Name

1) Identify the class of compounds that the following molecules belong to (12pts).

$\mathrm{R}-\mathrm{O}-\mathrm{H}$
$\mathrm{R}-\mathrm{O}-\mathrm{O}-\mathrm{R}$
7

2) Draw a Lewis structure including lone pairs for the following similar but different species: (12pts)

Nitronium Ion $\mathrm{NO}_{2}{ }^{+}$
Nitrosonium Ion NO^{+}

Nitric Acid HONO_{2} Nitrous Acid HONO
3) Circle a molecule in (2) with an sp^{2} hybridized Nitrogen atom. (1.5pts)
4) Put a cross through a compound in (1) which has ring strain (1.5pts).
5) Identify the general class of each of the below reactions (e.g. oxidation, electrophilic addition, etc) (16pts)
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

6) Define the following terms (10.5pts).

CONCERTED REACTION

PERICYCLIC REACTION

THE RMODYNAMIC PRODUCT

7) Give one use of Molecular Orbital theory, and also state a disadvantage of MO theory. (4pts).
8) State whether each of the following Molecular orbitals are overall bonding, antibonding or nonbonding (4.5pts).
(a)

(b)

(c)

9) Draw two Lewis resonance structures for a carboxylate anion $\mathrm{RCO}_{2}{ }^{-}$ (4pts).

10) Which one is more stable (2pts)?
11) Indicate which of the following molecules are aromatic, non-aromatic or anti-aromatic. (Assume all the molecules are planar). (15pts)

12) Circle the more stable species in these pairs. (8pts)
a)

b)

c)

d)

13) Give the products in six of the following reactions, paying attention to regio/stereochemistry where applicable. (18pts)

1) $\mathrm{Zn}, \mathrm{HCl}$
2) $\mathrm{NaNO}_{2}, \mathrm{HCl}$
3) $\mathrm{CuCl}, \mathrm{HCl}$

$$
\xrightarrow{\mathrm{Br}_{2}, \text { uv light }}
$$

$\xrightarrow[\text { 2) } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}]{\text { 1) } \mathrm{NaOH}}$

$\xrightarrow{\mathrm{KOH}} \mathbf{B}$
14) The below heterocycle is pyridine, and it is 6π Hückel aromatic.

Explain why there are 6π electrons (2pts)

What is the hybridization of the 5 carbons in the ring (1.5pts)

What is the hybridization of the Nitrogen atom (1.5pts)
15) Write the mechanism for the electrophilic aromatic substitution reaction below. (8pts)

16) Give reagents and conditions to accomplish five of the following transformations. (15pts)

17) Circle the stronger base in the following threesomes. (10pts)
(a)

(b)

(c)

(d)

(e)

HCl
$\mathrm{H}_{2} \mathrm{O}$
HF
18) Circle the stronger acid in the following pairs. (8pts)
(a)

$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$
(b)

(c)

(d)

19) Name the following compounds in IUPAC form (14pts).

$$
\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{4} \mathrm{~N}^{+} \mathrm{F}^{-}
$$

20) Fill in the blanks for two of the following reactions. (6pts)
(a)

(b)

(c)

1) excess $\mathrm{CH}_{3}-\mathrm{Br}$

2) $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$, heat
3) Give reagents for the following transformations. (9pts)

4) Give the mechanism for two of the below conversions. (16pts)
(a)

(b)

(c)

Bonus question (up to 4 points)
Give four different ways that knowledge of organic chemistry could help you make money.

Name
 BEE C. IN YA

1) Identify the class of compounds that the following molecules belong to (1 2pts).

$\mathrm{R}-\mathrm{O}-\mathrm{H}$ R-O-O-R alcohol Peroxide

 Aid
Chloride Airs
Chloride

Ester
arelluse before

2) Draw a Lewis structure including lone pairs for the following similar but different species: (12pts)

$$
\ddot{O}=\stackrel{\oplus}{N}=0
$$

$$
: N \equiv \stackrel{\oplus}{0}
$$

Nitronium Ion $\mathrm{NO}_{2}{ }^{+}$

Nitrosonium Ion NO^{+}

3) Circle a molecule in (2) with an sp^{2} hybridized Nitrogen atom. (1.5pts)
4) Put a cross through a compound in (1) which has ring strain (1.5pts).
5) Identify the general class of each of the below reactions (e.g. oxidation, electrophilic addition, etc) (16 pts)
(a)

detivdration/ezimination
(b)

(c)

CUN DÉNSATION
(d)

Nuc. Aromatic substitution
(e)

 OXIDATION elimination
(f)

ReDuc ton ADDITION
(g)

(h)

Eleatrophinc Aromatic SUOSTITLTION APDITION
6) Define the following terms (10.5 pts).

CONCERTED REACTION
A reaction that occurs in one step (bond breaking \& formation at
PERICYCLIC REACTION the same tine).
Electra movement within a closed lop of interacting orbitals.
THERMODYNAMIC PRODUCT
The must stable product.
7) Give one use of Molecular Orbital theory, and also state a disadvantage of MO theory. (4 pts).
Explans - delocalize bondins/aromatrity/cycbadhition reactions.
It con be complicated or confusing.
8) State whether each of the following Molecular orbitals are overall bonding, antibonding or nonbonding (4.5 pts).
(a)

NON-CONDINE
(b)

ANTI BONOWE
(c)

BONDING
9) Draw two Lewis resonance structures for a carboxylate anion $\mathrm{RCO}_{2}{ }^{-}$ (4pts).

$10)$ Which one is more stable (2pts)?
Both the same energy.
11) Indicate which of the following molecules are aromatic, non-aromatic or anti-aromatic. (Assume all the molecules are planar). (15pts)

Aromatic

AnTI
ARomatic

Aromatic

Ant aRomatic

AROMATic
\triangle
NoN
Aromatic

NoN nlomatic
 ARomatic

Aromatic
12) Circle the more stable species in these pairs. (8pts)
a)
 \Downarrow
b)

c)

d)

13) Give the products in six of the following reactions, paying attention to regio/stereochemistry where applicable. (18pts)

$\xrightarrow{\mathrm{Br}_{2}, \text { uv light }}$

14) The below heterocycle is pyridine, and it is 6π Hückel aromatic.

Explain why there are 6π electrons (2pts) The are 3π bonds $=6$ elections.

What is the hybridization of the 5 carbons in the ring (1.5pts)

$$
S p^{2}
$$

What is the hybridization of the Nitrogen atom (1.5pts)
$S p^{2}$
15) Write the mechanism for the electrophilic aromatic substitution reaction below. (8pts)

1 etc $\begin{gathered}\uparrow \\ \text { Sp08org2final }\end{gathered}$
16) Give reagents and conditions to accomplish five of the following transformations. (15pts)

$\xrightarrow{\mathrm{Na}_{3}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}$

17) Circle the stronger base in the following threesomes. (10pts)
(a)

(b)

(c)

(e)

HCl

HF
18) Circle the stronger acid in the following pairs. (8pts)
(a)

(b)

(c)

(d)

19) Name the following compounds in IUPAC form (14pts).

5-Bromo-2-pentonone

C1s-2,3-dinethy cycbhexonone

TetraEthy/ Ammoniun Fluonide

$$
{ }_{\left(\mathrm{C}^{2} \mathrm{H}_{3} \dot{\mathrm{C}} \mathrm{C}_{2}\right)_{4} \mathrm{~N}^{+} \mathrm{F}^{-}}
$$

5-aminopertanove Aäd
20) Fill in the blanks for two of the following reactions. (6pts)
(a)

$$
\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{NH}_{2}
$$

(b)

(c)

$$
\xrightarrow{\mathrm{HCl}} \mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{3} \stackrel{\ominus}{\mathrm{Cl}}
$$

$\xrightarrow{\mathrm{Ag}_{2} \mathrm{O}} \mathrm{No}_{0}$ Reaction

1) excess $\mathrm{CH}_{3}-\mathrm{Br}$
2) $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$, heat
3) Give reagents for the following transformations. (9pts)

