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Global Model of Cerebral Blood Flow and Circulation
of Cerebrospinal Fluid- Naive Model
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Blood Supply in Numbers

Blood flow through whole brain (adult) = 750-1000 ml/min
Blood flow through whole brain (adult) = 54 mI/100 g/min
Blood flow through whole brain (child) = 105 mI/100 g/min

% brain utilization of total resting oxygen = 20%
% blood flow from heart to brain = 15-20% (Kandel et al., 2000)

Cerebral blood flow = 55 to 60 ml/100 g brain tissue/min

Cerebral blood flow (gray matter) = 75 ml/100 g brain tissue/min

Cerebral blood flow (white matter) = 45 ml/100 g brain tissue/min (Rengachary, S.S. and Ellenbogen, R.G.,
editors, Principles of Neurosurgery, Edinburgh: Elsevier Mosby, 2005)

Oxygen consumption whole brain = 46 ml/min
Oxygen consumption whole brain = 3.3 ml/100 g/min

Blood flow rate through each carotid artery = 350 ml/min (Kandel et al., Principles of Neural Science, New York:
McGraw Hill, 2000)

Blood flow rate through basilar artery = 100-200 ml/min (Kandel et al., 2000)

Diameter of vertebral artery = 2-3 mm

Diameter of common carotid artery (adult) = 6 mm

Diameter of common carotid artery (newborn) = 2.5 mm

Diameter of MCA (M1 section)=3 mm
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More realistic view: MRI angiography




Pressure drop in the systemic
arterial system

Thanks to Dr.S.Troutner, Copenhagen

VESSEL
TYPE

Aorta

Large
Arteries

Small
Arteries

Arterioles

Capillaries

Venules

Veins

Vena
Cava

DIAMETER

(mmy)

29

1.0-4.0

0.2-1.0

0.01 - 0.20

0.006 -
0.010

0.01 - 0.20

0.2-5.0

FUNCTION

Pulse dampening and
distribution

Distribution of arterial blood

Distribution and resistance

Resistance (pressure & flow
regulation)

Exchange

Exchange, collection, and
capacitance

Capacitance function (blood
volume)

Collection of venous blood



Vascular Pressures
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Arterial histology
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Vessel morphology; resistance
vs. conductance arteries
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Circle of Willis — Pulsatile MCA pressure and blood flow
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Blood flow has usually stronger higher harmonics distortion
than blood pressure
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Fig. 4.1. The schematic representation of the
bilateral model of cerebral circulation. Figure 4.5, Electric equivalent of the model of hemispheric blood supply.



Compression of Common Carotid Artery with TCD at Basilar Artery and Cortical flow in MCA area
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Capillaries

Fig. 2.6. The interconnected microvascular
network. In contrast to larger vessels the
anastomoses are very common. The flow
pattem is established according to local
demand by smooth muscle precapillary
sphincters. Adapted from Seeley, Stephens &
Tate, 1996.
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Diagram of a cerebral capillary enclosed in astrocyte end-feet. Characteristics of the blood-
brain barrier are indicated: (1) tight junctions that seal the pathway between the capillary
(endothelial) cells; (2) the lipid nature of the cell membranes of the capillary wall which makes
it a barrier to water-soluble molecules; (3), (4), and (5) represent some of the carriers and ion
channels; (6) the 'enzymatic barrier'that removes molecules from the blood; (7) the efflux
pumps which extrude fat-soluble molecules that have crossed into the cells
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A phase-contrast MRI study of physiologic cerebral
venous flow
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Figure 3 Physiologic variation of venous drainage pathways.
Axial views at the cervical level show the vascular, arterial, and
venous vessels in four healthy volunteers. In the first participant
(1), we can observe a habitual venous pattern, with predominant
jugular drainage, right dominant (arrow a). Accessory venous
drainage is also obvious in epidural veins (arrow b) and in the
vertebral plexus (arrow c). In the second (2), this jugular
drainage is exclusive, and strictly unilateral (unique right jugular
vein) in the third (3). On the contrary, the fourth participant (4)
has venous drainage completely shunted from the jugular veins
to the epidural and vertebral pathways.

Venous blood
outflow:
extremely
heterogeneous
even in healthy
volunteers

Thanks to Dr. O.Baledent



CONCEPT

Cerebral Venous Blood Outflow: A Theoretical Model Based
on Laboratory Simulation

Stefan K. Piechnik, Ph.D., Marek Czosnyka, D.Sc.,
Hugh K. Richards, Ph.D., Peter C. Whitfield, Ph.D.,
John D. Pickard, F.Med.Sci.

Wolfson Brain Imaging Centre (SKP, MC, HKR, PCW, JDP), Cambridge Medical
Research Council Centre for Brain Repair and Academic Neurosurgery Unit,

Addenbrooke’s Hospital, Cambridge, England, and Institute of Electronic Systems
(SKP, MC), Warsaw University of Technology, Warsaw, Poland

OBJECTIVE: The cerebrovascular bed and cerebrospinal fluid circulation have been modeled extensively except for
the cerebral venous outflow, which is the object of this study.

METHODS: A hydraulic experiment was designed for perfusion of a collapsible tube in a pressurized chamber to
simulate the venous outilow from the cranial cavity.

CONCEPT: The lahoratory measurements demonstrate that the majority of change in venous flow can be attributed
to either inflow pressure when the outflow is open, or the upstream transmural pressure when outflow is
collapsed. On this basis, we propose a mathematical model for pressure distribution along the venous outflow
pathway depending on cerebral blood flow and intracranial pressure. The model explains the physiological strong
coupling between intracranial pressure and venous pressure in the bridging veins, and we discuss the limits of
applicability of the Starling resistor formula to the venous flow rates. The model provides a complementary
explanation for ventricular collapse and origin of subdural hematomas resulting from overshunting in hydro-
cephalus. The noncontinuous pressure flow characteristic of the venous outflow is pinpointed as a possible source
of the spontaneous generation of intracranial slow waves.

CONCLUSION: A new conceptual mathematical model can be used to explain the relationship between pressures
and flow at the venous outflow from the cranium. (Neurosurgery 49:1214-1223, 2001)
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FIGURE 1. Simplified laboratory setup. The dark-shaded tub
ing represents the blood circulation motioned by the perfu-
sion pump. The light-shaded areas represent the cerebrospi-
nal fluid space within the container and the tubing
connecting it to the water level. The inflow pressures are
noted as Pv, Pv', and Pv' according to the increasing distanc
from the collapsible vessel.
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FIGURE 2. An example of the pressure and flow trends dis-
plaved during the experiment. The sequence of quick changes
in ICP (P markers) performed at two levels of inflow pressure
P.” (change is denoted by marker f). Note unstable oscillations
on flow when ICP approaches Ps,,g;,,. PV, PV', Py, simulated
inflow venous pressures from distal to proximal to the collapse;
ICP, pressure inside the container simulating 1CP; PSagsin, out-
flow pressure equivalent to sagittal sinus; Flow, rate of simu-
lated venous flow in of drop counts per minute.

FIGURE 4. Divergent behavior of flow when ICP is positive.
Flow is determined by the appropriate upstream transmural
pressures at levels Pv, Pv', and Pv" (A). At distal levels, Pv" —
ICP and Pv' — ICP change linearly with flow greater than the
critical threshold of approximately 15 mm Hg (B, C). In con-
trast, the proximal Pv — ICP saturates below 30 mm Hg (C).
The best-fit, logarithmic-linear models are marked with a
heavy line. At the Pv level, the linear component is not nec-
essary to provide accurate fit. When displayed in
logarithmic-linear scale, the model is represented by a
straight line (E). The magnification of the scale at low flow
range is denoted by connecting lines between corresponding
flow values on () and (E).
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P.ix)=

ICP + Kylog(CBF) + R,r(¥) - CBE + Py, . ... ICP = Py e
{ {R.me1_I:| + E-.:ILﬂ:l} - CBF + PSH;:,"ELH ..... ACP = PS.:gE.n

Variables:

P.(x), venous pressure at increasing distance “x” from the
cerebral lacunae;

ICP, intracranial pressure;

, Pg.psin venous pressure in sagittal sinus; and

CBF, total cerebral blood flow.

Model parameters:

Ko, logarithmic model coefficient describing the steepness
of the pressure-flow relationship of the idealized lumped
“collapsible” outflow located in the lacunae;

B ..(x), proximal resistance of the vascular bed upstream;

Py, minimum transmural pressure needed to open the col-
lapsible end; and

K. distal, downstream resistance to flow characterizing
“fully” open lacunae.

Estimated value of pressure in bridging and cortical veins:
P [mm Hg] = 1.8 - log(CBF[ml/min]) + ICP[mm Hg]

Thanks to Dr. SK.Piechnik
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Inferior sagittal sinus

Cavernous sinus
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Sigmond sinus

MRI venography
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Compartmental vascular
hemodynamics
Oates.C. Cardiovascular

haemodynamics and Doppler
waveforms explained
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Flow in Tube: Hydrodynamic Resistance

The main assumptions underlying Hagen-Poiseuille formula

Hagen-Poiseuille formula (1840)

4
7-D" - AR,
QO = « flow is steady,

128/1 L - the tube has constant and circular
Cross section

 fluid is Newtonian,
 the tube axis is straight,

 the tube is of infinite length
— APO/L — 128# (velocity profile is developed).
Q  ~x-D

hydraulic resistance per tube length is
constant and equal:

RHO

Thanks to Prof. K.Cieslicki



Methods: Tube, tubes, more tubes...

M1:
simple reactive tube

V =xLr’r? =V,r?

L B
R=—_——=Rr™

8nr,'r

F=PL=Fr

Arteries+microcirculation+veins

M2:

V=(-B+BriV,

R=(l-a+ar )R,

_Fo/
= 1-o +or™*

M3:

11 compartments Arteries-Veins
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Thanks to Dr. S.K.Piechnik



M3:

hierarchical model of cerebrovascular circulation

Vessel Level Number Lengthimm| Dlmm| Reactivity
[%/mmHg]
ArteryL 2 2 150. 4, 0.68
ArteryM 3 25 45, 1.3 0.69
ArteryS 4 300 135 0.45 0.72
ArterioleL 5 5500 4, 0.15 0.83
ArterioleS 6 140000 1.2 0.05 1.18
Capillary 7 135000000 0.65 0.008 1.5
Venules 8 500000 1.6 0.1 0.18
VenulesL 9 33000 4.8 0.28 0.15
VeinsS 10 2000 13.5 0.7 0.14
VeinsM 11 105 45, 1.8 0.14
VeinsL 12 55 150. 4.5 0.14

— N NI wr2r?

Milnor, W. R. (1982). Hemodynamics. Baltimore, Williams & Wilkins
Thanks to Dr. S.K.Piechnik




A) Intravascular Pressure [mmHg] vs Diameter
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Fig. 5. Distribution of (A) pressure and (B) mean velocity of whole blood in the vascular tree under PaCO,-manipulated perfusion (25-70 mmHg). Overlaid
experimental data points indicate reference normal values (=S.D., where available) taken from literature reports of direct measurements in animal models (Bevan
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Thanks to Dr. S.K.Piechnik



Reynolds number (From Wikipedia)

In fluid mechanics, the Reynolds number Re is a dimensionless number that gives a
measure of the ratio of inertial forces pV”2/L to viscous forces pV/L*2 and
consequently quantifies the relative importance of these two types of forces for given
flow conditions. The concept was introduced by George Gabriel Stokes in 1851,[1] but
the Reynolds number is named after Osborne Reynolds (1842-1912), who popularized
its use in 1883.[2][3]

_pVL VL

1 v

Re

where:

e \/ is the mean velocity of the object relative to the fluid (Sl units: m/s)
el is a characteristic linear dimension, (travelled length of the fluid) (m)
el is the dynamic viscosity of the fluid (Pa-s or N-s/m? or kg/(m-s))

ev is the kinematic viscosity (v = u/ p) (m?/s)

ep is the density of the fluid (kg/m3)

Re> 2300 flow may be turbulent
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Centrifugal effects induced by successive bends

M.C.A.

ACA

ICA

«Centrifugal effect deforms axial velocity profile and develops the secondary flow
which has vortex pattern.
*The resultant flow is helical in both halves of the tube

Thanks to Prof.K.Cieslicki



Resistance to flow of tortuous tubes

e All characteristics start from the

024 — . A value obtained for a straight tube
AA (HP formula)
en N
£ 0.20 -
L o™ eRegardless the tube shape, the
= '*A. A HE resistance to flow is well fitted by
— . H19
é 0.16 Aﬁ o ﬁ " equation:
213
3 0.12 — E:% %  coiled tube .Z=J/Q =A+BRe 0.5
2 %; ‘z o straight tube
) W' e
+ (.08 5 o
2 S
3 1 @
& 0.04 ® §° oo‘l’
: Re

OOO |||'|'|||||||
0 1000 2000 3000 4000 5000

» The resistance to flow of curved tube is velocity dependent
* In physiological range of flow the resistance to flow is about four times

grater than the resistance to flow of a straight tube
Thanks to Prof. K.Cieslicki



Vertebrobasilar junctions

Thanks to Prof. K.Cieslicki



Velocity profile in BA in the light of numerical calculation
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® Double hump velocity profile at the entrance of the BA gradually transforms into
parabolic.

® Laminar velocity profile development at the entrance region of a
channel leads to an overall change in the axial pressure drop

® Due to small BA length an asymmetric in-flow results in an asymmetric
out-flow Thanks to Prof. K.Cieslicki



Cerebral Blood Flow (CBF) vs. Brain Function

Resting quietly,
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Room clock strikes 12 noon and bells of church are heard.

A l ,
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The apparatus used by Mosso to record (A) Forea rm; (C) Brain

brain pulsations.

By Angelo Mosso, late 19 century



Cerebral metabolism

The brain, undertaking normal intellectual functioning, uses oxygen at a rate of
approximately 35 mL/min/kg brain tissue; so, for a 70 kg man with 1.5 kg brain, basal

whole body oxygen consumption is 280 mL/min with brain oxygen consumption of 50
mL/min.

6.0,

CBF x AVDO2 = CMRO2

d
[}
—

AVDO2- arterio venous
difference of oxygen
concentration

ﬂUDqg Cumol/ml )

e ———————

8.0 0.4 0.8 2
CBF (ml/gm/min)

Fic. 8. Model diagramming the relationship between cer-
ebral blood flow (CBF) and cerebral metabolism in comatose
patients. In the absence of cerebral ischemia, the arteriovenous
oxygen difference (AVD(Q-) and CBF have the relationship
illustrated by the solid curve, with cercbral metabolic rate of
oxygen (CMROQO:) averaging 0.9 umol/gm/min. In the presence
of cerebral ischemia/infarction {open arrows), AVDO; and
CBF have an unpredictable relationship.

From CS.Robertson et al.n J.Neurosurg 1989:70
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Cerebral metabolism can be measured with PET

H.T. Chugani in: Developmental Neuroimaging, NY 1996
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Figure 5 Absolute values of local cerebral metabolic rates for glucose (LCMRglc) for
cortical brain regions, plotted as a function of age in normal infants and children, and
corresponding adult values. In the infants and children, points represent individual val-
ues of LCMRglc; in adults, points are mean values from 7 subjects, in which the size of
the symbols equals the standard error of the mean.
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http://openanesthesia.org/images/a/a7/PET.jpg

Messages to take home:

*Cerebral blood flow about 2000 times greater than CSF flow

four compartments: Arteries, arterioles, capillaries, veins

*Circle of Willis- ideal mixer?

*Venous outflow: highly individual

*Role of bridging veins- site of coupling ICP and cerebral venous pressure




