
13.12.2010

1

Debugging, Profiling, Performance
Analysis, Optimization, Load

Balancing

APP – 13.12.2010

Emil Slusanschi

emil.slusanschi@cs.pub.ro

2

Foster’s Design Methodology

 From Designing and Building Parallel

Programs by Ian Foster

 Four Steps:
– Partitioning

 Dividing computation and data

– Communication

 Sharing data between computations

– Agglomeration

 Grouping tasks to improve performance

– Mapping

 Assigning tasks to processors/threads

13.12.2010

2

3

Parallel Algorithm Design: PCAM

 Partition: Decompose problem into fine-grained

tasks to maximize potential parallelism

 Communication: Determine communication

pattern among tasks

 Agglomeration: Combine into coarser-grained

tasks, if necessary, to reduce communication

requirements or other costs

 Mapping: Assign tasks to processors, subject to

tradeoff between communication cost and

concurrency

4

Communication

Designing Threaded Programs

 Partition

– Divide problem into
tasks

 Communicate

– Determine amount
and pattern of
communication

 Agglomerate

– Combine tasks

 Map

– Assign agglomerated
tasks to created
threads

The
Problem

Initial tasks

Combined Tasks

Final Program

13.12.2010

3

5

Parallel Programming Models

 Functional Decomposition

– Task parallelism

– Divide the computation, then associate the

data

– Independent tasks of the same problem

 Data Decomposition

– Same operation performed on different data

– Divide data into pieces, then associate

computation

6

Decomposition Methods

 Functional Decomposition

– Focusing on computations

can reveal structure in a

problem

Grid reprinted with permission of Dr. Phu V. Luong, Coastal and Hydraulics Laboratory,
ERDC

Domain Decomposition

• Focus on largest or most frequently

accessed data structure

• Data Parallelism

– Same operation applied to all data

Atmosphere Model

Ocean

Model

Land Surface

Model

Hydrology

Model

13.12.2010

4

7

Example: Computing Pi

 We want to compute 

 One method: method of darts*

 Ratio of area of square to area of inscribed

circle proportional to 

*Disclaimer: this is a TERRIBLE way to compute . Don’t even

think about doing it this way in real life!!!

8

Method of Darts

 Imagine dartboard with circle of
radius R inscribed in square

 Area of circle

 Area of square
 Area of circle

Area of square


  R2



 2R 
2
 4R2




 R2

4R2



4

13.12.2010

5

9

Method of Darts
 So, ratio of areas proportional to 

 How to find areas?

– Suppose we threw darts (completely

randomly) at dartboard

– Could count number of darts landing in circle

and total number of darts landing in square

– Ratio of these numbers gives approximation

to ratio of areas

– Quality of approximation increases with

number of darts

– = 4  # darts inside circle
darts thrown

10

Method of Darts

 Okay, Rebecca, but how in the world do

we simulate this experiment on a

computer?

– Decide on length R

– Generate pairs of random numbers (x, y) so

that -R ≤ x, y ≤ R

– If (x, y) within circle (i.e. if (x2+y2) ≤ R2), add

one to tally for inside circle

– Lastly, find ratio

13.12.2010

6

11

Parallelization Strategies

 What tasks independent of each

other?

 What tasks must be performed

sequentially?

 Using PCAM parallel algorithm design

strategy

12

Partition

 “Decompose problem into fine-

grained tasks to maximize potential

parallelism”

 Finest grained task: throw of one dart

 Each throw independent of all others

 If we had huge computer, could

assign one throw to each processor

13.12.2010

7

13

Communication

“Determine communication pattern among

tasks”

 Each processor throws dart(s) then

sends results back to manager process

14

Agglomeration

“Combine into coarser-grained tasks, if necessary, to

reduce communication requirements or other costs”

 To get good value of , must use millions of darts

 We don’t have millions of processors available

 Furthermore, communication between manager and

millions of worker processors would be very

expensive

 Solution: divide up number of dart throws evenly

between processors, so each processor does a

share of work

13.12.2010

8

15

Mapping

“Assign tasks to processors, subject to

tradeoff between communication cost

and concurrency”

 Assign role of “manager” to processor 0

 Processor 0 will receive tallies from all

the other processors, and will compute

final value of 

 Every processor, including manager,

will perform equal share of dart throws

16

 Parallel programming presents a number of

new challenges to writing correct software

– New kinds of bugs: data races, deadlocks, etc.

– More difficult to test programs and find bugs

– More difficult to reproduce errors

 Key Difficulty: Potential non-determinism

– Order in which threads execute can change from

run to run

– Some runs are correct while others hit bugs

Parallel Correctness Challenges

13.12.2010

9

17

 For sequential programs, we typically expect

that same input → same output

Parallel Correctness Challenges

18

 But for parallel programs, threads can be

scheduled differently each run

Parallel Correctness Challenges

13.12.2010

10

19

 But for parallel programs, threads can be

scheduled differently each run

Parallel Correctness Challenges

20

 But for parallel programs, threads can be

scheduled differently each run

 A bug may occur under only rare schedules.

– In 1 run in 1000 or 10,000 or …

 May occur only under some configurations:

– Particular OS scheduler

– When machine is under heavy load.

– Only when debugging/logging is turned off!

Parallel Correctness Challenges

13.12.2010

11

21

 For sequential programs:

– Create several test inputs with known answers.

– Run the code on each test input

– If all tests give correct input, have some

confidence in the program

– Have intuition about which “edge cases” to test

 But for parallel programs:

– Each run tests only a single schedule

– How can we test many different schedules?

– How confident can we be when our tests pass?

Testing Parallel Programs

22

 Possible Idea: Can we just run each test

thousands of times?

 Problem: Often not much randomness in OS

scheduling

– May waste much effort, but test few different

schedules

– Recall: Some schedules tend to occur only under

certain configurations – hardware, OS, etc

– One easy parameter to change: load on machine

Testing Parallel Programs

13.12.2010

12

23

 Idea: Test parallel program while

oversubscribing the machine

– On a 4-core system, run with 8 or 16 threads

– Run several instances of the program at a time

– Increase size to overflow cache/memory

– Effect: Timing of threads will change, giving

different thread schedules

 Pro: Very simple idea, easy to implement

– And often works!

Stress Testing

24

 Idea: Run with random thread schedules

– E.g., insert code like:

 if (rand() < 0.01) usleep(100)

 if (rand() < 0.01) yield()

– Can add to only “suspicious” or “tricky” code.

– Or use tool to seize control of thread scheduling.

 Pros: Still fairly simple and often effective.

– Explores different schedules than stress testing.

– Many tools can perform this automatically

Noise Making / Random Scheduling

13.12.2010

13

25

 IBM’s ConTest: Noise-making for Java

– Clever heuristics about where to insert delays

 Berkeley’s Thrille (C + pthreads) and

 CalFuzzer (Java) do simple random scheduling

– Extensible: Write testing scheduler for your app

 Microsoft Research’s Cuzz (for .NET)

– New random scheduling algorithm with probabilistic

guarantees for finding bugs – available soon

 Many of these tools provide replay – same

random number seed → same schedule

Noise Making / Random Scheduling

26

 Parallel programs have huge number of

schedules – exponential in length of a run

Limitations of Random Scheduling

13.12.2010

14

27

 Parallel programs have huge number of

schedules – exponential in length of a run

Limitations of Random Scheduling

28

 Parallel programs have huge number of

schedules – exponential in length of a run

Limitations of Random Scheduling

13.12.2010

15

29

 Say we observe a test run of a parallel

program that doesn’t obviously fail

 Key Question: Can we find possible parallel

bugs by examining the execution?

Detecting/Predicting Parallel Bugs

30

 Techniques/tools exist for:

– Data races

– Atomicity violations

– Deadlocks

– Memory consistency errors

Detecting/Predicting Parallel Bugs

13.12.2010

16

31

 20+ years of research on race detection

 Happens-Before Race Detection [Schonberg ’89]:

– Do two accesses to a variable occur, at least one a write,

with no intervening synchronization?

– No false warnings

 Lockset Race Prediction [Savage, et al., ’97]:

– Does every access to a variable hold a common lock?

– Efficient, but many false warnings

 Hybrid Race Prediction [O’Callahan, Choi, 03]:

– Combines Lockset with Happens-Before for better

performance and fewer false warnings vs. Lockset

Data Race Detection / Prediction

32

 False Warning: Tool reports a data race, but

the race cannot happen in a real run

 Coverage: How many of the real data races

does a tool report?

 Hybrid race prediction:

– Better coverage but more false warnings

 Happens-Before race detection:

– Fewer false warnings (still some, in practice) and

less coverage

Coverage vs. False Warnings

13.12.2010

17

33

 Intel Thread Checker for C + pthreads

– Happens-Before race detection

 Valgrind-based tools for C + pthreads

– Helgrind and DRD (Happens-Before)

– ThreadSanitizer (Hybrid)

 CHESS performs race detection for .NET

 CalFuzzer and Thrille: hybrid race

detection for Java and C + pthreads

Dynamic Data Race Tools

34

 Have only discussed dynamic analyses

– Examine a real run/trace of a program

 Static analyses predict data races,

deadlocks, etc., without running a program

– Only examine the source code

– Area of active research for ~20 years

– Potentially much better coverage than dynamic

analysis – examines all possible runs

– But typically also more false warnings

 CHORD: static race and deadlock prediction

Static Analysis

13.12.2010

18

35

 Problem: Random testing can be very

effective for parallel programs, but can miss

many potential bugs

 Problem: Predictive analyses find many

bugs, but can have false warnings

– Time consuming and difficult to examine reported

bugs and determine whether or not they are real

 Key Idea: Combine them – use predictive

analysis to find potential bugs, then biased

random testing to actually create each bug

Active Random Testing Overview

36

 Key Idea: Combine them – use predictive

analysis to find potential bugs, then biased

random testing to actually create each bug

Active Random Testing

13.12.2010

19

37

 Key Idea: Combine them – use predictive

analysis to find potential bugs, then biased

random testing to actually create each bug

Active Random Testing

38

 CalFuzzer is an extensible, open-source tool

for active testing of Java programs

– For data races, atomicity bugs, and deadlocks.

– RaceFuzzer is the active testing algorithm for

data races – will show by example.

 Thrille for C + pthreads.

– For data races.

 And UPC-Thrille for Unified Parallel C.

– Part of the Berkeley UPC system

Active Random Testing

13.12.2010

20

39

Debugging and Performance Evaluation

 Common errors in parallel programs

 Debugging tools

 Overview of benchmarking and

performance measurements

40

Concepts and Definitions

 The typical performance optimization cycle

Code Development

Usage /
Production

Measure

Analyze

Modify / Tune

Functionally
complete and

correct program

Complete, cor-
rect and well-

performing
program

Instrumentation

13.12.2010

21

41

Development Cycle

Analysis

–Intel® Parallel Amplifier

Design (Introduce Threads)

–Intel® Performance libraries: IPP and MKL

–OpenMP* (Intel® Parallel Composer)

–Explicit threading (Win32*, Pthreads*)

Debug for correctness

–Intel® Parallel Inspector

–Intel Debugger

Tune for performance

–Intel® Parallel Amplifier

42

 Decide where to add the parallelism

– Analyze the serial program

– Prepare it for parallelism

– Test the preparations

 Add the parallelism

– Threads, OpenMP, Cilk, TBB, etc.

 Find logic problems

– Only fails sometimes

– Place of failure changes

 Find performance problems

Intel® Parallel Studio

13.12.2010

22

43

 Transforming many serial

algorithms into parallel form takes

five easy high-level steps

 Often existing algorithms are over-

constrained by serial language

semantics, and the underlying

mathematics has a natural parallel

expression if you can just find it

Workflow

44

 If you look at these

steps in more detail,

you find decisions

you will need to make

 You do not have to

choose the perfect

answer the first time,

so you can go back

and modify your

choices

Advisor Overview

13.12.2010

23

45

Let’s use the project PrimeSingle for analysis
• PrimeSingle <start> <end>

Usage: ./PrimeSingle 1 1000000

Hotspot Analysis

 Use Parallel Amplifier to

find hotspots in application

bool TestForPrime(int val)

{ // let’s start checking from 3

int limit, factor = 3;

limit = (long)(sqrtf((float)val)+0.5f);

while((factor <= limit) && (val % factor))

factor ++;

return (factor > limit);

}

void FindPrimes(int start, int end)

{

// start is always odd

int range = end - start + 1;

for(int i = start; i <= end; i+= 2){

if(TestForPrime(i))

globalPrimes[gPrimesFound++] = i;

ShowProgress(i, range);

}

}Identifies the time consuming regions

46

Analysis - Call Stack

• Inspect the code for

the leaf node

• Look for a loop to

parallelize
– If none are found, progress up the

call stack until you find a suitable

loop or function call to parallelize

(FindPrimes)

This is the level in the call

tree where we need to thread

Used to find proper level in the

call-tree to thread

13.12.2010

24

47

Debugging for Correctness

 Intel® Parallel Inspector pinpoints notorious

threading bugs like data races and deadlocks

Threading Error Analysis

Intel® Parallel Inspector

Where are Deadlocks
or Data Races

Runtime
Data
Collector

48

Intel® Parallel Inspector

• Select info regarding

both data races &

deadlocks

• View the Overview for

Threading Errors

• Select a threading

error and inspect the

code

13.12.2010

25

49

Starting Parallel Inspector

 The Configure Analysis window pops up
Select the level of analysis to

be carried out by Parallel

Inspector

The deeper the analysis,

the more thorough the

results and the longer the

execution time

Click Run Analysis

50

Motivation

 Developing threaded applications can be a

complex task

 New class of problems are caused by the

interaction between concurrent threads

– Data races or storage conflicts

 More than one thread accesses memory without

synchronization

– Deadlocks

 Thread waits for an event that will never happen

13.12.2010

26

51

Intel® Parallel Inspector

 Debugging tool for threaded software

– Plug-in to Microsoft* Visual Studio*

 Finds threading bugs in OpenMP*, Intel®

Threading Building Blocks, and Win32*

threaded software

 Locates bugs quickly that can take days to

find using traditional methods and tools

– Isolates problems, not the symptoms

– Bug does not have to occur to find it!

52

Parallel Inspector: Analysis

 Dynamic as software runs

– Data (workload) -driven execution

 Includes monitoring of:

– Thread and Sync APIs used

– Thread execution order

 Scheduler impacts results

– Memory accesses between threads

Code path must be executed to be analyzed

13.12.2010

27

53

Parallel Inspector: Before You Start

 Instrumentation: background

– Adds calls to library to record information

 Thread and Sync APIs

 Memory accesses

– Increases execution time and size

 Use small data sets (workloads)

– Execution time and space is expanded

– Multiple runs over different paths yield best

results

Workload selection is important!

54

Workload Guidelines

 Execute problem code once per thread to be

identified

 Use smallest possible working data set

– Minimize data set size

 Smaller image sizes

– Minimize loop iterations or time steps

 Simulate minutes rather than days

– Minimize update rates

 Lower frames per second

Finds threading errors faster!

13.12.2010

28

55

Binary Instrumentation

 Build with supported compiler

 Running the application

– Must be run from within Parallel

Inspector

– Application is instrumented when

executed

– External DLLs are instrumented as used

56

Tuning for Performance

Parallel Amplifier (Locks & Waits) pinpoints

performance bottlenecks in threaded

applications

Locks & Waits

Intel® Parallel Amplifier

13.12.2010

29

57

Parallel Amplifier - Locks & Waits

• Graph shows

significant portion of

time in idle condition

as result of critical

section

• FindPrimes() &

ShowProgress() are

both excessively

impacted by the idle

time occurring in the

critical section

58

Parallel Amplifier - Locks & Waits

• ShowProgress() consumes 558/657 (85%) of the time

idling in a critical section

• Double Click ShowProgress() in largest critical section to

see the source code

13.12.2010

30

59

Parallel Amplifier Summary

• Elapsed Time shows

.571 sec

• Wait Time/ Core Count =

1.87/4 =.47 sec

• Waiting 82% of elapsed

time in critical section

• Most of the time 1 core

and occasionally 2 are

occupied

60

Parallel Amplifier - Concurrency

• Function - Caller Function Tree

• ShowProgress is called from FindPrimes and

represent the biggest reason concurrency is

poor

13.12.2010

31

61

Parallel Amplifier - Concurrency

• Thread –Function –Caller Function Tree

• This view shows how each thread contributes to the

concurrency issue

• Expanding any thread will reveal the functions that

contribute most

62

Performance

•Double Click ShowProgress in second largest critical section

•This implementation has implicit synchronization calls - printf

•This limits scaling performance due to the resulting context

switches

Back to the design stage

13.12.2010

32

63

Load Balance Analysis

• Use Parallel Amplifier – Concurrency Analysis

• Select the “Thread –Function -Caller Function Tree”

• Observe that the 4 threads do unequal amounts of

work

64

Fixing the Load Imbalance

 Distribute the work more evenly

void FindPrimes(int start, int end)

{

// start is always odd

int range = end - start + 1;

#pragma omp parallel for schedule(static,8)
for(int i = start; i <= end; i += 2)

{

if(TestForPrime(i))

globalPrimes[InterlockedIncrement(&gPrimesFound)] = i;

ShowProgress(i, range);

}

}

Speedup achieved is 1.68X

13.12.2010

33

65

Comparative Analysis

Threading applications require

multiple iterations of going through

the software development cycle

66

Common Performance Issues

 Load balance

– Improper distribution of parallel work

 Synchronization

– Excessive use of global data, contention for the

same synchronization object

 Parallel Overhead

– Due to thread creation, scheduling..

 Granularity

– Not sufficient parallel work

13.12.2010

34

67

Load Imbalance

 Unequal work loads lead to idle threads

and wasted time

Busy

Idle

Time

Thread 0

Thread 1

Thread 2

Thread 3

Start

threads

Join

threads

68

Redistribute Work to Threads

 Static assignment

–Are the same number of tasks

assigned to each thread?

–Do tasks take different processing

time?

 Do tasks change in a predictable pattern?

Rearrange (static) order of assignment to

threads

 Use dynamic assignment of tasks

13.12.2010

35

69

Redistribute Work to Threads

 Dynamic assignment

– Is there one big task being assigned?

 Break up large task to smaller parts

– Are small computations agglomerated

into larger task?

 Adjust number of computations in a task

 More small computations into single task?

 Fewer small computations into single task?

 Bin packing heuristics

70

Unbalanced Workloads

13.12.2010

36

71

Unbalanced Workloads

72

Synchronization

 By definition, synchronization serializes

execution

 Lock contention means more idle time for

threads

Busy

Idle

In Critical

Thread 0

Thread 1

Thread 2

Thread 3

Time

13.12.2010

37

73

Synchronization Fixes

 Eliminate synchronization

– Expensive but necessary “evil”

– Use storage local to threads

 Use local variable for partial results, update global

after local computations

 Allocate space on thread stack (alloca)

 Use thread-local storage API (TlsAlloc)

– Use atomic updates whenever possible

 Some global data updates can use atomic operations

(Interlocked API family)

74

General Optimizations

 Serial Optimizations

– Serial optimizations along the critical path should

affect execution time

 Parallel Optimizations

– Reduce synchronization object contention

– Balance workload

– Functional parallelism

 Analyze benefit of increasing number of

processors

 Analyze the effect of increasing the number of

threads on scaling performance

13.12.2010

38

75

 Many tools available right now to help find

bugs in parallel software

– Data races, atomicity violations, deadlocks

 No silver bullet solution!

– Have to carefully design how an application

threads will coordinate and share/protect data

– Tools will help catch mistakes when the design is

accidentally not followed

– Ad hoc parallelization likely to never be correct,

even with these tools

Testing & Debugging Conclusions

76Measurement:

Profiling vs. Tracing
 Profiling

– Summary statistics of performance metrics
 Number of times a routine was invoked

 Exclusive, inclusive time

 Hardware performance counters

 Number of child routines invoked, etc.

 Structure of invocations (call-trees/call-graphs)

 Memory, message communication sizes

 Tracing

– When and where events took place along a global

timeline
 Time-stamped log of events

 Message communication events (sends/receives) are tracked

 Shows when and from/to where messages were sent

 Large volume of performance data generated usually leads to

more perturbation in the program

13.12.2010

39

77

Measurement: Profiling

 Profiling
– Helps to expose performance bottlenecks and hotspots

– 80/20 –rule or Pareto principle: often 80% of the execution time in

20% of your application

– Optimize what matters, don’t waste time optimizing things that have

negligible overall influence on performance

 Implementation
– Sampling: periodic OS interrupts or hardware counter traps

 Build a histogram of sampled program counter (PC) values

 Hotspots will show up as regions with many hits

– Measurement: direct insertion of measurement code

 Measure at start and end of regions of interests, compute

difference

78

Measurement: Tracing

 Tracing
– Recording of information about significant points (events)

during program execution

 entering/exiting code region (function, loop, block, …)

 thread/process interactions (e.g., send/receive

message)

– Save information in event record

 timestamp

 CPU identifier, thread identifier

 Event type and event-specific information

– Event trace is a time-sequenced stream of event records

– Can be used to reconstruct dynamic program behavior

– Typically requires code instrumentation

13.12.2010

40

79

Performance Data Analysis

 Draw conclusions from measured

performance data

 Manual analysis
– Visualization

– Interactive exploration

– Statistical analysis

– Modeling

 Automated analysis
– Try to cope with huge amounts of performance by

automation

– Examples: Paradyn, KOJAK, Scalasca, Periscope

80

Trace File Visualization

 Vampir: timeline view

– Similar other tools:

Jumpshot, Paraver

1

2

3

13.12.2010

41

81

Trace File Visualization

 Vampir/IPM:

message

communication

statistics

82

3D Performance Data Exploration

 Paraprof viewer

(from the TAU

toolset)

13.12.2010

42

83

Automated Performance Analysis

 Reason for Automation

– Size of systems: several tens of thousand of

processors

– LLNL Sequoia: 1.6 million cores

– Trend to multi-core

 Large amounts of performance data when tracing

– Several gigabytes or even terabytes

 Not all programmers are performance experts

– Scientists want to focus on their domain

– Need to keep up with new machines

 Automation can solve some of these issues

84

Automation Example

 „Late sender“

pattern

 This pattern can

be detected

automatically by

analyzing the

trace

13.12.2010

43

85

Hardware Performance Counters

 Specialized hardware registers to measure the
performance of various aspects of a microprocessor

 Originally used for hardware verification purposes

 Can provide insight into:
– Cache behavior

– Branching behavior

– Memory and resource contention and access patterns

– Pipeline stalls

– Floating point efficiency

– Instructions per cycle

 Counters vs. events
– Usually a large number of countable events - hundreds

– On a small number of counters (4-18)

– PAPI handles multiplexing if required

86

What is PAPI

 Middleware that provides a consistent and efficient

programming interface for the performance counter

hardware found in most major microprocessors.

 Countable events are defined in two ways:

– Platform-neutral Preset Events (e.g., PAPI_TOT_INS)

– Platform-dependent Native Events (e.g., L3_CACHE_MISS)

 Preset Events can be derived from multiple Native Events

(e.g. PAPI_L1_TCM might be the sum of L1 Data Misses

and L1 Instruction Misses on a given platform)

 Preset events are defined in a best-effort way

– No guarantees of semantics portably

– Figuring out what a counter actually counts and if it does so correctly

can be hairy

13.12.2010

44

87

PAPI Hardware Events

 Preset Events

– Standard set of over 100 events for application performance tuning

– No standardization of the exact definitions

– Mapped to either single or linear combinations of native events on

each platform

– Use papi_avail to see what preset events are available on a given

platform

 Native Events

– Any event countable by the CPU

– Same interface as for preset events

– Use papi_native_avail utility to see all available native events

 Use papi_event_chooser utility to select a compatible set

of events

88

PAPI Counter Interfaces

 PAPI provides 3 interfaces to
the underlying counter
hardware:

– A low level API manages
hardware events in user defined
groups called EventSets.
Meant for experienced
application programmers wanting
fine-grained measurements.

– A high level API provides the
ability to start, stop and read the
counters for a specified list of
events.

– Graphical and end-user tools
provide facile data collection and
visualization.

3rd Party and GUI Tools

PAPI HARDWARE SPECIFIC

LAYER

PAPI PORTABLE LAYER

Kernel Extension

Operating System

Perf Counter Hardware

Low Level

User API

High Level

User API

13.12.2010

45

89

PAPI High Level Calls

 PAPI_num_counters()

– get the number of hardware counters available on the system

 PAPI_flips (float *rtime, float *ptime, long long *flpins, float *mflips)

– simplified call to get Mflips/s (floating point instruction rate), real and processor time

 PAPI_flops (float *rtime, float *ptime, long long *flpops, float *mflops)

– simplified call to get Mflops/s (floating point operation rate), real and processor time

 PAPI_ipc (float *rtime, float *ptime, long long *ins, float *ipc)

– gets instructions per cycle, real and processor time

 PAPI_accum_counters (long long *values, int array_len)

– add current counts to array and reset counters

 PAPI_read_counters (long long *values, int array_len)
– copy current counts to array and reset counters

 PAPI_start_counters (int *events, int array_len)

– start counting hardware events

 PAPI_stop_counters (long long *values, int array_len)

– stop counters and return current counts

90

PAPI Example Low Level API Usage

#include "papi.h”

#define NUM_EVENTS 2

int Events[NUM_EVENTS]={PAPI_FP_OPS,PAPI_TOT_CYC},

int EventSet;

long long values[NUM_EVENTS];

/* Initialize the Library */

retval = PAPI_library_init (PAPI_VER_CURRENT);

/* Allocate space for the new eventset and do setup */

retval = PAPI_create_eventset (&EventSet);

/* Add Flops and total cycles to the eventset */

retval = PAPI_add_events (&EventSet,Events,NUM_EVENTS);

/* Start the counters */

retval = PAPI_start (EventSet);

do_work(); /* What we want to monitor*/

/*Stop counters and store results in values */

retval = PAPI_stop (EventSet,values);

13.12.2010

46

91

Using PAPI through tools

 You can use PAPI directly in your application, but most

people use it through tools

 Tool might have a predfined set of counters or lets you

select counters through a configuration file/environment

variable, etc.

 Tools using PAPI
– TAU (UO)

– PerfSuite (NCSA)

– HPCToolkit (Rice)

– KOJAK, Scalasca (FZ Juelich, UTK)

– Open|Speedshop (SGI)

– ompP (UCB)

– IPM (LBNL)

92

Component PAPI Design

PAPI Framework Layer

Low
Level
API

Hi
Level
API

PAPI Component Layer
(network)

Perf Counter Hardware

Operating System

Kernel Patch

PAPI Component Layer
(CPU)

Perf Counter Hardware

Operating System

Kernel Patch

PAPI Component Layer
(thermal)

Perf Counter Hardware

Operating System

Kernel Patch

Devel
API

Re-Implementation of PAPI w/ support

for multiple monitoring domains

13.12.2010

47

93

 Aggregated profiling information

– Execution time

– Number of calls

 This profiling information is computed from
the trace

– Change the selection in main timeline window

 Inclusive or exclusive of called routines

Vampir overview statistics

94

Timeline display

 To zoom, mark region with the mouse

13.12.2010

48

97

Timeline display – message details

Click on

message

line

Message

receive op

Message

send op

Message

information

98

Communication statistics

 Message statistics for each process/node pair:

– Byte and message count

– min/max/avg message length, bandwidth

13.12.2010

49

99

Message histograms

 Message statistics by length, tag or
communicator

– Byte and message count

– Min/max/avg bandwidth

100

Collective operations

 For each process: mark operation locally

 Connect start/stop points by lines

Start of op

Data being sent
Data being received

Stop of op

Connection

lines

13.12.2010

50

101

Activity chart

 Profiling information for all processes

102

Process–local displays

 Timeline (showing calling levels)

 Activity chart

 Calling tree (showing number of calls)

13.12.2010

51

103

Effects of zooming

Select one

iteration

Updated

summary
Updated

message

statistics

104

KOJAK / Scalasca – Basic Idea

Huge amount of
Measurement data

Relevant
problems
and data

 For non-standard / tricky cases (10%)
 For expert users

 For standard cases (90% ?!)

 For “normal” users

 Starting point for experts More productivity for performance analysis process!

 “Traditional” Tool  Automatic Tool
Simple:
1 screen +
2 commands +
3 panes

13.12.2010

52

105

MPI-1 Pattern: Wait at Barrier

 Time spent in front of MPI synchronizing operation such as barriers

106

MPI-1 Pattern: Late Sender / Receiver

 Late Sender: Time lost waiting caused by a blocking receive operation posted
earlier than the corresponding send operation

lo
c
a
ti

o
n

time

MPI_Send MPI_Send

MPI_Recv MPI_WaitMPI_Irecv

 Late Receiver: Time lost waiting in a blocking send operation until the
corresponding receive operation is called

lo
c
a
ti

o
n

time

MPI_Send MPI_Send

MPI_Recv MPI_WaitMPI_Irecv

13.12.2010

53

107

Location

How is the
problem distributed
across the machine?

Region Tree

Where in source code?
In what context?

Performance Property

What problem?

Color Coding How severe is the problem?

108KOJAK: sPPM run on

(8x16x14) 1792 PEs

 Topology

display

 Shows

distribution

of pattern

over HW

topology

 Easily

scales to

even

larger

systems

13.12.2010

54

109

TAU Parallel Performance System

 http://www.cs.uoregon.edu/research/tau/

 Multi-level performance instrumentation
– Multi-language automatic source instrumentation

 Flexible and configurable performance measurement

 Widely-ported parallel performance profiling system
– Computer system architectures and operating systems

– Different programming languages and compilers

 Support for multiple parallel programming paradigms
– Multi-threading, message passing, mixed-mode, hybrid

 Integration in complex software, systems,

applications

110

ParaProf – 3D Scatterplot (Miranda)

 Each point is a

“thread” of

execution

 A total of four

metrics shown

in relation

 ParaVis 3D

profile

visualization

library

32k processors

http://www.cs.uoregon.edu/research/tau/

13.12.2010

55

111

PerfExplorer - Cluster Analysis

 Four significant events automatically

selected (from 16K processors)

 Clusters and correlations are visible

112PerfExplorer – Correlation

Analysis (Flash)

 Describes strength and direction of a

linear relationship between two variables

(events) in the data

13.12.2010

56

113

 IBM ConTest (Noise-Making for Java):
– https://www.research.ibm.com/haifa/projects/verification/contest/index.html

 Cuzz (Random scheduling for C++/.NET):
– http://research.microsoft.com/en-us/projects/cuzz/

 Intel Thread Checker and Parallel Inspector (C/C++):
– http://software.intel.com/en-us/intel-thread-checker/

– http://software.intel.com/en-us/intel-parallelinspector/

– http://software.intel.com/en-us/articles/intel-parallel-studio-xe/

 Helgrind, DRD, ThreadSanitizer (Dynamic Data Race

Detection/Prediction for C/C++):
– http://valgrind.org/docs/manual/hg-manual.html

– http://code.google.com/p/data-race-test/

 CHORD (Static Race/Deadlock Detection for Java):
– http://code.google.com/p/jchord/

Tools References

114

 CalFuzzer (Java):
– http://srl.cs.berkeley.edu/~ksen/calfuzzer/

 Thrille (C):
– http://github.com/nicholasjalbert/Thrille

 CHESS (C++/.NET Model Checking, Race Detection):
– http://research.microsoft.com/en-us/projects/chess/default.aspx

 Java Path Finder (Model Checking for Java):
– http://babelfish.arc.nasa.gov/trac/jpf

 Tau Performance System (Fortran, C, C++, Java, Python):
– http://www.cs.uoregon.edu/research/tau/home.php

 Vampir/GuideView (C/C++ and Fortran):
– https://computing.llnl.gov/code/vgv.html

 Performance Application Programming Interface (PAPI):
– http://icl.cs.utk.edu/papi/

Tools References

