

Generalized linear models

Generalized linear models

lels	
	eis

Logistic regression

• the outcome variable is a categorical response y, with predictors X

Generalized linear models

• The model is expressed as a linear model for the log odds that y = 1 vs. y = 0.

$$\operatorname{logit}(\boldsymbol{y}) \equiv \operatorname{log}\left[\frac{\operatorname{Pr}(y=1)}{\operatorname{Pr}(y=0)}\right] = \boldsymbol{X}\beta$$

• The random (or unexplained) variation is expressed as a Binomial distribution for $\mathcal{E}(\boldsymbol{y} \mid \boldsymbol{X})$

Hey, aren't these both very like the familiar, classical linear model,

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$$
?

Yes, for some transformation, $g(\mathbf{y})$, and with different distributions!

We have used generalized linear models (glm()) in two contexts so far:

Loglinear models

- the outcome variable is the vector of frequencies **y** in a table cross-classified by factors in a design matrix **X**
- The model is expressed as a linear model for log y

$$\log(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$$

 The random (or unexplained) variation is expressed as a Poisson distribution for *E*(*y* | *X*)

Generalized linear models

Nelder & Wedderburn (1972) said, "Let there be light!", a general*ized* linear model, encompassing them all, and many more. This has 3 components:

- A random component, specifying the conditional distribution of *y* given the explanatory variables in *X*, with mean *E*(*y_i* | *x_i*) = μ_i
 - The normal (Gaussian), binomial, and Poisson are already familiar
 - But, these are all members of an exponential family

Generalized linear models

- GLMs now include an even wider family: negative-binomial and others
- The systematic component, a linear function of the predictors called the linear predictor

$$\eta = \pmb{X}eta$$
 or $\eta_i = eta_0 + eta_1 X_{i1} + \dots + eta_{
ho} X_{i
ho}$

- An invertible link function, $g(\mu_i) = \eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$ that transforms the expected value of the response to the linear predictor
 - The link function is invertable, so we can go back to the mean function $g^{-1}(\eta_i) = \mu_i$

Mean functions

Standard GLM link functions and their inverses:

Table 11.1: Common link functions and their inverses used in generalized linear models

Generalized linear models

Link name	Function: $\eta_i = g(\mu_i)$	Inverse: $\mu_i = g^{-1}(\eta_i)$
identity	μ_i	η_i
square-root	$\sqrt{\mu_i}$	η_i^2
log	$\log_e(\mu_i)$	$\exp(\eta_i)$
inverse	μ_i^{-1}	η_i^{-1}
inverse-square	μ_i^{-2}	$\eta_i^{-1/2}$
logit	$\log_e \frac{\mu_i}{1-\mu_i}$	$\frac{1}{1+\exp(-\eta_i)}$
probit	$\Phi^{-1}(\mu_i)$	$\Phi(\eta_i)$
log-log	$-\log_e[-\log_e(\mu_i)]$	$\exp[-\exp(-\eta_i)]$
comp. log-log	$\log_e[-\log_e(1-\mu_i)]$	$1 - \exp[-\exp(\eta_i)]$

- The top section recognizes standard transformations often used with traditional linear models
- The bottom section is for binomial data, where *y_i* represents an observed proportion in *n_i* trials

5/74

Canonical links and variance functions

Generalized linear models

- For every distribution family, there is a default, canonical link function
- Each one also specifies the expected relationship between mean and variance

 Table 11.2: Common distributions in the exponential family used with generalized linear models and their canonical link and variance functions

Family	Notation	Canonical link	Range of y	Variance function, $\mathcal{V}(\mu \mid \eta)$
Gaussian	$N(\mu,\sigma^2)$	identity: μ	$(-\infty, +\infty)$	ϕ
Poisson	$\operatorname{Pois}(\mu)$	$\log_e(\mu)$	$0, 1, \ldots, \infty$	μ
Negative-Binomial	$NBin(\mu, \theta)$	$\log_e(\mu)$	$0, 1, \ldots, \infty$	$\mu + \mu^2/\theta$
Binomial	$\mathrm{Bin}(n,\mu)/n$	$logit(\mu)$	$\{0,1,\ldots,n\}/n$	$\mu(1-\mu)/n$
Gamma	$G(\mu, \nu)$	μ^{-1}	$(0, +\infty)$	$\phi \mu^2$
Inverse-Gaussian	$IG(\mu, \nu)$	μ^2	$(0, +\infty)$	$\phi \mu^3$

Variance functions and over-dispersion

Generalized linear models

- In the classical Gaussian linear model, the conditional variance is constant, $\phi = \sigma_{\epsilon}^2$.
- For binomial data, the variance function is $\mathcal{V}(\mu_i) = \mu_i (1 \mu_i)/n_i$, with ϕ fixed at 1
- In the Poisson family, $\mathcal{V}(\mu_i) = \mu_i$ and the dispersion parameter is fixed at $\phi = 1$.
- In practice, it is common for count data to exhibit overdispersion, meaning that V(μ_i) > μ_i.
- One way to correct for this is to allow the dispersion parameter to be estimated from the data, giving what is called the *quasi-Poisson* family, with V(μ_i) = φµ_i.

Generalized linear models

Variance functions and over-dispersion

Overdispersion often results from failures of the assumptions of the model:

- supposedly independent observations may be correlated
- the probability of an event may not be constant, or
- it may vary with unmeasured or unmodeled variables

Generalized linear models

ML Estimation

• GLMs are fit by the method of maximum likelihood.

Generalized linear models

For the Poisson distribution with mean μ, the probability that the random variable Y takes values y = 0, 1, 2, ... is

$$\Pr(Y = y) = \frac{e^{-\mu}\mu^y}{y!}$$

In the GLM with a log link, the mean, μ_i depends on the predictors in *x* through

$$\log_{e}(\mu_{i}) = \mathbf{x}_{i}^{\mathsf{I}}\boldsymbol{\beta}$$

• The log-likelihood function (ignoring a constant) for *n* independent observations has the form

$$\log_e \mathcal{L}(\beta) = \sum^n \{y_i \log_e(\mu_i) - \mu_i\}$$

 It can be shown that the maximum likelihood estimators are solutions to the estimating equations,

$$\pmb{X}^{\mathsf{T}} \pmb{y} = \pmb{X}^{\mathsf{T}} \mu$$

• The solutions are found by iteratively re-weighted least squares.

9/74

Goodness of fit

• The residual deviance defined as twice the difference between the maximum log-likelihood for the *saturated model* that fits perfectly and maximized log-likelihood for the fitted model.

$$D(\mathbf{y}, \widehat{\mu}) \equiv 2[\log_e \mathcal{L}(\mathbf{y}; \mathbf{y}) - \log_e \mathcal{L}(\mathbf{y}; \widehat{\mu})]$$
.

- For classical (Gaussian) linear models, this is just the residual sum of squares
- For Poisson models with a log link giving μ = exp(**x**^Tβ), the deviance takes the form

$$D(\mathbf{y}, \widehat{\boldsymbol{\mu}}) = 2\sum_{i=1}^{n} \left[y_i \log_{e} \left(\frac{y_i}{\widehat{\mu}_i} \right) - (y_i - \widehat{\mu}_i) \right]$$

• For a GLM with *p* parameters, both the Pearson and residual deviance statistics follow approximate χ^2_{n-p} distributions with n-p degrees of freedom.

GLMs for count data

• Typicaly, these are fit using: glm(y x1 + x2 + x3, family=poisson, data=mydata)

GLMs for count data

- As in other linear models, the predictors *x_j* can be discrete factors, quantitative variables, and so forth.
- This fixes the dispersion parameter φ to 1, assuming that the count variable y conditional on x1, x2, ... is Poisson distributed.
- It is possible to fit a quasi Poisson model, allowing φ to be estimated from the data. Specify: family=quasipoisson. This allows the variance to be proportional to the mean,

$$\mathcal{V}(\mathbf{y}_i \,|\, \eta_i) = \phi \mu_i$$

Another possibility is the negative-binomial model, which has

$$\mathcal{V}(\mathbf{y}_i \,|\, \eta_i) = \mu_i + \mu_i^2 / \theta$$

Example: Publications of PhD Candidates

Example 3.24 in DDAR gives data on the number of publications by PhD candidates in biochemistry in the last 3 years of study

		ıbs", ıbs\$a	-	-	= "	vcdE	xtra	")						
# # # # # #		2 178								11 1	12 2	16 1	19 1	

 Predictors are: gender, marital status, number of young children, prestige of the doctoral department, and number of publications by the student's mentor.

Example: Publications of PhD Candidates

• Initially, ignore the predictors.

1.6929 3.7097 2.1914

• For the Poisson, equivalent to an intercept-only model: glm(articles ~ 1, data=PhdPubs, family="poisson")

As a quick check on the Poisson assumption:

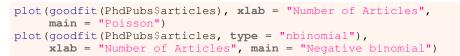
The assumption that mean = variance could be met when we add predictors.

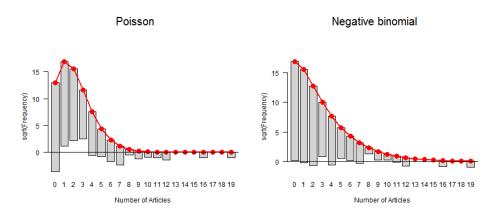
14/74 Example: phdpubs

GLMs for count data Example: phdpubs

Example: Publications of PhD Candidates

First, look at rootograms:





One reason the Poisson doesn't fit: excess 0s (some never published?)

Fitting the Poisson model

GLMs for count data

Fit the model with all main effects:

```
# predictors: female, married, kid5, phdprestige, mentor
phd.pois <- glm(articles ~ ., data=PhdPubs, family=poisson)</pre>
Anova (phd.pois)
## Analysis of Deviance Table (Type II tests)
##
## Response: articles
              LR Chisq Df Pr(>Chisq)
##
                  17.1 1 3.6e-05 ***
## female
                   6.6 1
## married
                                 0.01 *
                   22.1 1
                              2.6e-06 ***
## kid5
## phdprestige
                   1.0 1
                                 0.32
## mentor
                  126.8 1
                              < 2e-16 ***
##
  ____
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Only phdprestige is NS; it does no harm to keep it, for now.

Interpreting coefficients

 β_i is the increment in log (articles) for a 1 unit change in x_i ; exp(β_i) is the multiple of articles:

	pbeta =	exp(coe	f(phd.pois	s)), pois)) - 1)), 3)
## married1	0.266 -0.224 0.157 -0.185	0.799 1.170 0.831 1.026	30.425 -20.102	

Thus:

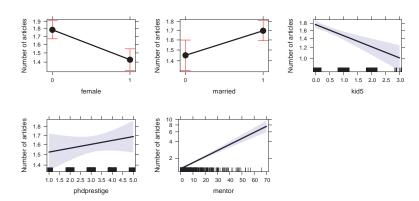
- females publish -0.224 fewer log (articles), or $0.8 \times$ that of males
- married publish 0.157 more log (articles); or $1.17 \times$ unmarried (17%) increase)
- each additional young child decreases this by 0.185; or 0.831 × articles (16.9% decrease)
- each mentor pub multiplies student pub by 1.026, a 2.6% increase

Model diagnostics

Effect plots

As usual, we can understand the fitted model from predicted values for the model effects:

library(effects); plot(allEffects(phd.pois))



These are better visual summaries for a model than a table of coefficients.

Interactions

17/74

19/74

Diagnostic tests for count data GLMs are similar to those used for classical linear models

- Test for presence of interactions
 - Fit model(s) with some or all two-way interactions
- Non-linear effects of quantitative predictors?
 - Component-plus-residual plots-car::crPlot() are useful here
- Outliers? Influential observations?
 - car::influencePlot() is your friend

For count data models, we should also check for over-dispersion. This is similar to homogeneity of variance checks in lm()

Testing for interactions As a quick check for interactions, fit the model with all two-way terms

Model diagnostics

phd.pois1 <- update(phd.pois, . ~ .^2)</pre> Anova (phd.pois1)

Analysis of Deviance Table (Type II tests)

Response: articles

##		LR	Chisq	Df	Pr(>Ch	isq)						
##	female		14.5	1	0.0	0014	* * *					
##	married		6.2	1	0.0	1277	*					
##	kid5		19.5	1	9.8	e-06	* * *					
##	phdprestige		1.0	1	0.3	2655						
##	mentor		128.1	1	< 2	e-16	* * *					
##	female:married		0.3	1	0.6	0995						
##	female:kid5		0.1	1	0.7	2929						
##	female:phdprestige		0.2	1	0.6	3574						
##	female:mentor		0.0	1	0.9	1260						
##	married:kid5			0								
##	married:phdprestige		1.7	1	0.1	9153						
##	married:mentor		1.2	1	0.2	8203						
##	kid5:phdprestige		0.2	1	0.6	8523						
##	kid5:mentor		2.8	1	0.0	9290	•					
##	phdprestige:mentor		3.8	1	0.0	5094	•					
##												
##	Signif. codes: 0 '*	***'	0.001	L ',	*' 0.0	1 '*'	0.05	'.'	0.1	'	'	1

20/74

Compare models I

Compare models II

Compare models: LR tests for nested models (anova()), and AIC/BIC (LRstats())

Model diagnostics

Interactions

```
anova(phd.pois, phd.pois1, test="Chisq")
## Analysis of Deviance Table
##
## Model 1: articles ~ female + married + kid5 + phdprestige + mentor
  Model 2: articles ~ female + married + kid5 + phdprestige + mentor + fe
##
##
       female:kid5 + female:phdprestige + female:mentor + married:kid5 +
##
      married:phdprestige + married:mentor + kid5:phdprestige +
##
      kid5:mentor + phdprestige:mentor
##
     Resid. Df Resid. Dev Df Deviance Pr(>Chi)
           909
## 1
                     1634
  2
           900
                     1618 9
##
                                 15.2
                                         0.086 .
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

LRstats (phd.pois, phd.pois1)

```
## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## phd.pois 3313 3342 1634 909 <2e-16 ***
## phd.pois1 3316 3388 1618 900 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Model diagnostics

Interactions

- There seems to be no reason to include interactions in the model
- We might want to re-visit this, after examining other models for the basic count distribution (quasi-poisson, negative-binomial)

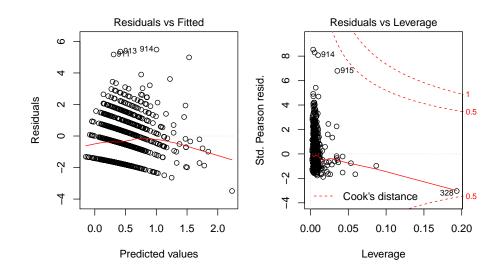
Basic model plots

Only two of the standard model plots are informative for count data models

Interactions

Model diagnostics

plot(phd.pois, which=c(1,5))



Nonlinearity diagnostics

 Non-linear relations are difficult to assess in marginal plots, because they don't control (or adjust) for other predictors

Nonlinearity

- Component-plus-residual plots (also called partial residual plots) can show non-linear relations for numeric predictors
 - These graph the value of $\hat{\beta}_i x_i$ + residual_i vs. the predictor, x_i .

Model diagnostics

- In this plot, the slope of the points is the coefficient, $\hat{\beta}_i$ in the full model
- The residual is $y_i \hat{y}_i$ in the full model
- A non-parametric (e.g., **loess()**) smooth makes it easy to detect non-linearity

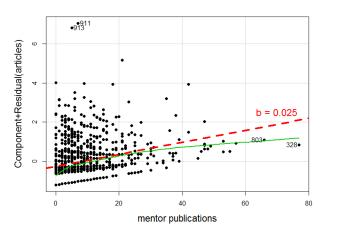
Nonlinearity diagnostics: car::crPlot()

Is the relationship between articles published by the student and the mentor adequately represented as linear?

Nonlinearity

Model diagnostics

crPlot(phd.pois, "mentor", pch=16, lwd=4, id.n=2)



Residuals II

Residuals I

Several types of residuals can be defined based on the Pearson and deviance goodness-of-fit measures

• the *Pearson residual* is the case-wise contribution to Pearson χ^2

Model diagnostics

$$r_i^{P} = \frac{y_i - \widehat{\mu}_i}{\sqrt{\widehat{\mathcal{V}}(y_i)}}$$

Outliers, leverage and influence

• the *deviance residual* is the signed square root of the contribution to the deviance *G*²

$$r_i^D = \operatorname{sign}(y_i - \widehat{\mu}_i)\sqrt{d}$$

• Both of these have standardized forms that correct for conditional variance and leverage, and have approx. $\mathcal{N}(0, 1)$ distributions.

$$\widetilde{r}_{i}^{P} = \frac{r_{i}^{P}}{\sqrt{\widehat{\phi}(1-h_{i})}}$$
$$\widetilde{r}_{i}^{D} = \frac{r_{i}^{D}}{\sqrt{\widehat{\phi}(1-h_{i})}}$$

26/74

Model diagnostics Outliers, leverage and influence

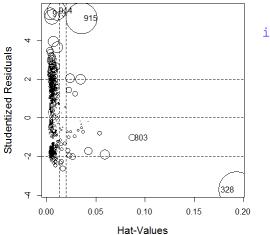
Outliers, leverage and influence

• The most useful is the *studentized residual* (or deletion residual), <u>rstudent()</u> in R. This estimates the standardized residual resulting from omitting each observation in turn. An approximation is:

Model diagnostics

$$\widetilde{r}_i^{S} = \operatorname{sign}(y_i - \widehat{\mu}_i) \sqrt{(1 - h_i)(\widetilde{r}_i^{D})^2 + h_i(\widetilde{r}_i^{P})^2}$$

Outliers, leverage and influence



influencePlot(phd.pois)

- Several observations (913–915) stand out with large + residuals
- One observation (328) has a large leverage
- Why are they unusual? Do they affect our conclusions?
- Look back at data & decide what to do!

Outliers, leverage and influence

Outlier test

At the very least, we should look at these observations in the data:

Model diagnostics Outliers, leverage and influence

PhdPubs[c(328, 913:915),]											
articles	female	married	kid5	phdprestige	mentor						
1	0	1	1	2	77						
12	0	1	1	2	5						
16	0	1	0	2	21						
19	0	1	0	2	42						
	articles 1 12	articles female 1 0 12 0	articles female married 1 0 1 12 0 1	articles female married kid5 1 0 1 1 12 0 1 1	articles female married kid5 phdprestige 1 0 1 1 2 12 0 1 1 2						

case 328: Mentor published 77 papers! Student, only 1

• 913–915: all published >> predicted

- A formal test for outliers can be based on the studentized residuals, rstudent (model), using the standard normal distribution for *p*-values
- A Bonferroni correction should be applied, because interest focuses on the largest *n* absolute residuals.

For the Poisson model, 4 observations are nominated as large + outliers:

outlierTest(phd.pois, cutoff=0.001)

##		rstudent	unadjusted p-value	Bonferonni p
##	914	5.5423	2.9852e-08	2.7315e-05
##	913	5.3821	7.3617e-08	6.7360e-05
##	911	5.2074	1.9153e-07	1.7525e-04
##	915	5.1504	2.5988e-07	2.3779e-04

29/74

Overdispersion

- The Poisson model for counts assumes $V(\mu_i) = \mu_i$, i.e., the dispersion parameter $\phi = 1$
- But often, the counts exhibit greater variance than the Poisson distribution allows, V(μ_i) > μ_i or φ > 1

Overdispersion

- The observations (counts) may not be independent (clustering)
- The probability of an "event" may not be constant
- There may be unmeasured influences, not accounted for in the model
- These effects are sometimes called "unmodeled heterogeneity"
- The consequences are:
 - Standard errors of the coefficients, $se(\widehat{\beta}_j)$ are optimistically small
 - Wald tests, $z_j = \hat{\beta}_j / \operatorname{se}(\hat{\beta}_j)$, are too large, and thus overly liberal.

Testing overdispersion

• Statistical tests for overdispersion are described in DDAR §11.3.4.

Overdispersion

They test H₀ : V(y) = μ, vs. H₁ that variance depends on the mean according to some function f(μ)

$$\mathcal{V}(\mathbf{y}) = \mu + \alpha \times f(\mu)$$

- This is implemented in dispersiontest () in the AER package.
 - If significant, overdispersion should not be ignored
 - Alternatively, you can try fitting a more general model to see what difference it makes.

Overdispersion: Quasi-poisson models

Overdispersion

 Instead, we can fit another version of the model in which the dispersion φ is a free parameter, estimated along with the other coefficients. That is, the conditional variance is allowed to be

 $\mathcal{V}(\mathbf{y}_i \,|\, \eta_i) = \phi \mu_i$

Quasi-poisson models

Quasi-poisson models

• This model is fit with glm() using family=quasipoisson

Overdispersion

- the estimated coefficients $\hat{\beta}$ are unchanged
- the standard errors are multiplied by $\widehat{\phi}^{1/2}$
- peace, order, and good governance is restored!

Overdispersion: Quasi-poisson models

- One estimate of the dispersion parameter is the residual deviance divided by degrees of freedom φ̂ = D(y, μ̂)/df
- The Pearson χ^2 statistic has better statistical properties and is more commonly used

$$\widehat{\phi} = rac{X_P^2}{n-p} = \sum_{i=1}^n rac{(y_i - \widehat{\mu}_i)^2}{\widehat{\mu}_i} / (n-p)$$
.

For the PhdPubs data, these estimates are quite similar: about 80% overdispersion

with(phd.pois, deviance / df.residual)

[1] 1.7971

sum(residuals(phd.pois, type = "pearson")^2) / phd.pois\$df.residual

[1] 1.8304

33/74

34/74

Coefficients unchanged; std. errors multiplied by $\hat{\phi}^{1/2} = \sqrt{1.83} = 1.35$.

Fitting the quasi-poisson model

summary(phd.qpois)

```
##
                                                                            ## Call:
                                                                            ## glm(formula = articles ~ ., family = guasipoisson, data = PhdPubs)
                                                                            ##
The quasi-Poisson model is can be fit using glm () as:
                                                                            ## Deviance Residuals:
                                                                            ##
                                                                                 Min
                                                                                         1Q Median
                                                                                                           30
                                                                                                                  Max
                                                                            ## -3.488 -1.538 -0.365
                                                                                                        0.577
                                                                                                                5.483
phd.qpois <- qlm(articles ~ ., data=PhdPubs, family=quasipoisson)
                                                                            ##
                                                                            ## Coefficients:
The dispersion parameter estimate \hat{\phi} can be obtained as follows:
                                                                            ##
                                                                                          Estimate Std. Error t value Pr(>|t|)
                                                                            ## (Intercept) 0.26562
                                                                                                       0.13478
                                                                                                               1.97 0.04906 *
                                                                                          -0.22442
                                                                                                       0.07384 -3.04 0.00244 **
                                                                            ## female1
(phi <- summary(phd.qpois)$dispersion)</pre>
                                                                                          0.15732
                                                                            ## married1
                                                                                                       0.08287
                                                                                                               1.90 0.05795 .
                                                                            ## kid5
                                                                                           -0.18491
                                                                                                       0.05427 -3.41 0.00069 ***
## [1] 1.8304
                                                                            ## phdprestige 0.02538
                                                                                                       0.03419
                                                                                                                  0.74 0.45815
                                                                            ## mentor
                                                                                            0.02523
                                                                                                       0.00275
                                                                                                                  9.19 < 2e-16 ***
                                                                            ## ----
This is much better than variance/mean ratio of 2.91 calculated for the
                                                                            ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
marginal distribution ignoring the predictors.
                                                                            ##
                                                                            ##
                                                                              (Dispersion parameter for quasipoisson family taken to be 1.8304)
                                                                            ##
                                                                            ##
                                                                                  Null deviance: 1817.4 on 914 degrees of freedom
                                                                            ## Residual deviance: 1633.6 on 909 degrees of freedom
                                                                            ## AIC: NA
                                                                            ##
                                                                            ## Number of Fisher Scoring iterations: 5
```

The negative-binomial model

The negative-binomial model

• The negative-binomial model is a different generalization of the Poisson that allows for over-dispersion

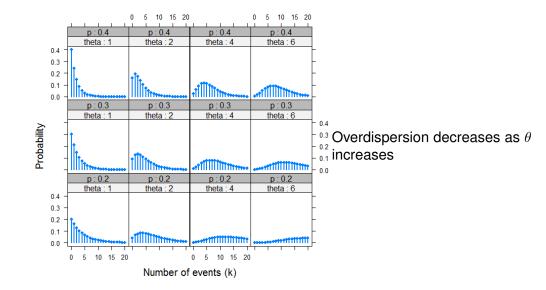
Overdispersion

Negative-binomial models

- Mathematically, it allows the mean μ | *x_i* to vary across observations as a gamma distribution with a shape parameter θ.
- The variance function, $\mathcal{V}(y_i) = \mu_i + \mu_i^2/\theta$, allows the variance of *y* to increase more rapidly than the mean.
- Another parameterization uses $\alpha = 1/\theta$

$$\mathcal{V}(\mathbf{y}_i) = \mu_i + \mu_i^2/\theta = \mu_i + \alpha \mu_i^2 ,$$

 As α → 0, V(y_i) → μ_i and the negative-binomial converges to the Poisson.



The negative-binomial model: Fitting

One way to see the difference among models is to plot the variance vs. mean for grouped values of the fitted linear predictor.

- every every
- The smoothed (loess) curve gives the empirical mean-variance relationship
- Also plot the theoretical mean–variance from different models
- For PhdPubs, the data is most similar to the negative-binomial
- The models differ most for those with > 3 articles

• For fixed θ , the negative-binomial is another special case of the GLM

- This is handled in the MASS package, with family=negative.binomial(theta)
- But most often, θ is unknown, and must be estimated from the data
- This is implemented in glm.nb() in the MASS package.

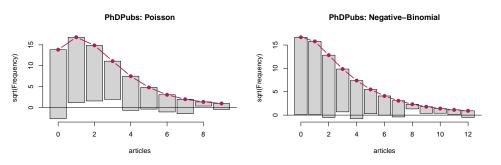
```
library(MASS)
phd.nbin <- glm.nb(articles ~ ., data=PhdPubs)</pre>
```

Overdispersion Negative-binomial models

Visualizing goodness-of-fit

The countreg package extends the **rootogram()** function to work with fitted models:

countreg::rootogram(phd.pois, main="PhDPubs: Poisson")
countreg::rootogram(phd.nbin, main="PhDPubs: Negative-Binomial")



The Poisson model shows a systematic, wave-like pattern with excess zeros, too few observed frequencies for counts of 1–3.

What difference does it make?

The NB is certainly a better fit than the Poisson; the QP cannot be distinguished by standard tests

LRstats(phd.pois, phd.qpois, phd.nbin) ## Likelihood summary table: ## AIC BIC LR Chisq Df Pr(>Chisq) ## phd.pois 3313 3342 1634 909 <2e-16 *** ## phd.qpois 909 ## phd.nbin 3135 3169 1004 909 0.015 * ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Can also compare standard errors of the coefficients:

##		pois	qpois	nbin
##	(Intercept)	0.100	0.135	0.133
##	female1	0.055	0.074	0.073
##	married1	0.061	0.083	0.082
##	kid5	0.040	0.054	0.053
##	phdprestige	0.025	0.034	0.034
##	mentor	0.002	0.003	0.003

41/74

Overdispersion Negative-binomial models

What have we learned?

A summary for an article to this point would use the result of negative-binomial model, from summary (phd.nbin)

- The number of articles published by these PhD candidates is most strongly influenced by publications of their mentor
- Increasing young children (kids5) results in fewer publications.
- Being married is marginally non-significant— don't interpret
- The prestige of the university doesn't make a difference
- There are still some remaining doubts:
 - Several cases (328, 913–915) appeared unusual in earlier diagnostic plots. Refit without them to see if any conclusions change.
 - The NB model seems to account for the zero counts— students who never published.
 - Is there a better way?

Excess zero counts

- A common problem in count data models is that many sets of data have more observed zero counts than the (quasi) Poisson or NB models can handle.
 - In the PhdPubs data, 275 of 915 (30%) candidates published zilch, bupkis
 - The expected count of 0 articles in the Poisson model is only 191 (21%)
- Maybe there are two types of students giving zero counts:

Excess zeros

- Those who never intend to publish (non-academic career path?)
- The rest, who do intend to publish, but have not yet done so
- This suggests the idea of zero inflation
- An alternative idea is that there is some hurdle to overcome before attaining a positive count, e.g., external pressure from the mentor.

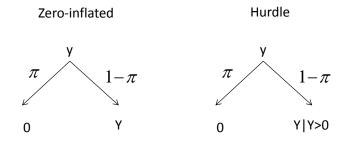
Beyond simply identifying this as a problem of lack-of-fit, understanding the reasons for excess zero counts can contribute to a more complete explanation of the phenomenon of interest.

Two model types for excess zeros

• **zero-inflated models**: The responses with $y_i = 0$ arise from a mixture of structural, always 0 values, with $Pr(y_i = 0) = \pi_i$ and the rest, which are random 0s, with $Pr(y_i = 0) = 1 - \pi_i$

Excess zeros

hurdle models: One process determines whether y_i = 0 with Pr(y_i = 0) = π_i. A second process determines the distribution of values of positive counts, Pr(y_i | y_i > 0)



Zero-inflated models

Zero-inflated models

The zero-inflated Poisson (ZIP) model has two components:

Excess zeros

 A logistic regression model for membership in the unobserved (latent) class of those for whom y_i is necessarily zero

$$\operatorname{logit}(\pi_i) = \mathbf{z}_i^{\mathsf{T}} \boldsymbol{\gamma} = \gamma_0 + \gamma_1 z_{i1} + \gamma_2 z_{i2} + \dots + \gamma_q z_{iq}$$

Zero-inflated models

• A Poisson model for the other class (e.g., "publishers"), for whom *y_i* may be 0 or positive.

$$\log_e \mu(\mathbf{y}_i \mid \mathbf{x}_i) = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta} = \beta_0 + \beta_1 \mathbf{x}_{i1} + \beta_2 \mathbf{x}_{i2} + \dots + \beta_q \mathbf{x}_{ip} \ .$$

In applications, the same predictors can be (and often are) used in both models ($\mathbf{x} = \mathbf{z}$).

45/74

Excess zeros Zero-inflated models

Zero-inflated models

In the ZIP model, the probabilities of observing counts of $y_i = 0$ and $y_i > 0$ are:

Excess zeros

$$\begin{aligned} \Pr(y_i = 0 \mid \boldsymbol{x}, \boldsymbol{z}) &= \pi_i + (1 - \pi_i) e^{-\mu_i} \\ \Pr(y_i \mid \boldsymbol{x}, \boldsymbol{z}) &= (1 - \pi_i) \times \left[\frac{\mu_i^{y_i} e^{-\mu_i}}{y_i!} \right], \qquad y_i \ge 0 \end{aligned}$$

The conditional expectation and variance of y_i then are:

$$\begin{aligned} \mathcal{E}(y_i) &= (1 - \pi_i) \, \mu_i \\ \mathcal{V}(y_i) &= (1 - \pi_i) \, \mu_i (1 + \mu_i \pi_i) \end{aligned}$$

When $\pi_i > 0$, the mean of *y* is always less than μ_i ; the variance of *y* is greater than its mean by a dispersion factor of $(1 + \mu_i \pi_i)$.

The model for the count variable could also be negative-binomial, giving a *zero-inflated negative-binomial* (ZINB) model using $NBin(\mu, \theta)$

Zero-inflated data

Generate some random data from $Pois(3) = ZIP(3, \pi = 0)$ and $ZIP(3, \pi = 0.3)$. This uses **rzipois()** in the VGAM.

```
library(VGAM)
set.seed(1234)
data1 <- rzipois(200, 3, 0)
data2 <- rzipois(200, 3, .3)</pre>
```

Tables of the counts:

```
table(data1)
```

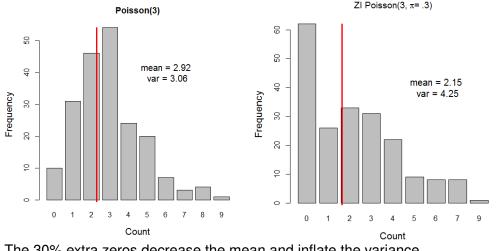
data1 ## 0 1 2 3 4 5 6 7 8 9 ## 10 31 46 54 24 20 7 3 4 1

```
table(data2)
```

```
## data2
## 0 1 2 3 4 5 6 7 9
## 62 26 33 31 22 9 8 8 1
```

Zero-inflated data

Bar plots of the counts:



Excess zeros

Zero-inflated models

The 30% extra zeros decrease the mean and inflate the variance

Hurdle models Excess zeros

Hurdle models

The Hurdle model also has two components:

• A logistic regression model, for the probability that $v_i = 0$ vs. $v_i > 0$

$$\operatorname{logit}\left[\frac{\operatorname{Pr}(y_i=0)}{\operatorname{Pr}(y_i>0)}\right] = \boldsymbol{z}_i^{\mathsf{T}} \boldsymbol{\gamma} = \gamma_0 + \gamma_1 z_{i1} + \gamma_2 z_{i2} + \dots + \gamma_q z_{iq} \ .$$

- A model for the positive counts, taken as a left-truncated Poisson or negative-binomial, excluding the zero counts
- Comparing the ZIP and Hurdle models:
 - In ZIP models, the first (latent) process generates extra zeros (with probability π_i).
 - In Hurdle models, $y_i = 0$ and $y_i > 0$ are fully observed. The first process generates all the zeros.

Excess zeros Hurdle models

Fitting ZIP and Hurdle models

In R, these models can be fit using the pscl and countreg packages.

Excess zeros

countreg is more mature, but is only available on R-Forge, not on CRAN. Use:

Hurdle models

install.packages("countreg", repos="http://R-Forge.R-project.org")

The functions have the following arguments:

```
zeroinfl(formula, data, subset, na.action, weights, offset,
         dist = c("poisson", "negbin", "geometric", "binomial"),
          ...)
hurdle (formula, data, subset, na.action, weights, offset,
         dist = c("poisson", "negbin", "geometric", "binomial"),
          . . . )
```

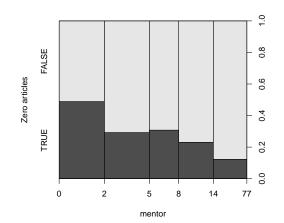
```
The formula, y \sim x1 + x2 + \dots uses the same predictors for both
models.
```

```
Using y \tilde{x}_1 + x_2 + \ldots + z_1 + z_2 + \ldots allows separate predictors
for the 0 submodel.
```

Visualizing zero counts

It is often useful to plot the data for the binary distinction between $y_i = 0$ vs. $y_i > 0$ as in logistic regression models.

```
plot(factor(articles==0) ~ mentor, data=PhdPubs,
       ylevels=2:1, ylab="Zero articles",
       breaks=quantile(mentor, probs=seq(0,1,.2)), cex.lab=1.25)
```



50/74

Example: Phd Publications

Example: Phd Publications

Just to illustrate, we fit all four models, the combinations of (ZI, Hurdle) \times (Poisson, NBin) to the PhdPubs data.

Excess zeros Example

For simplicity, we use all predictors for both the zero model and the non-zero model.

 untreg) zeroinfl(articles ~ ., data =PhdPubs, dist=" poisson") zeroinfl(articles ~ ., data =PhdPubs, dist=" negbin")
<pre>hurdle(articles ~ ., data=PhdPubs, dist="poisson") hurdle(articles ~ ., data=PhdPubs, dist="negbin")</pre>

Compare models, sorting by BIC:

```
LRstats (phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb,
       sortby="BIC")
## Likelihood summary table:
##
          AIC BIC LR Chisq Df Pr(>Chisq)
## phd.pois 3313 3342
                    3301 909
                                   <2e-16 ***
                    3211 903
## phd.hp 3235 3292
                                   <2e-16 ***
## phd.zip 3234 3291 3210 903
                                   <2e-16 ***
## phd.hnb 3131 3194 3105 902
                                   <2e-16 ***
## phd.znb 3126 3188 3100 902
                                   <2e-16 ***
## phd.nbin 3135 3169 3121 909
                                   <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The standard negative binomial looks best by BIC. Why do you think this is?

53/74	54/74				
Excess zeros Example	Excess zeros Example				
Test the coefficients in the ZIP model using lmtest::coeftest()	Re-fit the ZIP and ZNB models using only mentor for the zero models:				
<pre>library(lmtest) coeftest(phd.zip)</pre>	<pre>phd.zip1 <- zeroinfl(articles ~ . mentor, data=PhdPubs, dist="poisson") phd.znb1 <- zeroinfl(articles ~ . mentor, data=PhdPubs, dist="negbin")</pre>				
## ## t test of coefficients: ##	Compare again:				
<pre>## Estimate Std. Error t value Pr(> t) ## count_(Intercept) 0.59918 0.11861 5.05 5.3e-07 *** ## count_female1 -0.20879 0.06353 -3.29 0.0011 **</pre>	LRstats(phd.pois, phd.nbin, phd.zip, phd.znb, phd.hp, phd.hnb, phd.zip1, phd.znb1, sortby="BIC")				
<pre>## count_married1 0.10623 0.07097 1.50 0.1348 ## count_kid5 -0.14271 0.04744 -3.01 0.0027 ** ## count_phdprestige 0.00700 0.02981 0.23 0.8145</pre>	<pre>## Likelihood summary table: ## AIC BIC LR Chisq Df Pr(>Chisq) ## phd.pois 3313 3342 3301 909 <2e-16 ***</pre>				
## count_mentor 0.01785 0.00233 7.65 5.3e-14 *** ## zero_(Intercept) -0.56332 0.49405 -1.14 0.2545 ## zero_female1 0.10816 0.28173 0.38 0.7011	<pre>## phd.hp 3235 3292 3211 903 <2e-16 *** ## phd.zip 3234 3291 3210 903 <2e-16 *** ## phd.zip1 3227 3266 3211 907 <2e-16 ***</pre>				
## zero_married1 -0.35558 0.31796 -1.12 0.2637 ## zero_kid5 0.21974 0.19658 1.12 0.2639 ## zero_phdprestige -0.00537 0.14118 -0.04 0.9697	<pre>## phd.hnb 3131 3194 3105 902 <2e-16 *** ## phd.znb 3126 3188 3100 902 <2e-16 *** ## phd.nbin 3135 3169 3121 909 <2e-16 ***</pre>				
<pre>## zero_mentor -0.13313 0.04643 -2.87 0.0042 ** ## ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>	## phd.znb1 3124 3168 3106 906 <2e-16 *** ## ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1				

Only mentor is significant for the zero model!

Now, the phd.znb1 model is best by BIC. Why?

Model interpretation: Coefficients

Ignoring NS coefficients in the revised ZNB model (phd.znb1)

Excess zeros

coef(phd.znb1)[c(1,2,4,6,7,8)]

##	count_(Intercept)	count_female1	count_kid5	count_mentor
##	0.357194	-0.211573	-0.167527	0.024057
##	zero_(Intercept)	zero_mentor		
##	-0.816912	-0.608024		

Example

• Count model:

log(articles) = 0.357 - 0.21 female - 0.17 kids5 + 0.024 mentor

• Zero model:

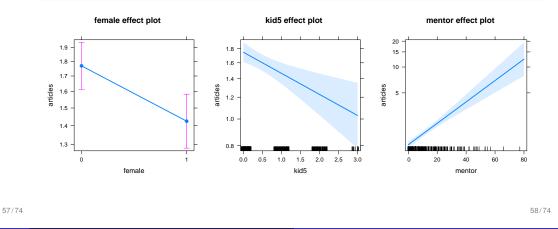
logit(articles = 0) = -0.817 - 0.608 mentor

Can you describe these in words?

Model interpretation: Effect plots

- The effects package cannot yet handle zero-inflated or hurdle models.
- But the fitted values don't differ very much among these models
- Here, I use the phd.nbin model, and just show the effects for the important terms

plot(allEffects(phd.nbin)[c(1,3,5)], rows=1, cols=3)



Excess zeros

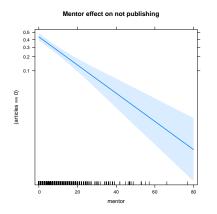
Example

Excess zeros Example

The ZIP sub-model for the zero counts ("did not publish") can also be interpreted visually

- As an approximation, fit a separate logistic model for articles==0
- The effect plot for that gives an interpretation of the zero model.

phd.zero <- glm((articles==0) ~ mentor, data=PhdPubs, family=binomial)
plot(allEffects(phd.zero), main="Mentor effect on not publishing")</pre>



What have we learned?

- The simple Poisson regression model fits very badly
 - Standard errors do not reflect overdispersion
 - Inference about model effects is compromised by overly liberal tests
- The quasi-poisson model corrects for overdispersion.
 - But doesn't account for excess 0s
- The negative-binomial model provides valid tests and fits the 0 counts well.
 - But it doesn't provide any insight into why there are so many 0s
- The ZIP and ZNB models fit well, and account for the 0s.
 - $\bullet\,$ But they lose here on BIC (and AIC) measures, because they have 2× the number of parameters.
 - For simplicity, I have slighted the analogous hurdle models

Excess zeros Example

What have we learned?

- The revised ZNB model (phd.znb1), with only mentor predicting 0s, wins on parsimony, and has a simple interpretation.
 - The log odds that a student does not publish decrease by 0.61 for every article published by the mentor
 - Each mentor pub increases student publications by about 2.5%
 - → Encourage or help your supervisor to publish!
 - (Or, choose a high publishing one.)
- For this data set, the main substantive interpretation and predicted effects are similar across models. But details matter!
- In data sets where there are substantive reasons for excess 0s, the ZI and hurdle models provide different explanations.
 - It is not always just a matter of model fit!
 - Hurdle models make the distinction between 0 and > 0 more explicit
 - In ZI models, the interpretation of the mean count is clearer.

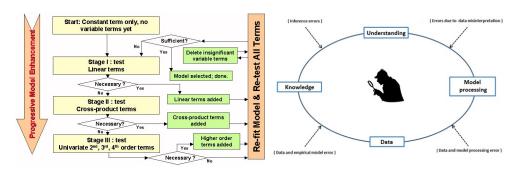
Wrapup

Model criticism

What have we forgotten?

"All models are wrong, but some are useful" — GEP Box

- Model building and model criticism go hand in hand
- But they don't form a linear series of steps, or steps you can put into a flow chart
- Sometimes, you have to go back and re-visit decisions made earlier: Re-think \rightarrow Re-fit \rightarrow Re-interpret



61/74

62/74

What I missed

- In the initial model, phdprestige was NS; I decided to keep it
- In the check for two way interactions, the interaction phdprestige:mentor was borderline (p = 0.051)
 - I did a global test for all interactions together.
 - That was NS (p = 0.08), so I decided to dismiss them all.
 - (I wanted to keep the model simple, to go on to other topics: overdispersion, models for excess zeros.)

Back to square TWO

• A question in class made me reconsider the phdprestige:mentor interaction

Wrapup

Model criticism

• Perhaps the effect of mentor varied with phdprestige?

Try this, starting with the negative-binomial model, phd.nbin

```
phd.nbin2 <- update(phd.nbin, . ~ . + phdprestige:mentor)</pre>
Anova (phd.nbin2)
## Analysis of Deviance Table (Type II tests)
##
## Response: articles
##
                      LR Chisq Df Pr(>Chisq)
## female
                            9.1 1
                                       0.0026 **
                            3.1 1
## married
                                       0.0762 .
## kid5
                          10.7 1
                                       0.0011 **
                           0.7 1
##
  phdprestige
                                       0.3921
                          72.8 1
                                       <2e-16
## mentor
                                              **:
## phdprestige:mentor
                           5.6 1
                                       0.0179 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

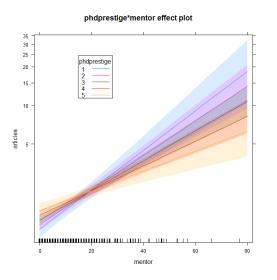
Visualize the interaction

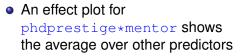
phd.effnb2 <- allEffects(phd.nbin2)</pre>

Visualize the interaction— the other way

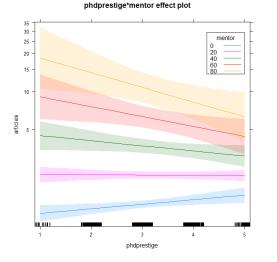
plot(phd.effnb2[4], multiline=TRUE, ci.style="bands", ...)

Wrapup





• This plot, with mentor on the X-axis shows that the slope for mentor increases with higher prestige of the student's university



- This plot, with phdprestige on the X-axis shows that the slopes change sign depending on the value of mentor.
- It explains why the main effect of phdprestige is near 0.
- The widths of the confidence bands indicate model uncertainty— they get wider as mentor pubs increase, and phdprestige differs from average.

65/74

Wrapup Data criticism

Model criticism

Back to square ONE

Aren't we done yet?

"All data are wrong, but some are useful" — Sitsofe Tsagbey et al., TAS, 2017

Wrapup

Data criticism

Model criticism

plot(phd.effnb2[4], x.var="mentor", multiline=TRUE, ci.style="bands", ...)

Wrapu

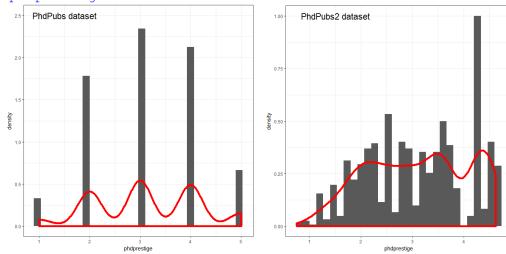
- A nagging doubt: what is the coding for phdprestige?
 - Email from Scott Long: "The higher the number the more prestigious the program."
 - "PS: The data I used did not categorize the continuous phd scale into discrete categories"
- Found the original Stata data set:

```
library(foreign)
PhdPubs2 <-
  read.dta("http://www.stata-press.com/data/lf2/couart2.dta")
```

Compare distributions

Histograms with smoothed density estimate of the two versions of

phdprestige:



What to do?

same? YES!

Re-interpret the interaction

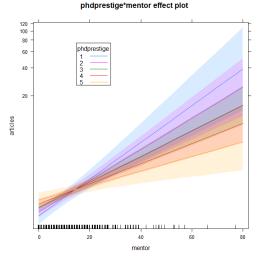
phd.effnb2 <- allEffects(phd.nbin2)</pre> plot(phd.effnb2[4], x.var="mentor", multiline=TRUE, ci.style="bands", ...)

Re-run the analysis with the new dataset, PhdPubs2 80 • Are the results for the phd.nbin2 and phd.znb2 models about the 60 40 • Is the interaction phdprestige:mentor about the same? YES! 20

Data criticism

Wrapur

• Does the effect plot look about the same? YES!



- For students from low prestige universities, mentor pubs has a large effect on articles published
- As phdprestige increases, the slope for mentor descreases
- The range of predicted values is much greater than that with the discrete version.
- DONE!

69/74

Wrapup Going further

What else is there?

The PhdPubs example was rather simple, in that:

- There were only a few predictors
 - Model selection methods could be based on simple Anova () s or coeftest()S

Wrapup

Going further

- No need for more complex model selection methods, or cross-validation
- Of the quantitative predictors, only mentor and kids5 had important effects
 - The effects of mentor and kids5 were sufficiently linear.
 - No need to try polynomial (poly (mentor, 2)) or other non-linear effects
- There turned out to be one important interaction.
 - In Psychology, these are often called moderator effects
 - Interpretation is often based on post-hoc tests of simple slopes or regions of significance
 - Interpretation is usually simplified in effect plots.

What else is there?

- The response variable, articles was measured only once, i.e., there is no longitudinal aspect of the analysis.
 - One extension might track the number of articles published by these students over stages in their career.
 - Longitudinal models are examples of multilevel or hierarchical linear models
 - Well-developed for classical, Gaussian models $(lm() \rightarrow lme4::lmer())$
 - These models are now extended to GLMs for count data (e.g., $lm() \rightarrow$ lme4::glmer())
- There was only one response variable: articles.
 - Another extension might analyse articles published and the number of job interviews upon graduation as a multivariate GLM
 - Yet another, could try to develop a structural equation model (SEM) or path analysis model, with a variable like "hired within one year?" as the ultimate binary outcome.

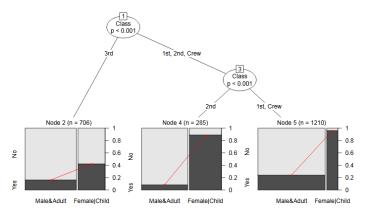
Other methods: Recursive partitioning

• Recursive partitioning, or regression trees are often an attractive alternative to linear models

Wrapup

- Interactions are handled by partitioning the ranges of variables
- Or, models can be fit to subsets of the data defined by recursive partitioning

Going further



Logistic regression tree fit to the Titanic data with partykit::glmtree()

Other methods: Recursive partitioning Maybe an even simpler model?

install.packages("partykit")

library(partykit)

plot(phd.tree)

