was evaluated on the basis of the integrated
absolute error (IAE), which is the total area under the error
curve in Figure 2.29e. In evaluating the test results, one can
conclude that the improvement in control quality is impres-
sive for slow processes (low gain) having little or no dead
time. These are easy processes to control because they start
responding to a correction immediately and can be controlled
with high gain (narrow proportional band) controllers. 

On the other hand, as the ratio of dead time to time
constant rises and as the process becomes faster (process gain
increases), the performance of self-tuning controllers deteri-
orates. When the process gain exceeds two and the dead time
exceeds the time constant, the performance of the self-tuning
controller actually drops below that of the conventionally
tuned loop. 

This is not surprising because as the dead time rises, the
time it takes for evaluating a response also gets longer, which
in turn increases the area under the error curve. For this
reason, the use of PID control is not recommended for mostly
dead time processes. In such cases a sample-and-hold algo-
rithm (see Section 2.2 in this chapter) is recommended.

CONCLUSIONS

Process controllers with self-tuning capabilities are mostly
stand-alone units that are used for single-loop applications,
but self-tuning features are also available in DCS installations
or in software packages. The software can be resident in a
DCS, or it can be used in general-purpose computers, or
perhaps as an external tuning aid. 

A special class of self-tuning controllers has evolved for
temperature-control applications. These are provided with
special tuning procedures (usually based on the response
during the warm-up phase or to a set-point change) and
include constraints such as minimum overshoot. 

Self-tuning controllers used for general-purpose process
applications are more sophisticated and are often provided
with provisions for multiple loop tuning, feedforward control,
gain scheduling, and compensation for actuator and sensor
nonlinearity. Most self-tuning controllers will self-tune dur-
ing startup and will retune both on request and also when
upsets occur naturally. 

A few self-tuning controllers operate on the basis of
continuously introducing excitations into the process. Such
excitations can be deterministic set-point steps or doublets
(used in pattern recognition methods) or can be persistent
set-point variations (often pseudo noise, and usually on the
order of 5% of set point).

Self-tuning controllers have gone through substantial
development and improvement during the last decades. The
better systems no longer depend on pulses or set-point
changes for detecting the response of the loop but instead
analyze the response to naturally occurring process upsets.
These self-tuning controllers give control performance that
is superior to that of manually tuned, static PID controllers
when the process gain and the process dead time are both
low. As the process gain and/or the dead time–to–time con-
stant ratio rises, their performance deteriorates.
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