
2 Coordinate systems

In order to find something one needs a system of coordinates. For determining
the positions of the stars and planets where the distance to the object often is
unknown it usually suffices to use two coordinates. On the other hand, since
the Earth rotates around it’s own axis as well as around the Sun the positions
of stars and planets is continually changing, and the measurment of when an
object is in a certain place is as important as deciding where it is.

Our first task is to decide on a coordinate system and the position of

1. The origin. E.g. one’s own location, the center of the Earth, the, the
center of the Solar System, the Galaxy, etc.

2. The fundamental plan (x−y plane). This is often a plane of some physical
significance such as the horizon, the equator, or the ecliptic.

3. Decide on the direction of the positive x-axis, also known as the “reference
direction”.

4. And, finally, on a convention of signs of the y− and z− axes, i.e whether
to use a left-handed or right-handed coordinate system.

For example Eratosthenes of Cyrene (c. 276 BC c. 195 BC) was a Greek
mathematician, elegiac poet, athlete, geographer, astronomer, and music theo-
rist who invented a system of latitude and longitude. (According to Wikipedia
he was also the first person to use the word geography and invented the disci-
pline of geography as we understand it.). The origin of this coordinate system
was the center of the Earth and the fundamental plane was the equator, which
location Eratosthenes calculated relative to the parts of the Earth known to
him.

When viewed from the surface of the Earth the sky above forms a hemi-
sphere, astronomical objects are seen to be projected onto this hemisphere. and
their locations are convenient to describe their location with two angular coor-
dinates in the same manner as latitude and longitude are decided on the sphere
of the Earth. Note that the location of the origin of longitude for both the earth
and the sky are not obvious. In any case, it is necessary to review a few aspects
of trigonometry on a sphere in order to understand the use of these coordinate
systems.

Any plane passing through the center of a sphere cuts the surface in a circle
which is called a great circle. Any other plane that cuts the sphere, but that does
not pass through the center is a small circle. When two great circles intersect
at a point they are said to include a spherical angle which is defined between
the tangents of the great circles at the point of their intersection. A spherical
angle is only defined with respect to intersecting great circles.

Given any three points on the surface of a sphere, the sphere can be bisected
so that all three points lie in the same hemisphere. Joining the points by great
circle arcs all in this hemisphere defines a spherical triangle. The length of a
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great circle arc is defined as the radius times the angle A formed between the
two endpoints of the arc and the spheres center measured in radians: R × A.

As discussed above there are several methods of specifying a given position
on the celestial sphere, depending on which principal great circles are chosen as
reference.

2.1 Altitude – Azimuth

With reference to figure 1 let O, the observer on the surface of the earth (sup-
posed spherical), be the center of the celestial sphere.
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Figure 1: The altitude – azimuth coordinate system.

Let Z be the zenith, vertically overhead be defined by the direction of gravity.
OZ is thus the continuation of the straight line joining the earth’s center to O.
The plane through O at right angles to OZ is the plane of the horizon, cutting
the celestial sphere in the great circle NAS, called the celestial horizon.

Let X be the position of a star on the celestial sphere. Any great circle drawn
through Z is called a vertical circle; in particular, the vertical circle through X
is ZXA. In the plane of ZXA, the angle AOX (or the great circle arc AX) is
called the altitude denoted by a. Since OZ is perpendicular to the plane of the
horizon, the great circle arc ZA is 90◦; hence ZX = 90◦ − a. ZX is called the
zenith distance of the star X . Draw LXM as a small circle through X parallel
to the horizon, it is called the parallel of altitude.

To define a stars position completely on the celestial sphere the particular
vertical circle on which it lies must also be specified. Let OP be parallel to the
axis about which the earth spins. On the northern hemisphere the position P is
called the north celestial pole. Due to this rotation the celestial sphere appears
to rotate and the stars to continuously change altitude and direction. In the
northern hemisphere Polaris lies almost directly on OP and changes direction
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very little. Define the vertical circle through P that is ZPN as the principal
vertical circle and the point N as the north point of the horizon.

The position of a star X on the celestial sphere at a given moment is given
by reference to the horizon and the principal vertical circle ZPN . If the star is
in the western part of the celestial sphere the spherical angle PZX or the great
circle arc NA is called the azimuth (W).

Note that the angle POZ (or great circle arc PZ) is equivalent to the angle
between the radius of the earth which passes through the observer’s position
and the earth’s axis is equal to the co-latitude of the observer or

PZ = 90◦ − φ

where φ is the observers latitude. Hence the altitude of the pole is equal to the
observers latitude.

2.2 Some spherical trigonometry

Both great circle angles and arcs are measured in radians (or degrees). By
definition all angles and and sides in a spherical triangle are less than π radians
(180◦). A spherical triangle is defined when we know three of its six sides or
angles. The sum of the angles in a spherical triangle is greater than 180◦, the
difference between the sum of the angles and 180◦ is called the spherical excess.

Consider a spherical triangle with corners A, B, C on a unit sphere1. Assume
that these corners follow each other in the positive sense. The sides a, b, c lie
directly opposite these corners. Insert a right handed coordinate system x, y, z
with origin at the sphere’s center, let the z axis go through the point A, and
the x − z plane through the side c. The coordinates of the corner C are then

z = cos b

x = sin b cosA

y = sin b sinA. (1)

Now rotate the coordinate system around the y-axis until the z-axis goes through
B. Call the new coordinate system x′, y′, z′ (see figure 2). The corner C’s
coordinates in the new system are then - since we see that the side a is equivalent
to b in the old system and the angle π − B is equivalent to A:

z′ = cos a

x′ = − sina cosB

y′ = sina sin B. (2)

1Useful in the following:

cos(α ± β) = cos α cos β ∓ sin α sinβ

sin(α ± β) = sin α cos β ± cos α sinβ
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Figure 2: Two axis systems used to derive the basic formula of spherical
trigonometry.

To find the relation between the marked and unmarked coordinates, put a
plane through the x− z axes. On rotation the y-coordinate is unchanged. With
reference to figure 2 we see the following relations:

v′ = v − c z = cos v x = sin v
z′ = cos v′ x′ = sin v′

Now express z′ and x′ with the help of v and c

z′ = cos v cos c + sin v sin c

x′ = sin v cos c − sin c cos v,

setting in for z and x and remembering that y is unchanged gives

z′ = z cos c + x sin c

x′ = x cos c − z sin c

y′ = y. (3)

Setting in equations 1 and 2 in equation 3 gives the basic formulae of spherical
trigonometry:

cos a = cos b cos c + sin b sin c cosA (4)

sin a cosB = sin c cos b − cos c sin b cosA (5)

sina sin B = sin b sin A (6)

The first of these is the cosine formula, the second the sine–cosine formula, and
the third the sine formula.
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2.3 Declination – hour angle

Consider now again the celestial sphere as drawn in figure 3.
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Figure 3: Relation between altitude – azimuth and declination – hour angle
coordinates.

The great circle RWT whose plane is perpendicular to OP is the celestial

equator and its plane is parallel to that of the earth’s equator. The celestial
equator and the horizon intersect in two points W and E. Now Z is the pole
of the great circle NWS and P is the pole of the great circle RWT ; hence W
is 90◦ from both Z and P and therefore 90◦ from all points on the great circle
through the great circle through Z and P . This means that W is the pole of
the great circle NPZQ; hence NW = 90◦ and WS = 90◦. Similarly EN = 90◦

and ES = 90◦. Thus W and E are the remaining cardinal points, in addition
to N and S.

The rotation of the earth results in an apparent rotation of the celestial
sphere from east to west about OP . As stars are very far from the earth,
the angle between the straight line joining the observer at O to any particular
star and the straight line OP remains unaltered. The earth’s rotations makes
the star X describe a small circle LXM , parallel to the celestial equator. Let
PXDQ be the semi-great circle through X and the poles of the celestial sphere.
Then DX is called the declination of the star and is north declination if the
star is between the celestial equator and the north pole. Denoting the stars
declination DX by δ and PX = 90◦− δ is called the north polar distance of the
star.

When we know the declination of a star, a small circle, the parallel of dec-

lination, is defined. In order to completely specify the stars position we need
another great circle of reference. This is the semi-great circle PZRSQ called
the observer’s meridian. When the star is at L on the observers meridian it is is
said to transit or culminate at which time it is at its greatest altitude. Afterward
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the star moves along the small circle LFM crossing the horizon at F , when it is
said to set with an altitude of 0◦. Eventually it will pass through its position of
maximum depression at M before continuing on to G where the altitude again
is 0◦ and is said to rise. At any moment the star’s position on the parallel of
declination is specified by the angle P between the observer’s meridian and the
meridian (PXQ) through the star at this time; this angle is RPX or arc RD on
the equator. This angle, denoted by H , is called the hour angle and is measured
from the observer’s meridian westwards from 0◦ (at L) to 360◦ (when the star
returns to the observer’s meridian), or more usually from 0h to 24h.

2.4 The standard geocentric celestial sphere

For stars, which are very far away, the position of the observer on the surface of
the earth is irrelevant to the definition of the stars position. But when we are
considering a relatively nearby object such as the moon, the sun, or a planet the
definition of the north polar distance (and therefore of declination) previously
given is dependent on position of the observer on the earth.

Accordingly, the center of the standard celestial sphere is taken to be at C
the earth’s center.

2.5 Right ascension and declination

In the hour angle and declination method of specifying a star’s position on the
celestial sphere only one coordinate, the declination, remains constant as the
start travels across the sky.

Figure 4: Definition of the right ascension – declination coordinate system.
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Let us now pick a point � on the celestial equator and let the meridian
through the star X cut the celestial equator at D. As the stars pass across the
sky the declination DX remains constant and that the relative configuration of
the stars also remain constant. It follows that �D is constant. We regard � as
a reference point on the celestial equator; we can then clearly specify the the
position of the star X by means of the great circle arc �D and the declination
DX . The reference point chosen is called the vernal equinox or the first point

of Aries. The arc �D is called the right ascension (r.a.) of the star X . It is
denoted by α and is measured eastward from � from 0h to 24h, opposite to the
direction the hour angle H is measured.

Note that R� = RD +�D. The hour angle of � is called the sidereal time2

(s.t.). We have accordingly
S.T. = H + α

When � is on the observer’s meridian, the hour angle of � is 0h, i.e the sidereal
time is 0h. When � is next on the observer’s meridian an interval of 24h

of sidereal time has elapsed. This interval is the same as is required for the
complete revolution of the earth about its axis and is called a sidereal day.

2.6 The earth’s orbit

According to Kepler’s first law of planetary motion, the earth is a planet re-
volving around the sun in an elliptical path or orbit, and the sun is situated in
a focus of the ellipse. Since our observations are made from earth, then relative
to the earth the sun appears to describe an elliptical path around the earth. In
the course of a year the sun makes a complete circuit of the heavens against
the background of the stars. The plane of the orbit is called the plane of the

ecliptic, and the great circle in which this plane intersects the celestial sphere
whose center is the earths center C, is called the ecliptic. With reference to the
stars, the plane of the ecliptic will be a particular great circle which is found by
observations to be inclined at an angle of about 23 1

2

◦

to the celestial equator.
In figure 5, Y �M represents the ecliptic and its inclination to the celestial

equator is M�R, which is known as the obliquity of the ecliptic. Relative to the
earth, the sun appears to move on the celestial sphere along the ecliptic in the
direction Y �M and twice yearly its position coincides with the intersections
of the ecliptic with the celestial equator. The position �, at which the sun’s
declination changes from south to north, is the vernal equinox. It is in this
way that the reference point � is obtained, from which the right ascension of
stars is measured. From the diagram it is seen that the right ascension and
declination of the sun are both changing continually. When the sun is at � its
right ascension and declination are both zero (this occurs roughly March 21);
at M the right ascension is 6h and declination about 23 1

2

◦

N (roughly June 21,
summer solstice); at U the right ascension is 12h and declination 0◦ (September
21, autumnal equinox), and at Y the right ascension is 18h and the declination
about 23 1

2

◦

S (December 21, winter solstice).

2sidereal: of or with respect to distant stars.
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Figure 5: Celestial longitude and latitude.

2.7 Celestial latitude and longitude

The position of a heavenly body can also be referred to the ecliptic as funda-
mental great circle and the vernal equinox � as principal reference point. E.g.
in figure 5, K is the north pole of the ecliptic and KXA is a great circle arc
passing through X and meeting the ecliptic in Λ. The arc �Λ, measured from
� along the ecliptic in the direction of the sun’s annual motion (eastwards), is
called the longitude of X and is measured from 0◦ to 360◦ round the ecliptic.
The arc ΛX is the latitude, north is considered positive and south negative.

Thus, if one know a star’s right ascension and declination it is possible to
obtain its latitude (β) and longitude (λ) from the triangle KPX ; and vice versa.

2.8 Sidereal time i

Sidereal time at Greenwich is given such that

S.T. at Greenwich = S.T. at l ± long. of l

where l is the longitude of the observer with the + sign given when l is west of
Greenwich and the − is given when l is east of Greenwich. The sidereal time at
l is called the local sidereal time (l.s.t.).

2.9 Mean solar time

When the sun is on the meridian of a given place, it is apparent noon there;
when the sun is next on the meridian, an apparent solar day has elapsed. An
apparent solar day is not constant — due to the fact that the sun’s apparent
orbit around the earth is not a circle but rather an ellipse. In addition the
sun moves along the ecliptic and not the celestial equator so it’s right ascension
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does not increase uniformly. The average apparent solar day through the year
is called a mean solar day. The mean sun is assumed to move in the celestial

equator at a uniform rate around the earth. The rate is such that the mean
sun completes its orbit in the same amount of time as the real sun needs to
complete an orbit around the ecliptic. Assume that the right ascension of the
sun is known, then

Sid.time = H.A.M.S. + R.A.M.S

The mean sun is related to the true sun by certain principles that will be dis-
cussed later; for now let us define the difference as the equation of time E such
that

E = R.A.M.S − R.A.⊙

E can be positive or negative and varies in a complicated manner.
When the mean sun is on the meridian of Greenwich, it is Greenwich mean

noon. The hour angle of the mean sun at Greenwich is denoted g.m.a.t. (Green-

wich mean astronomical time). Mean time reckoned from midnight at Green-
wich is called Greenwich Mean Time (g.m.t.), now designated Universal Time

(u.t.). Thus
U.T. ≡ G.M.T. = G.M.A.T. + 12h

and similarly for any place keeping the mean time appropriate to its meridian.

2.10 Sidereal time ii

Sidereal time, at any instant at a given place, is the hour angle of the vernal
equinox. In section 2.8 the ecliptic and celestial equator were considered as
fixed great circles on the celestial sphere, and thus the vernal equinox as a fixed
point. However, there are both the phenomena of precession and nutation3 so
the celestial equator cannot be considered as a fixed great circle, and the position
of the vernal equinox must be treated as a time varying quantity, slowly moving
according to well established principles with reference to the background stars.

We will continue to assume the ecliptic as a fixed great circle. Owing to
precession, the north celestial pole P describes a small circle about the pole
K (see figure 5) of the ecliptic in a period of about 26 000 yr. At present P
is within 1◦ of the star α Ursae Minoris (Polaris), but their relative positions
are changing and in 12 000 yr P will be within a few degrees of Vega. It is the
direction of the earth’s axis that is altering continuously with reference to the
background stars. Referring to figure 6, � is the vernal equinox for, say 1900.0
and �1 the vernal equinox for 1901.0. � and �1 are called the mean equinoxes

at the dates in question, and the corresponding celestial equators are called the
mean equators.

Assuming that owing to precession the north celestial pole moves uniformly
along the small circle arc PP1 and that the mean equinox moves uniformly

3precession: the slow movement of the axis of a spinning body around another axis due
to a torque acting to change the direction of the first axis. nutation: a periodic variation in
the inclination of a rotating object.
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Figure 6: Definition of sidereal time and the effects of precession; motion of the
vernal equinox.

backwards along the ecliptic from from � to �1. It is found that the motion of
� along the ecliptic is at the rate of 50.3 arcsec per annum.

When we define sidereal time in relation to the moving equinox, we can
no longer regard the earth’s rotational period to be the interval between two
successive transits of the equinox. In figure 6 let C�1 be a great circle arc drawn
through �1 perpendicular to the equator. Then the equinox at any given date
is separating, in right ascension, from the equinox � for 1900.0 at a the annual
rate measured by �C, given by the small triangle formula

�C = ��1 cos ε.

Hence, the mean equinox is separating, in right ascension, from � at the rate of
0.008 s per sidereal day. The direction of motion of the equinox is westward in
the sky — opposite to that in which right ascension increases — and thus the
interval between two successive transits of the moving equinox is 0.008 s less
than the interval given by a fixed equinox. This first interval is a sidereal day,
the second interval is the rotational period of the earth.

Owing to nutation the true equator at any instant is slightly different from
the mean equation at that instant. Consequently the true equinox is displaced
slightly along the ecliptic relative to the mean equinox; these displacements are
periodic in nature (and due the effect of the moon), with a period of about
18 yr. The difference in right ascension between the true equinox and the mean
equinox due this effect can amount to 1.2 s
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One defines mean sidereal time to associated with the moving mean equinox
(only precession considered) and apparent sidereal time to be associated with
the true equinox. The difference between these from day to day is so small in
practice that generally the sidereal day is taken to mean the interval between
two successive transits of the mean equinox.

2.11 Ephemeris and Universal time

There is a slight distinction between universal time, which is defined by the
rotation of the earth and ephemeris time which is uniform and is defined by the
gravitational dynamics of the solar system, independent of the earth’s rotation.

When the movements of the equator and equinox due to precession are taken
into account, the fictitious mean sun is defined to travel along the mean equator
in such a way that that its mean right ascension is always equal to the sun’s
mean longitude. This right ascension is, therefore, independent of the rotation
of the earth’s, and the fictitious mean sun is a suitable reference point for the
definition of ephemeris time. To facilitate this an alternate meridian is defined
called the ephemeris meridian which corresponds to the sidereal direction that
the Greenwich meridian would have if the earth were rotating strictly uniformly.
Ephemeris time is defined as

E.T. = 12h + E.H.A.F.M.S.

where the last term of the right hand side is the ephemeris hour angle of the
fictitious mean sun.

In contrast, a slightly different reference point, the mean sun, is used to
define universal time. The mean sun also moves round the mean equator but
at a rate that is directly proportional at each instant to the earth’s angular
velocity.

2.12 Terrestrial Time and Barycentric Coordinate Time

Astronomers stuck with ephemeris time until 1979, when they defined two new
time scales that used the atomic second and that took into account relativity
(velocity affects time). From 1 January 1984, these scales replaced ephemeris
time in national ephemeris like the Nautical Almanac.

Terrestrial Dynamical Time (TDT) views time from the earth’s position and
motion. It was defined as being equal to TAI (Atomic time) plus 32.184 (atomic)
seconds at the instant beginning 1 January 1977.

Barycentric Dynamical Time (TDB, from the French) is time at the center
of mass of the solar system. TDB has various forms depending on the theory of
relativity adopted.

By International Astronomical Union (IAU) Resolution A4 in 1991, Terres-
trial Dynamical Time was renamed Terrestrial Time (TT). Recommendations
III and V of the same resolution created Barycentric Coordinate Time (TCB)
to take the place of Barycentric Dynamical Time, except in situations where
maintaining continuity in ongoing work made retaining the old scale preferable.
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In 2006 (Resolution B3) 4 , responding to the “multiple realizations of TDB”
and other factors, the IAU defined TDB in terms of TCB. One result is that,
within a few thousand years around the present, the difference between Terres-
trial Time and Barycentric Dynamical Time on the surface of the Earth is less
than 2 milliseconds.

2.13 The sidereal year and the tropical year

The time required by the sun to make a complete a complete circuit of the
ecliptic is called a sidereal year.

The tropical year is the average interval between two consecutive passages
of the sun through the vernal equinox. Thus if � is the position of the equinox
at a given time and �1 the position of the equinox one year later, the tropical
year is the time taken by the sun to describe 360◦ less �1�. From observations
it is found to be 365.2422 days.

The relation between the sidereal year and the tropical year is then evidently

Sid. year/trop. year = 360◦/(360◦ − 50.3′′)

This gives a sidereal year of 365.2564 days.
During the course of a tropical year the r.a.m.s increases from 0◦ to 360◦,

that is at the rate of 360◦/365.2422 or 59′8.33′′ per mean solar day. Let t1 be
the mean sidereal time when the hour angle of the mean sun at a given place is
H1 and let R1 denote the corresponding value of the r.a.m.s.. Then

t1 = H1 + R1

Let t2 be the mean sidereal time one mean solar day later. The hour angle of
the mean sun has increased by 360◦ and the r.a.m.s by 59′8.33′′. Hence,

t2 = (H1 + 24h) + (R1 + 3m56.556s)

when we convert these to time measure, so that

t2 − t1 = 24h3m56.556s

This means that 24h
u.t. is equal to 24h3m56.556s mean sidereal time. Note

that this is equivalent to noting that during a year the earth has rotated about
its axis 365.2422 times with respect with the mean sun and once more with
respect to the equinox.

2.14 The Besselian year

It is the general astronomical practice to define the beginning of the tropical year
(sometimes called the solar year) as the instant when the r.a. of the fictitious
mean sun is exactly 18h40m or 280◦. This instant falls near the beginning of
the civil year and is usually called the Besselian year.

It is general practice to denote the beginning of any Besselian year by the
notation e.g. 1975.0, 2008.0, etc.

4www.iau.orgstaticresolutionsIAU2006 Resol3.pdf
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2.15 The Julian date

In certain observations it is found convenient to express the instant of observa-
tions as so many days and fraction of a day after a definitive fundamental epoch.
The epoch chosen is Greenwich mean noon of January 1, 4713 b.c., and for any
given date the number of days which have elapsed since this epoch defines the
Julian Date (j.d.) of the date in question.

2.16 The 3d dimension; distance

Determining the distance to astronomical objects is very difficult, and was for a
very long time one of astronomy’s largest unsolved problems. Hence, even today,
the uncertainty in measuring distance is enormous compared to uncertainties in
direction. For example, the position of Alpha Centauri is uncertain in the ICRS
(the International Celestial Reference System) by about 0.4 mas (milliarcsec),
which amounts to 3 parts in 109 of a full circle, while its distance is uncertain
by about one part in 2500.

2.16.1 The astronomical unit

Kepler’s 3’d law gives the scale of planetary orbits

a = P 2/3

where P is the period measured in years, and a is the distance of a planet
(or other object) measured in units of the average distance between object and
the Sun which defines the astronomical unit; AU, or au. The presently accepted
value for this length is

1 au = 1.49 5978× 1011 m

with an ancertainty of one part in 106.

2.16.2 Stellar parallax

Once the length of the au has been established one can measure the distances
to the nearby stars through the obsrvation of stellar parallax. As the Earth
travels in its orbit the apparent position of a nearby star relative very distant
objects shifts. Compared to background objects, the nearby star appears to
move around the perimeter of the prallactic ellipse, reflecting the Earth’s orbital
motion. The parallax angle p is half the total angular shift in the star’s position
(the semi-major axis of the parallactic ellipse). From the right triangle formed
by the Sun-star-Earth:

tan p =
a

r

where a is one au and r is the distance to the star. Since p is very small, a very
good approximation is

tan p ≃ sin p ≃ p
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so that
p =

a

r

. Usually one measures p in arcsec so that

p[arcsec] = 206 265
a

r
.

To avoid very large numbers it is both convenient and traditional to define the
unit parsec with the length

1 parsec = 206 265 au = 3.085 678× 1016 m = 3.261 633 ly.

The parsec (pc) is named because it is the distance of an object whose parallax
is one arcsec. In the literature the parallax angle is often symbolized π instead
of p.

Some history: James Bradley FRS (March 1693 - 13 July 1762) was an
English astronomer the Astronomer Royal from 1742. He undertook to measure
stellar parallax. Bradley could measure stellar positions with a precision of
about 0.5 arcsec (500 mas). This was good enough to discover both the effects
of aberration of light (1725 - 28), and the nutation of the Earth’s axis (1728 -
48), but not good enough to measure the parallax of stars.

Some generations later Friedrich Bessel (1784 – 1846) studying Bradley’s
observations discoverd that major advances in positional accuracy could be ac-
complished. He undertook a campaign to monitor the double star 61 Cygni along
with two background stars. In 1838, after a 25 year effort(!), he succeeded in
measuring its parallax to 320 mas, close to the modern value of 286 mas. Other
scientists trying to measure stellar parallax at about the same time were William
Struve in St. Petersburg who measured Vega, and Thomas Henderson in South
Africa who measured Alpha Centauri; of these Bessel’s measurement was the
most accurate.

Exercises

1. Given the observers latitude φ, the declination δ and hour angle H of the
heavenly body, calculate the zenith distance z and the azimuth A.

2. Given the observer’s latitude φ, the stars zenith distance and azimuth,
calculate the star’s declination and hour angle.

3. Work out a stars latitude (β) and longitude (λ) given its declination (δ),
right ascension (α) and the obliquity of the ecliptic (ε).

4. Use IDL or Matlab to produce a figure of altitude as function of hour angle
for stars observed from Oslo with declinations of -30,-15,0,+15,+30,+45,+60
degrees (all in the same figure).

5. Use IDL or Matlab to produce a figure of altitude as function of azimuth
for the same stars (also as observed from Oslo).

14


