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Visual information plays an important role in almost all areas of our life. Due to
the vast amount of data associated with images, compression is a key technology
for their digital transmission and storage. As an example, consider a single still
color image of 512�512 pixels with 3 color components and 8 bits per sample per
component resolution, which represents a data volume of 768 kBytes. For video,
the problem is even more severe; a one-hour movie in a resolution according to
the CCIR 601 studio standard [1] would need as much as 74:7 GBytes, when
stored in uncompressed PCM format. These examples clearly demonstrate the
need for e�cient compression algorithms for images.

All methods for compression of still images or video are based on two funda-
mental principles. One principle is to exploit the properties of the signal source
and to remove redundancy from the signal. The other principle is to exploit the
properties of the signal receiver (usually the human visual system) and to omit
parts or details of the signal that will not be noticed by the receiver. These
principles are often referred to as redundancy reduction and irrelevancy reduc-
tion, respectively. The theory of subband decomposition provides an e�cient
framework for the implementation of schemes for redundancy and irrelevancy
reduction.

It has been demonstrated repeatedly that subband and wavelet based schemes
outperform other waveform based coding schemes [2] [3] [4]. Nevertheless, most
of today's image and video coding standards use the discrete cosine transform
(DCT) [5] for signal decomposition [6] [7] [8]. It can, however, be shown that
the DCT, like all orthogonal transforms, is just a special case of subband de-
composition [9]. Though the image coding standards are restricted to that
special case, there is room for subband coding schemes in proprietary applica-
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tions, which will become more important with the feasibility of software-only
image codecs.

An important motivation for the use of subband decomposition schemes (rather
than e.g. DCT-based schemes) is the demand for \scalable" image representa-
tions [10] [11] [12]. In the context of image coding, scalability means that the
transmitted bit-stream can be decoded hierarchically, i.e., a low-resolution ver-
sion of the transmitted image can be decoded with few operations, and the full
resolution image will only be decoded if necessary or desired. This is for exam-
ple useful for database browsing applications. For broadcasting applications,
the low resolution signal can be transmitted with better error protection. This
preserves at least a low resolution version of the image or video, if the channel
characteristics vary, and the threshold behavior of digital transmission (where
the receiver can decode the signal either in full digital quality or, if the bit
error rate exceeds the threshold for the given error protection, nothing at all)
is avoided [13]. Subband coding schemes are especially suitable for applications
where scalability and \graceful degradation" are important issues.

This chapter treats the compression of still images by means of subband �l-
ter banks, whereas the next chapter is dedicated to subband compression of
video. Section 1 reviews the theoretical foundations of subband coding. Rate-
distortion theory is introduced, and rate-distortion functions for di�erent signal
models are presented. From rate-distortion theory, we can conclude that for
stationary image models it is appropriate to decompose a signal into frequency
bands and to encode those bands separately.

Section 2 discusses various approaches to subband decomposition of images.
Equal band splitting and non-uniform band splitting are explained. The dis-
crete cosine transform (DCT) is shown to be a special case of subband de-
composition. Section 3 treats the compression of the subband signals after
decomposition. Compression can be achieved by applying scalar quantization
or vector quantization (VQ) to the subband coe�cients, in combination with
�xed or variable wordlength encoding. The concepts of scalar quantization,
�xed-wordlength VQ, entropy-constrained VQ and lattice VQ are explained
and compared experimentally. Optimal bit-rate allocation among the subbands
is explained in subsection 3.4.
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1 THEORETICAL FOUNDATIONS OF
SUBBAND IMAGE CODING

Before we concern ourselves with speci�c subband image coding algorithms we
would like to know how far we can expect to lower the transmission bit-rate
for a given required picture quality. Are there fundamental limits that cannot
be exceeded by any coding scheme? Such limits would be extremely helpful
to judge the relative performance of a practical image coding scheme such as
subband coding.

1.1 The Rate Distortion Function

Rate distortion theory is a branch of information theory that allows us to cal-
culate performance bounds without consideration of a speci�c coding method.
In particular, rate-distortion theory yields the minimum transmission bit-rate
R, if a distortion D between the original image x at the transmitter and the
reconstructed image x̂ at the receiver shall not exceed a maximum acceptable
distortion D�. Unfortunately, the theory does not provide us with a method
for constructing a practical optimum coder and decoder. We will see that rate-
distortion theory can nevertheless provide us with very important hints about
the properties of an optimum codec.

Rate distortion theory is based on two central concepts: \mutual information"
and \distortion". Mutual information is a symmetric measure of the informa-
tion that symbols x and x̂ convey about each other. While the framework is
entirely general, let's think of x representing an original image at the trans-
mitter and x̂ a reconstructed image at the receiver. We are mainly interested
in average quantities in information theory. The average mutual information
between ensembles X and X̂ , representing amplitude-continuous vector-valued
random variables x and x̂ with joint probability density function p

XX̂
(x; x̂) and

marginal probability density functions pX(x) and pX̂(x̂) is de�ned as

I(X ; X̂) =

Z
x̂

Z
x

pXX̂(x; x̂) log
pXX̂(x; x̂)

pX(x)pX̂ (x̂)
dx dx̂: (7.1)

Mutual information is related to the di�erential entropy of an ensemble,
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h(X) =

Z
x

pX(x) log
1

pX(x)
dx; (7.2)

and the conditional di�erential entropy of X given X̂ ,

h(X jX̂) =

Z
x̂

Z
x

pXX̂(x; x̂) log
1

pXjX̂(xjx̂)
dx dx̂ (7.3)

by

I(X ; X̂) = h(X̂)� h(X̂jX) = h(X)� h(X jX̂): (7.4)

In (7.3), pXjX̂(xjx̂) is the probability of an original image x, if a decoded
image x̂ is observed. Clearly, average mutual information is symmetric and
non-negative

0 � I(X ; X̂) = I(X̂;X): (7.5)

The average mutual information I(X ; X̂) between the original image at the
coder and the reconstructed image at the decoder is related to the channel
capacity C available between X and X̂ . The channel capacity is the maximum
number of bits per symbol for a given symbol-rate that a transmission channel
can accommodate without bit-errors. The channel capacity can be shown to
be the maximum of the average mutual information between transmitter and
receiver [14], i.e.

I(X ; X̂) � C: (7.6)

The distortion measure d(x; x̂) is a scalar quantity that should re
ect the �delity
of the reproduction of an original image x by an image x̂. To qualify as a proper
distortion measure, we require

d(x; x̂) � 0 (7.7)
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with equality if x = x̂. The average distortion then is

D =

Z
x̂

Z
x

pXX̂(x; x̂)d(x; x̂) dx dx̂: (7.8)

The `rate-distortion function' is de�ned as

R(D�) = inf
p
X̂jX

fI(X ; X̂) : D � D�g; (7.9)

i.e., R(D�) is the greatest lower bound of the average mutual information, sub-
ject to the constraint that the average distortion D may not exceed D�. When
there is no risk of confusion, we will drop the asterisk in the following and write
R(D) for the rate-distortion function. It can be shown that R(D) is a monoto-
nically decreasing convex function [14][15]. At R = 0, it assumes a maximum
distortion Dmax. For an amplitude-continuous source, the rate required for an
exact reproduction x̂ = x is in�nite, nevertheless the rate R(0) can be �nite,
if the distortion measure contains a threshold below which d(x; x̂) = 0, even if
x 6= x̂. Since R(D) is monotonically decreasing, we can also use the distortion
rate function D(R) when it is more convenient.

The rate-distortion function is a performance bound that no source coder can
beat. Conversely, rate-distortion theory shows that a source coder with a per-
formance arbitrarily close to the rate-distortion function exists. The typical
theoretically optimum source coder encodes a very large number of symbols
jointly, thus requiring a very large memory and introducing a very large delay.
While this might be impractical, it suggests that a good coder jointly encodes
many symbols. We will make use of this idea in the following.

1.2 Shannon Lower Bound

The Shannon lower bound is a useful lower bound of the rate-distortion func-
tion. With a simple coordinate transformation in (7.3), it can be shown that

h(X � X̂ jX̂) = h(X jX̂); (7.10)

where X � X̂ is the reconstruction error ensemble representing the amplitude-
continuous vector-valued di�erence x � x̂ [15]. With this, we can rewrite the
rate-distortion function as

R(D�) = inf
p
X̂jX

fh(X)� h(X jX̂) : D � D�g

= h(X)� sup
p
X̂jX

fh(X jX̂) : D � D�g
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= h(X)� sup
p
X̂jX

fh(X � X̂ jX̂) : D � D�g: (7.11)

Observing that
h(X � X̂jX̂) � h(X � X̂) (7.12)

we arrive at the Shannon lower bound

R(D�) � h(X)� sup
p
X̂jX

fh(X � X̂) : D � D�g: (7.13)

Equality in (7.12) and (7.13) holds for statistical independence between X� X̂
and X̂. Thus, ideally, the source coding scheme would introduce a reproduction
error x� x̂ that is statistically independent of the reconstructed signal x̂. Note
that this is not always possible, particularly not at low rates. Nevertheless, it
provides another guideline for the design of an e�cient coding scheme.

It is possible to draw additional conclusions from the Shannon lower bound,
if the distortion measure is given. Let us consider a single letter distortion
measure

d = (x� x̂)2; (7.14)

i.e., the squared di�erence between the original and reconstructed images is
calculated on a sample-by-sample basis. With the mean squared errorD � D�,
the di�erential entropy of the reconstruction error is bounded according to [16]

h(X � X̂) � 1

2
log(2�eD�): (7.15)

Equality in (7.15) holds for a Gaussian pdf of x� x̂. Successive values of x� x̂
should all be independent, identically distributed random variables. Thus,
an optimum source coder for a mean squared error distortion measure should
produce white Gaussian noise independent from the reconstructed signal.

1.3 Memoryless Gaussian Source

In general, it is di�cult to calculate the rate-distortion function. However,
there are some important cases where the result can be stated analytically.
Consider a memoryless Gaussian source with variance �2. For this case, the
rate-distortion function is

R(D) =
1

2
maxflog �

2

D
; 0g: (7.16)
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If log = log2 in (7.16), the unit for the rate is \bits". The rate-distortion curve
is plotted as curve \ML" in Fig. 1, with distortion shown on a logarithmic axis.
With signal-to-noise ratio de�ned as

SNR = 10 log10
�2

D
dB (7.17)

we encounter the information theoretic rule-of-thumb that 6 dB corresponds to
1 bit. Remarkably, the rate-distortion curves for non-Gaussian sources with the
same variance �2 are always below the Gaussian R(D) curve. Thus, Gaussian
sources are the most demanding sources for coding.

Figure 1 Rate distortion function for a memoryless Gaussian source (ML)
and for a Gaussian source with power spectral density as shown in Fig. 3 (2D).

1.4 Gaussian Source with Memory

For sources with memory, the correlation between neighboring samples can
be exploited and a lower rate can be achieved. Let us consider an ergodic
two-dimensional space and amplitude continuous Gaussian source with power
spectral density �xx(
1;
2). Again, we use the squared error distortion mea-
sure (7.14). While the rate-distortion function cannot be given in closed form
for this source and distortion measure, it can be stated in parametric form as

D(�) =
1

4�2

Z

2

Z

1

min(�;�xx(
1;
2))d
1 d
2 (7.18a)



8 Chapter 7

R(�) =
1

8�2

Z

2

Z

1

max(0; log
�xx(
1;
2)

�
)d
1 d
2: (7.18b)

Each value of � in (7.18) (within an appropriate range) produces a point R(D)
of the rate-distortion curve. Again, for non-Gaussian sources with the same
power spectral density, the rate-distortion curve is always below the Gaussian
case.

Figure 2 Interpretation of the rate-distortion function for a one-dimensional
Gaussian source with memory.

The parametric solution (7.18) can be interpreted as illustrated in Fig. 2 for
a one-dimensional case. Let �nn(
1;
2) denote the power spectral density of
the reconstruction error x� x̂ (compare Fig. 23). In the frequency range where
�xx(
1;
2) > �, white noise with power spectral density �nn(
1;
2) = � is
introduced. With the same arguments as used in the context of the Shannon
lower bound, it can be shown that this noise is uncorrelated with the recon-
structed signal x̂. Thus

�x̂x̂(
1;
2) = �xx(
1;
2)� �;8
1;
2 : �xx(
1;
2) > �: (7.19)
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In the frequency range where �xx(
1;
2) < � the signal power itself is smaller
than the coding noise introduced. Thus, it leads to the minimum mean squared
error to transmit no signal at all in these parts of the spectrum, and

�x̂x̂(
1;
2) = 0
�nn(
1;
2) = �xx(
1;
2)

�
8
1;
2 : �xx(
1;
2) < � (7.20)

Since the overall rate in (7.18b) is the integral over the rate contributions dR of
individual frequency components, an optimum coder can be built by splitting
the original signal into spectral components of in�nitesimal bandwidth d
1 d
2

and encoding these spectral components independently [17]. This suggests an
approach where the subband components with energy above a threshold are
encoded with a number of bits that is proportional to the logarithm of their
energy, while the remaining subbands are suppressed.

1.5 R(D) for a Gaussian Image Model with
Exponentially Decaying Autocorrelation
Function

We can compute the rate-distortion function (7.18), if we know the power spec-
trum �xx(
1;
2). A commonly used model for the autocorrelation function of
an image is the isotropic, exponentially decaying autocorrelation function

Rxx(�1;�2) = e�
0

p
�1

2+�2
2

; (7.21)

where �1 and �2 are the horizontal and vertical distances between samples of
x, and 
0 is a constant. The corresponding power spectral density is computed
as the 2D Fourier transform of (7.21),

�xx(
1;
2) =
2�


2
0

(1 +

2
1 +
2

2


2
0

)�
3

2 : (7.22)

The model power spectrum (7.22) is shown in Fig. 3 with parameters adapted
to a video signal sampled in the \Common Intermediate Format" (CIF, 288
lines � 352 pixels per line for a video frame with 4=3 aspect ratio). The rate-
distortion curve is computed by numerically integrating (7.18). The result is
shown in Fig. 1 as curve \2D". The Gaussian source with a power spectrum
(7.22) requires about 2.3 bits/sample less than the memoryless Gaussian source
(7.16) at high rates. The slope is again 6 dB/bit at high rates where the rate-
distortion curve coincides with its Shannon lower bound.
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Figure 3 Power spectral density model of an image (vertical axis in logarith-
mic scale).

2 IMAGE SUBBAND DECOMPOSITION

Rate distortion theory suggests that an e�cient source coder splits the image
into frequency bands and independently encodes the individual subband si-
gnals. While images are two-dimensional signals, we discuss one-dimensional
subband coding �rst. Most two-dimensional subband decompositions are built
by cascading one-dimensional subband �lter banks.
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Figure 4 Diagram of a one-dimensional M-channel subband coding scheme.
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A general one-dimensional subband coding scheme is shown in Fig. 4. The
sampled input signal is convolved in a bank of M bandpass analysis �lters with
frequency responses Hi(e

j!) and down-sampled by factors ki that correspond
to the bandwidths of Hi(e

j!). The frequency responses and down-sampling
factors are usually chosen such that the number of samples before and after
subband decomposition is the same, i.e.,

1

k0
+

1

k1
+ : : :+

1

kM�1
= 1: (7.23)

Eq. (7.23) ensures that there is no additional redundancy introduced by the
subband decomposition. The subband signals are quantized and transmitted
using an appropriate �xed or variable length code. At the decoder, the subband
signals are decoded, up-sampled by factors ki and passed through a bank of
synthesis �lters with frequency responses Gi(e

j!). The output signals of the
synthesis �lters are �nally summed up to yield the reconstructed signal.

2.1 Subband Filter Banks

As discussed in chapters 1{4, there are many �lter banks available for general
use. However, when choosing �lters for subband image decomposition, there
are additional requirements that are speci�c to image coding [18]. Analysis
�lters should have a short impulse response to preserve the localization of image
features. Synthesis �lters should also have a short impulse response in order
to prevent spreading of artefacts resulting from quantization errors at edges
and other local features. Long synthesis �lters often have very good mean
squared error performance but lead to annoying ringing e�ects around edges.
In addition, linear phase �lters are desirable for subband image coding. Filters
with nonlinear phase introduce subjectively unpleasant waveform distortions,
when the lowpass channel is viewed by itself.

Many �lters have been suggested for subband image coding [19] [20] [21] [22]
[23] [24] [25]. We have used the 9-tap QMFs

H0(e
j!) = G0(e

j!) = 0:5645751

+ 0:2927051(ej! + e�j!)

� 0:05224239(ej2! + e�j2!)

� 0:04270508(ej3! + e�j3!)

+ 0:01995484(ej4! + e�j4!): (7.24)

The highpass �ltersH1(e
j!) andG1(e

j!) are given byH0(e
j(!+�)) and�G0(e

j(!+�))
respectively.
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The reconstruction error introduced by the QMF bank is at �50 dB and thus
smaller than the typical quantization error. The stopband attenuation of the
analysis and synthesis �lters is about 35 dB.

It should be noted that these �lters require that the subsampling points be
staggered between the two subbands, i.e., the low band is sampled at positions
0; 2; 4; : : :, and the high band is sampled at the positions 1; 3; 5; : : :. The al-
ternating sampling preserves the information more uniformly and gives better
reconstruction than even length QMFs with coinciding sampling in both bands.

2.2 Equal Band Splitting

Subband decomposition of images into more than two bands can conveniently
and e�ciently be carried out by cascading horizontal and vertical two-band
�lter banks. As an example, Figs. 5 and 6b illustrate a decomposition into
4� 4 subbands. Any two-band �lter bank, such as the short-kernel �lters from
[23] or the QMFs (7.24) can be employed in this structure. Note that the �lter
bank in Fig. 5 is separable in horizontal and vertical directions, i.e. the resulting
frequency responses of the individual subbands can be written as a product of
1D functions of !1 and !2.

Rather than cascading two-band �lter banks, we can also use an M-channel �lter
bank for image subband decomposition. An example of a separable �lter bank
with M �M channels is the Lapped Orthogonal Transform [26]. The majority
of �lter banks investigated for image coding are separable into horizontal and
vertical �lter banks. Such �lter banks perform better on strictly horizontal
and vertical edge features than on diagonal ones. While horizontal and vertical
edges fall into distinct subbands in decompositions such as the one shown in
Figs. 5 and 6b, diagonal edges with 45� and 135� orientations fall into the same
subbands. Non-separable subband �lter banks with directional characteristics
have been investigated by [27] [28]. However, the computational e�ort required
for non-separable �lter banks is often prohibitively large.

2.3 Discrete Cosine Transform as a Subband
Coding Technique

The discrete cosine transform (DCT), introduced by Ahmed, Natarajan, and
Rao in 1974 [5], [29] has been adopted in several image coding standards in
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Figure 5 4 � 4-band analysis �lter bank built out of two-band �lter banks.
2#h denotes horizontal subsampling by a factor of 2, 2#v denotes vertical sub-
sampling by a factor of 2.

the last years. We will show in this section that the DCT can be interpre-
ted as a special subband coding technique. In transform image coding, the
image is subdivided into square blocks, and each block undergoes an orthonor-
mal transformation A (Fig. 7). We can write the transformation as a matrix
multiply

c = Ax (7.25)
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Figure 6a Original image Man-
drill.

Figure 6b Mandrill decomposed
into 4 � 4 bands (using short-kernel
�lters from [23]).

where x is a column vector formed by the M �M samples of an image block,
A is a M2 �M2 matrix, and c is the vector of M2 transform coe�cients. For
an orthonormal transform,

x = A�1c = ATc (7.26)

i.e., the inverse transform matrix is the transpose of the forward transform
matrix. The equation x = A�1c can be interpreted as a representation of an
image block by a superposition of \basis functions" (columns of A�1) which
are weighted by coe�cients ci (elements of vector c).

A two-dimensional M �M DCT is separable into a horizontal and a vertical
one-dimensional M-DCT. The elements aik of the transform matrix A for the
DCT (\DCT-II" after the classi�cation in [29]) of length M are

aik = �i cos
�(2k + 1)i

2M
with �0 =

r
1

M
; �i =

r
2

M
8i 6= 0: (7.27)

Fig. 8 shows the 64 basis functions for an 8� 8 DCT.

The DCT is closely related to the discrete Fourier transform (DFT). It can
be shown that the DFT is nearly optimum for images with stationary signal
statistics when the block size is very large [30]. The argument is similar to the
rate-distortion analysis presented in section 1.4 that provided the insight that
ergodic sources should be decomposed and coded in independent subbands. For
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Figure 7 Principle of transform coding.

Figure 8 Basis functions of an 8� 8 DCT.
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�nite block sizes, block boundary e�ects with DFT coding are very annoying
owing to the circular topology underlying the DFT. Since, with a DFT, the
right edge of a block is \connected" to the left edge and the top edge to the
bottom edge, the signal discontinuity at the block edge leads to severe Gibbs
ringing when higher DFT coe�cients are suppressed in a coder. This problem
is greatly reduced by mirroring an M �M block horizontally and vertically
such that a 2M � 2M block results (Fig. 9).

Figure 9 Horizontal and vertical block mirroring leads to an interpretation
of the DCT in terms of the DFT.

The 2M � 2M block is then transformed using the DFT. Due to the symmetry
of the mirrored block, the transform has only M �M degrees of freedom and
only M �M non-zero coe�cients remain. They are the coe�cients of a new
transform, the discrete cosine transform, with the transform matrix A (7.27).

An M � M DCT can be viewed as a subband decomposition into M � M
subbands. The impulse responses of the analysis and synthesis �lters corre-
sponding to an M-point DCT are exactly M samples long. In the analysis
�lter bank, the image is convolved separately with each row of the transform
matrix A (7.27), and then each subband signal is downsampled by a factor
ki = M . Values that are omitted in the down-sampling stage need not be
calculated in the analysis �lter convolutions. Since the impulse responses are
not longer than the down-sampling factors, the input signal can be subdivided
into non-overlapping portions and processed in independent blocks. A similar
argument applies to the inverse DCT as a synthesis �lter bank. Note that
the DCT is in fact a perfect reconstruction �lter bank with identical analysis
and synthesis �lters, except for a horizontal and vertical reversal of the �lter
impulse responses. Fig. 10 shows the frequency response of a forward (and,
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at the same time, an inverse) 8-point DCT when viewed as a �lter bank. The
frequency selectivity of the DCT is remarkably poor. On the other hand, the
compact support of the �lter impulse responses is a very desirable property.
Exact image subband decomposition and reconstruction using the DCT are de-
scribed in [31]. Approaches combining the DCT and subband �lter banks are
described in [32] [33].

2.4 Non-Uniform Band Splitting

When a signal is spectrally 
at within a band, memoryless coding is opti-
mal. Fig. 3 shows the model of a typical image power spectral density (7.22).
Apparently, the spectrum varies more rapidly at low frequencies than at high
frequencies. When decomposing the spectrum (7.22) into equal bands, the high
bands will be spectrally 
atter than the low bands. This suggests a non-uniform
band splitting that decomposes the lower frequency part into narrower bands
than the higher frequency range.

A signal decomposition into in�nitesimally narrow subbands is suggested by the
rate-distortion theoretical argument in Section 1.4. This argument applies to
ergodic Gaussian sources. Images, however, contain spatially localized features,
such as edges, and very narrow subbands do not yield good coding results.
The impulse responses of �lters producing narrow subbands are necessarily
long, and the localization of image features is poor after �ltering. In principle,
the same features can occur in an image on all scales, due to the perspective
projection of objects at all distances from the camera onto the image plane.
This suggests using short �lter impulse responses for high frequency channels
and long impulse responses for low frequency channels.

A powerful non-uniform subband decomposition is the subband pyramid illu-
strated in Fig. 11. The image spectrum is split into four bands containing
horizontal lows/vertical lows (LL), horizontal lows/vertical highs (LH), hori-
zontal highs/vertical lows (HL), and horizontal highs/vertical highs (HH). This
four-band decomposition can be accomplished by cascading a horizontal and a
vertical two-band �lter bank. In the next stage, the same four band decomposi-
tion is applied to the LL component only. The LH, HL, and HH components are
left alone. The procedure is repeatedly applied to each resulting low frequency
band, resulting in a decomposition into octave bands.
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Figure 10 Subband frequency response of 8-point DCT.
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Figure 11 Subband pyramid decomposition in the frequency domain.
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Figure 12 Image Mandrill (Fig. 6a) decomposed by four level subband py-
ramid.
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Fig. 12 shows an image decomposed into a subband pyramid with four levels.
The QMFs (7.24) were used for the two-band decomposition at each level of
the subband pyramid.

Besides critically sampled subband pyramids (Eq. 7.23), oversampled pyramid
decompositions can be employed for image coding. They were �rst introduced
as bandpass pyramids by Burt and Adelson in 1983 [34] and successively re�ned,
e.g. by [10] [13]. An input picture is �rst lowpass �ltered and downsampled.
By interpolating the low resolution image back to its original resolution, a
prediction of the original image is obtained. The resulting prediction error
image is a bandpass signal containing the missing detail of the prediction from
the lower resolution. This decomposition into a lower resolution image and
a prediction error image can be repeated for the lower resolution image to
obtain more pyramid layers. Note that the number of samples increases by
up to 1=3 for 2 : 1 two-dimensional subsampling. On the other hand, one
gains complete freedom in choosing appropriate �lters. Lower resolution images
within predictive resolution pyramids often have better subjective image quality
than those obtained from critically sampled subband pyramids.

3 COMPRESSION OF IMAGE SUBBAND
SIGNALS

After the decomposition stage, the image is split into subimages that contain
spectral components of the original image. If the subimages are critically sam-
pled, the total number of samples is the same as in the original image. The
decomposition is still fully reversible, and no compression has been accomplis-
hed. Quantization can be performed on single subband coe�cients [35] [36] [37]
(\scalar quantization"), or on several coe�cients together (\vector quantization
(VQ)"). Vector quantization techniques have been proved to be very powerful
for quantization of subbands [32] [38] [39] [40] [41] [42] [43] [44]. In subsection
3.1, scalar quantization is explained. In subsection 3.2, di�erent approaches
to vector quantization are presented. In subsection 3.3, the performance of
di�erent quantization schemes is illustrated by coding experiments on images.
Finally, subsection 3.4 discusses bit allocation among subbands.
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3.1 Scalar Quantization

A scalar quantizer rounds each sample of the input x independently to the
nearest representative output level. Fig. 13 shows an example of the staircase
input-output characteristic of a scalar quantizer. The input signal amplitude
within a certain range is mapped onto one common representative output level.
The levels that separate the input signal ranges are called decision thresholds.
Simultaneously �nding theN representative levels andN�1 decision thresholds
of a quantizer yielding minimum mean squared quantization error for a given
probability density function (pdf) pX(x) of the input signal x is a classical
problem that has been solved by Lloyd [45] and Max [46] independently. The
solution, the \Lloyd{Max quantizer," has the following properties:

The decision thresholds lie exactly half-way between the representative
levels.

The representative levels are the centroids of the pdf between successive
decision thresholds.

Since the optimum decision thresholds depend on the representative levels,
while the optimum representative levels depend on the decision thresholds, a
closed form solution of the Lloyd{Max quantization problem can usually not
be found except for some trivial cases. Iterative schemes have to be used that
converge to the optimum solution.

For su�ciently �ne quantization and a smooth pdf, an approximate solution of
the Lloyd{Max quantization problem can be obtained according to

�x̂(x) = c � (pX(x))� 1

3 (7.28)

where �x̂(x) is the distance between two successive quantizer representative
levels. Interestingly, the approximation (7.28) was proposed by Panter and Dite
[47] before the exact solution was known. The Panter and Dite approximation
also provides an estimate of the resulting quantization error variance

�2q =
1

12N2

� Z
x

(pX(x))
1

3 dx
�3

(7.29)

where N is again the number of representative levels.

The Lloyd{Max quantizer and the Panter and Dite approximation minimize the
mean squared quantization error for a given number of representative levels.
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Figure 13 Example for a quantizer input-output characteristic.

The solution implies that each representative level is coded by a �xed codeword
length. Often, we want to employ an entropy coder after the quantizer which
generates codewords of variable length in order to approach the entropy of the
quantized signal. In this case, it is not appropriate to minimize mean squared
quantization error subject to a �xed number of representative levels, but rather
subject to a �xed entropy of the quantized signal x̂. It can be observed that
a uniform quantizer often yields a better result than a Lloyd{Max quantizer,
when followed by entropy coding. In fact, for su�ciently �ne quantization, a
uniform quantizer yields minimum entropy [48].

Scalar quantization followed by entropy coding is often used in the context
of subband image coding [35] [36] [37]. The amplitude histogram of a typical
subband signal is shown in Fig. 14. It can be approximated well by a Laplacian
pdf. Optimum scalar quantizers for Laplacian pdfs and Gamma pdfs have
been investigated extensively by Brusewitz [49]. His work shows that uniform
quantizers with a representative level at zero and a larger threshold around zero
yield excellent results even at low rates (Fig. 15). Uniform threshold quantizers
are employed today in the DCT-based image coding standards ITU-T H.261,
MPEG, and JPEG [6] [7] [8].
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Figure 14 Histogram of a subband signal.

Figure 15 Uniform threshold quantizer.
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3.2 Vector Quantization Techniques for
Image Subband Coding

A subband decomposition reduces or even eliminates the correlation between
image samples, but there are still statistical dependencies of higher order within
or across subband signals unless the signal statistics are Gaussian. A vector
quantizer, which jointly quantizes several samples, can also exploit these sta-
tistical dependencies of higher order. The input to a vector quantizer can be
formed by combining several neighboring samples within an image subband
[40], or spatially coinciding samples from di�erent subbands [38], or a combina-
tion of both. In [42] several cases for forming vectors within a subband coding
scheme for color images are investigated. In this section, we introduce some ba-
sic vector quantization (VQ) techniques as well as lattice vector quantization.
A broader overview can be found in [50] [51].

Fixed-Wordlength VQ

In 1980, Linde, Buzo, and Gray generalized the Lloyd algorithm for the de-
sign of nonuniform scalar quantizers to yield a codebook for vector quantizers
containing a �xed number of codevectors [52]. Their algorithm, known as the
\LBG algorithm" or \generalized Lloyd algorithm", computes a codebook with
minimum average distortion for a given training set and given codebook size.
In the following, let us assume squared error as the distortion measure, which
is, for k-dimensional vectors x and y, de�ned as

d(x;y) =
1

k

kX
i=1

(xi � yi)
2: (7.30)

The algorithm starts with an initial codebook C = fri; i = 1; : : : ; Ng containing
N representative vectors ri and a training set T = fxj ; j = 1; : : : ;Mg of
size M � N . In the �rst step for T a minimum distortion partitioning P is
computed as

P = fSi; i = 1; : : : ; Ng (7.31)

Si = fx j d(x; ri) � d(x; rj); 8j 6= i ^ x 62 Sk 8k < ig:

Partition Si contains all vectors x which can be reproduced by ri with least
possible distortion. Ties are broken by favoring the partition with the smallest
index. P is then the best partition for codebook C, but unfortunately C is not
optimal. To obtain the best codebook C� for our partitioning P we compute
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for each partition Si a centroid r
�
i which serves as its new representative vector:

C� = fr�i j r�i =
1

jSij
X

j:xj2Si

xjg; (7.32)

where jSij denotes the number of vectors belonging to partition Si. Since we
have obtained a new codebook C� we need to recompute the partitioning of
our training set. Therefore we set C to C� and repeat the partitioning (7.31)
and centroid calculation (7.32) until the average distortion

Davg =
1

M

MX
j=1

min
r2C

d(xj ; r) (7.33)

obtained with codebook C cannot be signi�cantly decreased by further iterati-
ons.

Figure 16 2-D vector space with uniformly distributed data quantized by
full search LBG VQ.

Fig. 16 shows how a two-dimensional vector space is partitioned by applying the
LBG algorithm for N = 16 using (7.30) as the distortion measure. The training
set is represented by the shaded banana-shaped region wherein training vectors
are uniformly distributed. White dots stand for the representatives of the �nal
codebook.

A disadvantage of the codebook found by the LBG algorithm is, that it is un-
structured. This implies that a codevector can only be found by a full search
algorithm which requires roughly kN subtractions, multiplications, and additi-
ons. On the other hand, decoding is simply a table look-up. We will compare
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unstructured vector quantizers for �xed word length encoding using the LBG
algorithm and the mean squared error distortion measure for subband image
coding in subsection 3.3.

Entropy-Constrained VQ

The LBG algorithm can be extended for codebook design under an entropy
constraint [53]. Entropy-constrained vector quantization (ECVQ) minimizes
distortion for a given average codeword length rather than a given codebook
size. The average codeword length constraint is built into the codebook design
by a Lagrange multiplier formulation. Instead of just minimizing the average
distortion D, now D + �R is minimized, where R is the average bit-rate.

Let l(i) denote the codeword length needed to encode the representative vector
ri. Then the Lagrange formulation can be easily incorporated into the LBG
algorithm described in the previous section. The LBG rule (7.31) for computing
the minimum distortion partition P now contains an entropy constraint:

P = fSi; i = 1; : : : ; Ng (7.34)

Si = fx j d(x; ri) + �l(i) � d(x; rj) + �l(j);8j 6= i ^ x 62 Sk 8 k < ig:

A vector x will be mapped to partition Si if the distortion between x and ri
biased by the codeword length l(i) is minimized. Ties are broken as in (7.31).
In other words, the best representative for x now is the one that yields the
best tradeo� between distortion and codeword length. Computation of the
optimal codebook C� for P is carried out according to (7.32). The original
LBG algorithm for �xed codeword length is a special case with � = 0.

In [53] it is proposed to use l(i) = log2(
1
p(i) ) as the \ideal" codeword length for

ri with p(i) =
M
jSij

. This assumes that noninteger codeword lengths are allowed.

Another possibility incorporates the construction of a Hu�man code [54] into
the codebook design. In [53] it is reported that assuming noninteger codeword
lengths during codebook design performs nearly identical to a system with an
incorporated Hu�man algorithm.

Fig. 17 shows the changed subdivision of the vector space compared to Fig. 16
if an entropy-constraint is built into the LBG algorithm. Since the codeword
length is taken into account in the codebook design, the decision hyperpla-
nes separating the regions in vector space with the smallest Euclidean distance
around individual representatives are shifted compared to the �xed word length
VQ. As an example, consider an input vector that is approximately equally close
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Figure 17 2-D vector space with uniformly distributed data quantized by
full search LBG VQ with entropy-constraint.

to two reproduction vectors. It is advantageous to choose the representative
with the shorter codeword length, even though its associated distortion might
be slightly larger. Since there are more bits remaining, the resulting overall
distortion will be smaller. When designing an ECVQ codebook, the initial co-
debook size has to be su�ciently large. Otherwise, the resulting codebook will
not achieve the theoretical minimum distortion for a given rate [53]. Redundant
vectors are automatically eliminated in the iterative design process.

Subband image coding with ECVQ codebooks is compared to other quantiza-
tion schemes in subsection 3.3.

Lattice VQ

Another important class of vector quantizers is lattice quantizers, which are
characterized by a highly regular codebook structure. We say that a regular
arrangement of points in n-dimensional space is a lattice, �n. A quantizer
that uses the points of a lattice as codevectors is said to be a lattice vector
quantizer. Compared to VQ with unstructured codebooks, lattice VQ has a
much lower encoder complexity at interesting bit-rates. Fast quantization and
decoding algorithms for several lattices can be found in [55] and [56]. As an
example we describe later in this section a fast quantization algorithm for an
eight-dimensional lattice. In subsection 3.3, we shall present results for lattice
vector quantizers based on various lattices.
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An n-dimensional lattice, �n, is de�ned as

�n = fx 2 Rm j x = zG; z 2 Z � Z � : : :� Z = Zng (7.35)

where G, the generator matrix of the lattice, is an m�n matrix (m � n) with
n linear independent rows belonging to Rm. Some lattices can be de�ned in a
more convenient way. For example, for n � 3 the Dn lattice can be described
as

Dn = fx 2 Zn j
nX
i=1

xi eveng: (7.36)

It contains all points of the Zn-lattice whose coordinate sum is even. Lattices
can often be expressed as a union of cosets of simpler lattices. A coset of a
lattice is a lattice resulting from adding a �xed vector to each lattice point. For
instance the E8-lattice can be de�ned as

E8 = D8

[ �
D8 + (

1

2
;
1

2
;
1

2
;
1

2
;
1

2
;
1

2
;
1

2
;
1

2
)

�
: (7.37)

which is the union of the D8-lattice and a coset of the D8-lattice obtained by
adding 1

2
= ( 12 ; : : : ;

1
2 ) to each lattice point. The E8-lattice may also be de�ned

by the generator matrix

GE8
=

2
66666666664

2 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

3
77777777775
: (7.38)

Another important lattice is the An-lattice. It can be de�ned by the (n+1)�n{
dimensional generator matrix

GAn =

2
666664

�1 1 0 0 : : : 0 0
0 �1 1 0 : : : 0 0
0 0 �1 1 : : : 0 0
...

...
...

...
...

...
0 0 0 0 : : : �1 1

3
777775
: (7.39)
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It can be shown, that for a smooth multidimensional probability density func-
tion and su�ciently �ne quantization, a lattice vector quantizer derived from
the densest multidimensional sphere packing can approach the minimum mean
squared quantization error for a given entropy [57]. Therefore lattices of inte-
rest are mainly those corresponding to densest sphere packings. For instance,
in two dimensions, it is known that a hexagonal partitioning of the space cor-
responds to the densest packing. The corresponding hexagonal lattice is called
the A2-lattice (see Fig. 18). In 3-dimensional space, the A3-lattice is known
to yield the densest sphere packing. Unfortunately in higher dimensions, lat-
tices corresponding to densest sphere packings are currently only known for 8
dimensions (E8-lattice) and 24 dimensions (Leech lattice).

Let us now consider an example of a fast lattice quantization algorithm that
�nds the Dn-lattice point closest to a given input vector. For x 2 R, let
f(x) be de�ned as the closest integer to x and w(x) = f(x) + sign(x � f(x))
with sign(y) = 1 if y � 0 and sign(y) = �1 otherwise. The Dn-lattice point
closest to x 2 Rn can be found in the following way: compute �rst f(x) =
(f(x1); : : : ; f(xn)), the point of Zn which is closest to x. If f(x) does not
have an even sum of components compute g(x) = (f(x1); : : : ; w(xi); : : : ; f(xn)),
where xi is the component furthest away from an integer. Whichever of f(x)
and g(x) has an even sum of coordinates is the closest Dn-lattice point to x.

If ��(x) is the closest lattice point for a given lattice � then ��(x � t) + t

is the closest point on the translated lattice � + t. With this insight we now
can formulate algorithms for lattices that can be de�ned as the union of lattice
cosets, e.g. for the E8-lattice. Knowing the algorithm for the D8-lattice we
can �nd a nearest E8-lattice point by computing �E8

(x) and �E8
(x � 1

2
) + 1

2

and then choosing among the two results the one closest to x. This can be
generalized for every lattice that can be described as a union of cosets.

The structure of a lattice gives an implicit partitioning of the vector space
into lattice cells that are regular in contrast to the partitionings found by
the LBG algorithm. We have already seen that the best codebook for a set of
given partitions results from using each partition's centroid as its representative
(see 7.32). This also can be applied to lattice quantizers and motivates the
use of centroids as codevectors for lattice cells. The centroids are computed
for a training set together with lattice cell probabilities and are stored in a
special codebook. The probabilities can be used to construct for instance a
Hu�man code for the encoding of lattice cells. To keep memory requirements
in reasonable bounds, centroids and probabilities should only be stored for the
most popular lattice cells. In the other lattice cells the lattice point itself is
used for reconstruction and equal probabilities are assumed.
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This is illustrated in Fig. 18 for an A2 lattice vector quantizer. The use of the
centroid instead of a lattice point is best seen for cells that are only partially
covered by the shaded training set.

Figure 18 2-D vector space with uniformly distributed data quantized by
A2-lattice VQ.

3.3 Experimental Comparison of Vector
Quantizers for Image Subbands

In this section, various vector quantization techniques as described in the pre-
vious section are compared experimentally, using both synthetic source data
and natural images decomposed by a subband pyramid. In each case, we have
measured the distortion over a range of bit-rates. Comparisons for other quan-
tization techniques like pyramid vector quantization can be found in [4].

Fig. 19 shows the performance of 8-dimensional VQ for a �rst-order Gauss-
Markov source with a correlation coe�cient of r = 0:95. This corresponds to the
typical correlation of adjacent samples in a baseband image. For comparison,
the Shannon lower bound of the rate-distortion function (7.13) is shown in
Fig. 19 as well. Unstructured VQ with or without variable length coding both
perform well. It is somewhat surprising that ECVQ does not achieve any
gain over �xed codeword length (CWL) VQ. The E8 lattice vector quantizer is
about 2 dB worse than unstructured VQ. Optimum scalar quantization followed
by entropy coding is also shown. It does not exploit the correlation between
successive samples and thus performs poorly.
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Figure 19 Distortion rate curves for 8-D vector quantization of a Gauss-
Markov source with correlation coe�cient r = 0:95.

Subband images are much less correlated than the full band image. Their am-
plitude distribution resembles a Laplacian distribution. We have therefore com-
pared the various VQs for data from a memoryless Laplacian source. Results
for 8-D VQ are shown in Fig. 20. The curves are dramatically di�erent from the
results shown in Fig. 19. Since the source is memoryless, gains beyond scalar
quantization are small. Unstructured �xed word length VQ performs poorly
at low bit-rates. E8-lattice VQ performs as well as unstructured ECVQ at low
bit-rates.

The following results have been obtained for the well-known image \Lenna" (of
size 512�512), decomposed in a subband pyramid. The vector quantizers were
obtained using a training set of four images. \Lenna" was not contained in
the training set. We have measured distortion rate curves for each individual
subband for each of the vector quantizers. It is beyond the scope of this chapter
to present these results comprehensively. Rather, we show two typical examples
in Figs. 21 and 22. The presentation has been changed compared to Figs. 19
and 20. It is more convenient to work with mean squared error curves rather
than SNR for optimum bit allocation, as discussed in the next section.

Fig. 21 shows results for 8-D vector quantization of the horizontal high band of
the �rst pyramid level. Unstructured VQ with �xed word length performs even
worse than optimum scalar quantization with (memoryless) entropy coding. As
expected, unstructured VQ with entropy coding performs best. The E8-lattice
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Figure 20 Distortion rate curves for 8-D vector quantization of a memoryless
Laplacian source.

Figure 21 Distortion rate curves for 8-D vector quantization of the horizontal
high frequency band of the �rst pyramid level.
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Figure 22 Distortion rate curves for 4-D vector quantization of the vertical
high frequency band of the second pyramid level.

VQ is close to the optimum. At higher rates the training set becomes too
small to reliably train all the degrees of freedom of the unstructured ECVQ
codebook, and its performance becomes slightly worse than E8-lattice VQ.
Interestingly, the simple orthogonal Z8-lattice performs almost as well as the
E8-lattice. Since it requires even less computation than E8, it is certainly a very
interesting alternative. Fig. 22 shows similar results for 4-D VQ of the vertical
high band of the second pyramid level. The unstructured ECVQ performs best,
but there is practically no loss when a highly structured D4-lattice VQ or an
even simpler orthogonal Z4-lattice VQ is used. VQ with �xed word length does
not perform well at all, and it is even worse than optimum scalar quantization.
A more detailed discussion of these results has been presented in [40].

3.4 Bit-Rate Allocation

A subband image coder can be regarded as a special case of the system shown
in Fig. 23. An original image x is represented by M independent bit-streams
with individual bit-rates Ri, yielding an overall rate

R = R0 +R2 + :::+RM�1: (7.40)
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At the decoder, a signal x̂ is reconstructed that deviates from x by some average
distortion D.

Coder Decoder

rates

R

R

R

0

1

M-1

x x....
Figure 23 Codec representing signal x by M parallel independent bit-
streams.

We assume that the multivariate distortion rate function D(R0; R1; :::; RM�1)
is strictly convex and di�erentiable everywhere, and that

@D

@Ri
� 0;8i (7.41)

i.e., increasing the rate for any one of the bit-streams will decrease the distortion
D. We can �nd the optimum bit allocation that minimizes D subject to a �xed
overall rate R by setting the total di�erential of the distortion to zero, i.e.

dD =
@D

@R0
dR0 +

@D

@R1
dR1 + :::+

@D

@RM�1
dRM�1 = 0: (7.42)

From (7.40), we obtain

dR0 + dR1 + : : :+ dRM�1 = 0: (7.43)

From (7.42) and (7.43) follows the optimum bit allocation condition

@D

@R0
=

@D

@R1
= : : : =

@D

@RM�1
: (7.44)

Eq. (7.44) can be interpreted as follows. If we have one more (in�nitesimal) bit
to spend, we would add it to the bit-stream with the smallest @D

@Ri
, since this

would decrease distortion by the greatest amount. We would continue to do
so, until some other bit-stream o�ers a greater pay-o�. The optimum balance
is achieved according to (7.44), when it does not matter to which bit-stream
we add the next bit.
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If the overall distortion D is the sum of the individual subband distortions Di,
i.e.,

D =
X
i

Di; (7.45)

(7.44) can be simpli�ed to

@Di

@Ri
=
@Dj

@Rj
for all i; j: (7.46)

In other words, we have to pick points of equal slope on the individual distortion
rate curves for each subband. Equation (7.45) holds if mean-squared error
is used as the distortion measure and the subbands are orthogonal. Many
subband decomposition schemes are designed with an orthogonality criterion or
are nearly orthogonal. Based on (7.46), we have optimized a subband pyramid

Figure 24 Bit allocation and mean squared error contributions of individual
subbands.

coder that uses E8-lattice VQ on the �rst pyramid level, D4-lattice VQ on
the second level, and the A2-lattice on the third and fourth levels. With this
coder we have compressed test image \Lenna" and have achieved a bitrate
of 0.136 bpp while maintaining a peak-to-peak SNR of 30.9 dB. For a visual
impression of the achieved quality, refer to [40]. The overall quality is very
good for a compression ratio of approximately 60:1 (starting at 8 bpp). Fig.
24 summarizes the bit allocation among subbands and the contribution of each
subband to the overall distortion. Interestingly, the mean squared error (MSE)
contribution of the various subbands di�ers considerably. It ranges from MSE
= 1.1 for the lowest band to MSE = 10.5 for the horizontal high band on
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the �rst pyramid level. If we do not use rule (7.46) for bit allocation but
rather allocate bits for equal mean squared error contribution of the bands (a
popular text book solution motivated by the rate-distortion analysis presented
in section 1.1), overall SNR drops by 0.8 dB for the same bit-rate. We also
encoded the image with orthogonal lattice quantizers, and it was con�rmed
that these quantizers perform only slightly worse than the denser lattices. The
excellent performance of subband pyramid coding in combination with lattice
VQ has been con�rmed by results reported by Barlaud et. al. [58] [59].

4 CONCLUSIONS

In this chapter, we have reviewed the principles of subband coding of still
images and discussed a variety of algorithms employed in practical systems
today. Compression can be achieved by exploiting the properties of both signal
source and signal receiver. Rate-distortion theory establishes the relationship
between the �delity of the reconstructed image and the lowest transmission bit-
rate for a given source model and a given distortion measure. An e�cient coder
jointly encodes many symbols; ideally, the reconstruction error is statistically
independent from the reconstructed signal. For an ergodic Gaussian source
with memory it is optimal to split the signal into frequency bands of (ideally)
in�nitesimal bandwith and to encode those spectral components independently,
according to the signal energy contained in the band. This is the underlying
idea and the motivation for subband image coding.

Subband image coders consist of three essential stages: decomposition of the
signal into frequency bands by means of subband �lter banks, quantization of
the subband signals, and (lossless) entropy coding.

For perfect reconstruction, subband �lter banks have to obey certain design
rules. Quadrature mirror �lters (QMF) with linear phase can yield nearly
perfect reconstruction and are widely used in image coding. The signal may
be split into bands of equal or unequal bandwiths by appropriate cascading
of two{band decompositions. Subband pyramids that recursively decompose
the low band are now widely used. Another important decomposition is the
discrete cosine transform (DCT), which is in fact a special case of a subband
decomposition.

After the decomposition stage, the subband signals have to be compressed. A
scalar quantizer quantizes each sample independently and is easy to implement.
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Better results are achieved when jointly quantizing several samples by means of
vector quantization (VQ). Fixed-wordlength vector quantizers can be designed
based on a training set using the LBG algorithm. The LBG algorithm can be
extended to the design of vector quantizers with an entropy constraint. For
a given entropy and a smooth probability density function, a lattice VQ can
approach the minimum mean squared error. In subsection 3.3, we have compa-
red various vector quantizers experimentally. For the lowpass band (baseband
image), VQ is far superior to scalar quantization. Unstructured VQ with va-
riable length coding is the best choice for encoding of the subband signals. The
subband signals are, however, spatially much less correlated, and VQ does not
o�er as much gain as for the lowpass band. For low bit-rates, unstructured
VQ with an entropy constraint (ECVQ) performs best, but it is also compu-
tationally most expensive. Lattice VQ is computationally less expensive and
performs almost as well.

Finally, we have reviewed conditions for optimum bit allocation among the
subbands. In a coding example, we have demonstrated that a monochrome
still image can be compressed by 60 : 1 while maintaining an acceptable level
of image quality.
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