2. Kinematics, Decays and Reactions Particle and Nuclear Physics

In this section...

- Natural units
- Symmetries and conservation laws
- Relativistic kinematics
- Particle properties
- Decays
- Cross-sections
- Scattering
- Resonances

Units

The usual practice in particle and nuclear physics is to use Natural Units.

- Energies are measured in units of eV :

Nuclear $\operatorname{keV}\left(10^{3} \mathrm{eV}\right), \operatorname{MeV}\left(10^{6} \mathrm{eV}\right)$
Particle $\operatorname{GeV}\left(10^{9} \mathrm{eV}\right), \operatorname{TeV}\left(10^{12} \mathrm{eV}\right)$

- Masses are quoted in units of MeV / c^{2} or GeV / c^{2} (using $E=m c^{2}$)
e.g. electron mass $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\left(9.11 \times 10^{-31}\right)\left(3 \times 10^{8}\right)^{2} \mathrm{~J} / \mathrm{c}^{2}$
$=8.20 \times 10^{-14} / 1.602 \times 10^{-19} \mathrm{eV} / c^{2}=5.11 \times 10^{5} \mathrm{eV} / \mathrm{c}^{2}=0.511 \mathrm{MeV} / c^{2}$
- Atomic/nuclear masses are often quoted in unified (or atomic) mass units 1 unified mass unit $(\mathrm{u})=\left(\right.$ mass of a ${ }_{6}^{12} \mathrm{C}$ atom) $/ 12$ $1 \mathrm{u}=1 \mathrm{~g} / \mathrm{N}_{\mathrm{A}}=1.66 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$
- Cross-sections are usually quoted in barns: $1 b=10^{-28} \mathrm{~m}^{2}$.

Units Natural Units

Choose energy as the basic unit of measurement...
...and simplify by choosing $\hbar=c=1$
GeV
GeV
GeV
GeV^{-1}
GeV^{-1}
GeV^{-2}

Reintroduce "missing" factors of \hbar and c to convert back to SI units.

$$
\begin{aligned}
& \hbar c=0.197 \mathrm{GeV} \mathrm{fm}=1 \\
& \hbar=6.6 \times 10^{-25} \mathrm{GeV} \mathrm{~s}=1 \\
& c=3.0 \times 10^{8} \mathrm{~ms}^{-1}=1
\end{aligned}
$$

$$
\text { Energy } \longleftrightarrow \text { Length }
$$

$$
\text { Energy } \longleftrightarrow \text { Time }
$$

$$
\text { Length } \longleftrightarrow \text { Time }
$$

Units
 Examples

(1) cross-section $\sigma=2 \times 10^{-6} \mathrm{GeV}^{-2} \quad$ change into standard units Need to change units of energy to length. Use $\hbar c=0.197 \mathrm{GeVfm}=1$.

$$
\sigma=2 \times 10^{-6} \times\left(3.89 \times 10^{-32} \mathrm{~m}^{2}\right)
$$

$$
=7.76 \times 10^{-38} \mathrm{~m}^{2}
$$

$$
\begin{aligned}
\mathrm{GeV}^{-1} & =0.197 \mathrm{fm} \\
\mathrm{GeV}^{-1} & =0.197 \times 10^{-15} \mathrm{~m} \\
\mathrm{GeV}^{-2} & =3.89 \times 10^{-32} \mathrm{~m}^{2}
\end{aligned}
$$

And using $1 \mathrm{~b}=10^{-28} \mathrm{~m}^{2}, \sigma=0.776 \mathrm{nb}$
(2) lifetime $\tau=1 / \Gamma=0.5 \mathrm{GeV}^{-1} \quad$ change into standard units Need to change units of energy ${ }^{-1}$ to time. Use $\hbar=6.6 \times 10^{-25} \mathrm{GeV}$ s $=1$.

$$
\mathrm{GeV}^{-1}=6.6 \times 10^{-25} \mathrm{~S}
$$

$$
\tau=0.5 \times\left(6.6 \times 10^{-25} \mathrm{~s}\right)=3.3 \times 10^{-25} \mathrm{~s}
$$

Also, can have Natural Units involving electric charge: $\epsilon_{0}=\mu_{0}=\hbar=c=1$
(3) Fine structure constant (dimensionless)
$\alpha=\frac{\mathrm{e}^{2}}{4 \pi \epsilon_{0} \hbar c} \sim \frac{1}{137}$ becomes $\alpha=\frac{\mathrm{e}^{2}}{4 \pi} \sim \frac{1}{137} \quad$ i.e. $e \sim 0.30$ (n.u.)

Symmetries and conservation laws

The most elegant and powerful idea in physics Noether's theorem: every differentiable symmetry of the action of a physical system has a corresponding conservation law.

Symmetry	Conserved current
Time, t	Energy, E
Translational, x	Linear momentum, p
Rotational, θ	Angular momentum, L
Probability	Total probability always 1
Lorentz invariance	Charge Parity Time (CPT) Gauge

Lorentz invariance: laws of physics stay the same for all frames moving with a uniform velocity. Gauge invariance: observable quantities unchanged (charge, E, v) when a field is transformed.

Relativistic Kinematics Special Relativity

Nuclear reactions

Low energy, typically K.E. $\mathcal{O}(10 \mathrm{MeV}) \ll$ nucleon rest energies.
\Rightarrow non-relativistic formulae ok
Exception: always treat β-decay relativistically

$$
\left(m_{e} \sim 0.5 \mathrm{MeV}<1.3 \mathrm{MeV} \sim m_{n}-m_{p}\right)
$$

Particle physics

High energy, typically K.E. $\mathcal{O}(100 \mathrm{GeV}) \gg$ rest mass energies.
\Rightarrow relativistic formulae usually essential.

Relativistic Kinematics Special Relativity

Recall the energy E and momentum p of a particle with mass m

$$
E=\gamma m, \quad|\vec{p}|=\gamma \beta m
$$

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}, \quad \beta=\frac{v}{c}=v
$$

or $\quad \gamma=\frac{E}{m}, \quad \beta=\frac{|\vec{p}|}{E} \quad$ and these are related by $E^{2}=\overrightarrow{\boldsymbol{p}}^{2}+\boldsymbol{m}^{2}$
Interesting cases

- when a particle is at rest, $\vec{p}=0, E=m$,
- when a particle is massless, $m=0, E=|\vec{p}|$,
- when a particle is ultra-relativistic $E \gg m, E \sim|\vec{p}|$.

Kinetic energy (K.E., or T) is the extra energy due to motion

$$
T=E-m=(\gamma-1) m
$$

in the non-relativistic limit $\beta \ll 1, \quad T=\frac{1}{2} m v^{2}$

Relativistic Kinematics Four-Vectors

The kinematics of a particle can be expressed as a four-vector, e.g.

$$
p_{\mu}=(E,-\vec{p}), \quad p^{\mu}=(E, \vec{p}) \quad \text { and } \quad x_{\mu}=(t,-\vec{x}), \quad x^{\mu}=(t, \vec{x})
$$

$\mu: 0 \rightarrow 3$
multiply by a metric tensor to raise/lower indices

$$
p_{\mu}=g_{\mu \nu} p^{v}, \quad p^{\mu}=g^{\mu v} p_{\nu} \quad g_{\mu \nu}=g^{\mu \nu}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Scalar product of two four-vectors $A^{\mu}=\left(A^{0}, \vec{A}\right), B^{\mu}=\left(B^{0}, \vec{B}\right)$ is invariant:

$$
A^{\mu} B_{\mu}=A \cdot B=A^{0} B^{0}-\vec{A} \cdot \vec{B}
$$

or

$$
\begin{aligned}
p^{\mu} p_{\mu} & =p^{\mu} g_{\mu v} \nu^{v}=\sum_{\mu=0,3} \sum_{v=0,3} p^{\mu} g_{\mu v} p^{v}=g_{00} p_{0}^{2}+g_{11} p_{1}^{2}+g_{22} p_{2}^{2}+g_{33} p_{3}^{2} \\
& =E^{2}-|\vec{p}|^{2}=m^{2} \quad \text { invariant mass }
\end{aligned}
$$

(t, \vec{x}) and (E, \vec{p}) transform between frames of reference, but

$$
\begin{aligned}
d^{2} & =t^{2}-\vec{x}^{2} & & \text { Invariant interval is constant } \\
m^{2} & =E^{2}-\vec{p}^{2} & & \text { Invariant mass is constant }
\end{aligned}
$$

Relativistic Kinematics
 Invariant Mass

A common technique to identify particles is to form the invariant mass from their decay products.
Remember, for a single particle $m^{2}=E^{2}-\vec{p}^{2}$.
For a system of particles, where $X \rightarrow 1+2+3 \ldots n$:

$$
M_{X}^{2}=\left(\left(E_{1}, \overrightarrow{p_{1}}\right)+\left(E_{2}, \overrightarrow{p_{2}}\right)+\ldots\right)^{2}=\left(\sum_{i=1}^{n} E_{i}\right)^{2}-\left(\sum_{i=1}^{n} \overrightarrow{p_{i}}\right)^{2}
$$

In the specific (and common) case of a two-body decay, $X \rightarrow 1+2$, this reduces to

$$
M_{X}^{2}=m_{1}^{2}+m_{2}^{2}+2\left(E_{1} E_{2}-\left|\overrightarrow{p_{1}}\right|\left|\overrightarrow{p_{2}}\right| \cos \theta\right)
$$

n.b. sometimes invariant mass M is called "centre-of-mass energy" $E_{C M}$, or \sqrt{s}

Relativistic Kinematics
 Decay Example

Consider a charged pion decaying at rest in the lab frame

$$
\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}
$$

Find the momenta of the decay products

How do we study particles and forces?

- Static Properties

What particles/states exist?
Mass, spin and parity $\left(J^{P}\right)$, magnetic moments, bound states

- Particle Decays

Most particles and nuclei are unstable.
Allowed/forbidden decays \rightarrow Conservation Laws.

- Particle Scattering

Direct production of new massive particles in matter-antimatter annihilation.
Study of particle interaction cross-sections.
Use high-energies to study forces at short distances.

Force	Typical Lifetime [s] Typical cross-section [mb]	
Strong	10^{-23}	10
Electromagnetic	10^{-20}	10^{-2}
Weak	10^{-8}	10^{-13}

Particle Decays Reminder

Most particles are transient states - only a few live forever ($e^{-}, p, \nu, \gamma \ldots$).

- Number of particles remaining at time t

$$
N(t)=N(0) p(t)=N(0) \mathrm{e}^{-\lambda t}
$$

where $N(0)$ is the number at time $t=0$.

- Rate of decays $\frac{\mathrm{d} N}{\mathrm{~d} t}=-\lambda N(0) \mathrm{e}^{-\lambda t}=-\lambda N(t)$

Assuming the nuclei only decay. More complicated if they are also being created.

- Activity $\quad A(t)=\left|\frac{\mathrm{d} N}{\mathrm{~d} t}\right|=\lambda N(t)$
- It's rather common in nuclear physics to use the half-life (i.e. the time over which 50% of the particles decay). In particle physics, we usually quote the mean life. They are simply related:

$$
N\left(\tau_{1 / 2}\right)=\frac{N(0)}{2}=N(0) \mathrm{e}^{-\lambda \tau_{1 / 2}} \Rightarrow \tau_{1 / 2}=\frac{\ln 2}{\lambda}=0.693 \tau
$$

Particle Decays Multiple Particle Decay

Decay Chains frequently occur in nuclear physics

$$
N_{1} \xrightarrow{\lambda_{1}} \quad N_{2} \xrightarrow{\lambda_{2}} \quad N_{3} \quad \rightarrow \cdots
$$

Parent Daughter Granddaughter

$$
\begin{array}{ll}
\text { e.g. } & { }^{235} \mathrm{U} \rightarrow{ }^{231} \mathrm{Th} \rightarrow{ }^{231} \mathrm{~Pa} \\
\left.\tau_{1 / 2}{ }^{235} \mathrm{U}\right)=7.1 \times 10^{8} \text { years } \\
& \left.\tau_{1 / 2}{ }^{231} \mathrm{Th}\right)=26 \text { hours }
\end{array}
$$

Activity (i.e. rate of decay) of the daughter is $\lambda_{2} N_{2}(t)$. Rate of change of population of the daughter

$$
\frac{\mathrm{d} N_{2}(t)}{\mathrm{d} t}=\lambda_{1} N_{1}(t)-\lambda_{2} N_{2}(t)
$$

Units of Radioactivity are defined as the number of decays per unit time.
Becquerel $(\mathrm{Bq})=1$ decay per second
Curie $(\mathrm{Ci})=3.7 \times 10^{10}$ decays per second.

Particle Decays

A decay is the transition from one quantum state (initial state) to another (final or daughter).

The transition rate is given by Fermi's Golden Rule:

$$
\Gamma(i \rightarrow f)=\lambda=2 \pi\left|M_{f i}\right|^{2} \rho\left(E_{f}\right) \quad \hbar=1
$$

where λ is the number of transitions per unit time
$M_{f i}$ is the transition matrix element
$\rho\left(E_{f}\right)$ is the density of final states.
$\Rightarrow \lambda \mathrm{d} t$ is the (constant) probability a particle will decay in time $\mathrm{d} t$.

Particle Decays Single Particle Decay

Let $p(t)$ be the probability that a particle still exists at time t, given that it was known to exist at $t=0$.
Probability for particle decay in the next time interval $\mathrm{d} t$ is $=p(t) \lambda \mathrm{d} t$ Probability that particle survives the next is $=p(t+\mathrm{d} t)=p(t)(1-\lambda \mathrm{d} t)$

$$
\begin{gathered}
p(t)(1-\lambda \mathrm{d} t)=p(t+\mathrm{d} t)=p(t)+\frac{\mathrm{d} p}{\mathrm{~d} t} \mathrm{~d} t \\
\frac{\mathrm{~d} p}{\mathrm{~d} t}=-p(t) \lambda \\
\int_{1}^{p} \frac{\mathrm{~d} p}{p}=-\int_{0}^{t} \lambda \mathrm{~d} t \\
\Rightarrow p(t)=\mathrm{e}^{-\lambda t} \quad \text { Exponential Decay Law }
\end{gathered}
$$

Probability that a particle lives until time t and then decays in time $\mathrm{d} t$ is

$$
p(t) \lambda \mathrm{d} t=\lambda \mathrm{e}^{-\lambda t} \mathrm{~d} t
$$

Particle Decays Single Particle Decay

- The average lifetime of the particle

$$
\begin{aligned}
\tau=\langle t\rangle=\int_{0}^{\infty} t \lambda \mathrm{e}^{-\lambda t} \mathrm{~d} t & =\left[-t \mathrm{e}^{-\lambda t}\right]_{0}^{\infty}+\int_{0}^{\infty} \mathrm{e}^{-\lambda t} \mathrm{~d} t=\left[-\frac{1}{\lambda} \mathrm{e}^{-\lambda t}\right]_{0}^{\infty}=\frac{1}{\lambda} \\
\tau & =\frac{1}{\lambda} \quad p(t)=\mathrm{e}^{-t / \tau}
\end{aligned}
$$

- Finite lifetime \Rightarrow uncertain energy ΔE, (c.f. Resonances, Breit-Wigner)
- Decaying states do not correspond to a single energy - they have a width ΔE

$$
\Delta E . \tau \sim \hbar \Rightarrow \Delta E \sim \frac{\hbar}{\tau}=\hbar \lambda \quad \hbar=1 \text { (n.u.) }
$$

- The width, ΔE, of a particle state is therefore
- Inversely proportional to the lifetime τ
- Proportional to the decay rate λ (or equal in natural units)

Decay of Resonances

QM description of decaying states

Consider a state formed at $t=0$ with energy E_{0} and mean lifetime τ

$$
\psi(t)=\psi(0) \mathrm{e}^{-i E_{0} t} \mathrm{e}^{-t / 2 \tau} \quad|\psi(t)|^{2}=|\psi(0)|^{2} \mathrm{e}^{-t / \tau}
$$

i.e. the probability density decays exponentially (as required).

The frequencies (i.e. energies, since $E=\omega$ if $\hbar=1$) present in the wavefunction are given by the Fourier transform of $\psi(t)$, i.e.

$$
\begin{aligned}
f(\omega)= & f(E)=\int_{0}^{\infty} \psi(t) \mathrm{e}^{i E t} \mathrm{~d} t=\int_{0}^{\infty} \psi(0) \mathrm{e}^{-t\left(i E_{0}+\frac{1}{2 \tau}\right)} \mathrm{e}^{i E t} \mathrm{~d} t \\
& =\int_{0}^{\infty} \psi(0) \mathrm{e}^{-t\left(i\left(E_{0}-E\right)+\frac{1}{2 \tau}\right)} \mathrm{d} t=\frac{i \psi(0)}{\left(E_{0}-E\right)-\frac{i}{2 \tau}}
\end{aligned}
$$

Probability of finding state with energy $E=f(E) * f(E)$ is

$$
P(E)=|f(E)|^{2}=\frac{|\psi(0)|^{2}}{\left(E_{0}-E\right)^{2}+\frac{1}{4 \tau^{2}}}
$$

Decay of Resonances Breit-Wigner

Probability for producing the decaying state has this energy dependence, i.e. resonant when $E=E_{0}$

$$
P(E) \propto \frac{1}{\left(E_{0}-E\right)^{2}+1 / 4 \tau^{2}}
$$

Consider full-width at half-maximum Γ

$$
\begin{aligned}
& P\left(E=E_{0}\right) \propto 4 \tau^{2} \\
& P\left(E=E_{0} \pm \frac{1}{2} \Gamma\right) \propto \frac{1}{\left(E_{0}-E_{0} \mp \frac{1}{2} \Gamma\right)^{2}+1 / 4 \tau^{2}}=\frac{1}{\frac{\Gamma^{2}}{4}+\frac{1}{4 \tau^{2}}} \\
& \quad P\left(E=E_{0} \pm \frac{1}{2} \Gamma\right)=\frac{1}{2} P\left(E=E_{0}\right), \quad \Rightarrow \frac{1}{\frac{\Gamma^{2}}{4}+\frac{1}{4 \tau^{2}}}=2 \tau^{2}
\end{aligned}
$$

Total width (using natural units) $\Gamma=\frac{1}{\tau}=\lambda$

Partial Decay Widths

Particles can often decay with more than one decay mode e.g. $Z \rightarrow e^{+} e^{-}$, or $\mu^{+} \mu^{-}$, or $q \bar{q}$ etc, each with its own transition rate, i.e. from initial state i to final state f :

$$
\lambda_{f}=2 \pi\left|M_{f i}\right|^{2} \rho\left(E_{f}\right)
$$

The total decay rate is given by

$$
\lambda=\sum_{f} \lambda_{f}
$$

This determines the average lifetime
The total width of a particle state is defined by the partial widths The proportion of decays to a particular decay mode is called the branching fraction

$$
B_{f}=\frac{\Gamma_{f}}{\Gamma}, \quad \sum_{f} B_{f}=1
$$ or branching ratio

Reactions and Cross-sections

The strength of a particular reaction between two particles is specified by the interaction cross-section.

Cross-section σ - the effective target area presented to the incoming particle for it to cause the reaction.

Units: $\quad \sigma \quad 1$ barn (b) $=10^{-28} m^{2} \quad$ Area
σ is defined as the reaction rate per target particle Γ, per unit incident flux Φ

$$
\Gamma=\Phi \sigma
$$

where the flux Φ is the number of beam particles passing through unit area per second.

「 is given by Fermi's Golden Rule (previously used λ).

Scattering with a beam

Consider a beam of particles incident upon a target:

Beam of N particles per unit time in an area A

Target of n nuclei per unit volume

Target thickness $\mathrm{d} x$ is small

Number of target particles in area $A, N_{T}=n A \mathrm{~d} x$
Effective area for absorption $=\sigma N_{T}=\sigma n A \mathrm{~d} x$
Incident flux $\Phi=N / A$
Number of particles scattered per unit time

$$
\begin{aligned}
& \quad=-d N=\Phi \sigma N_{T}=\frac{N}{A} \sigma n A \mathrm{~d} x \\
& \sigma=\frac{-d N}{n N \mathrm{~d} x}
\end{aligned}
$$

Attenuation of a beam

Beam attenuation in a target of thickness L :

- Thick target $\sigma n L \gg 1$:

$$
\begin{gathered}
\int_{N_{0}}^{N}-\frac{d N}{N}=\int_{0}^{L} \sigma n \mathrm{~d} x \\
N=N_{0} \mathrm{e}^{-\sigma n L}
\end{gathered}
$$

This is exact.
i.e. the beam attenuates exponentially.

- Thin target $\sigma n L \ll 1, \quad \mathrm{e}^{-\sigma n L} \sim 1-\sigma n L$

$$
N=N_{0}(1-\sigma n L)
$$

Useful approximation for thin targets.
Or, the number scattered $=N_{0}-N=N_{0} \sigma n L$
Mean free path between interactions $=1 / n \sigma$ often referred to as "interaction length".

Differential Cross-section

The angular distribution of the scattered particles is not necessarily uniform ** n.b. $\mathrm{d} \Omega$ can be considered in position space, or momentum space **

Number of particles scattered per unit time into $\mathrm{d} \Omega$ is $\mathrm{d} N_{\mathrm{d} \Omega}=\mathrm{d} \sigma \Phi N_{T}$ Differential cross-section units: area/steradian

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\mathrm{d} N_{\mathrm{d} \Omega}}{\left(\Phi \times N_{T} \times \mathrm{d} \Omega\right)}
$$

The differential cross-section is the number of particles scattered per unit time and solid angle, divided by the incident flux and by the number of target nuclei, N_{T}, defined by the beam area.

Most experiments do not cover 4π solid angle, and in general we measure $\mathrm{d} \sigma / \mathrm{d} \Omega$.
Angular distributions provide more information than the total cross-section about the mechanism of the interaction, e.g. angular momentum.

Partial Cross-section

Different types of interaction can occur between particles
e.g. $e^{+} e^{-} \rightarrow \gamma$, or $e^{+} e^{-} \rightarrow Z \ldots$

$$
\sigma_{\mathrm{tot}}=\sum_{i} \sigma_{i}
$$

where the σ_{i} are called partial cross-sections for different final states.

Types of interaction

- Elastic scattering: $a+b \rightarrow a+b$ only the momenta of a and b change
- Inelastic scattering: $a+b \rightarrow c+d$ final state is not the same as initial state

Scattering in QM

Consider a beam of particles scattering from a fixed potential $V(r)$:

$$
\begin{aligned}
& \vec{q}=\vec{p}_{f}-\vec{p}_{i} \\
& \text { "momentum transfer" }
\end{aligned}
$$

NOTE: using natural units $\vec{p}=\hbar \vec{k} \rightarrow \vec{p}=\vec{k}$ etc
The scattering rate is characterised by the interaction cross-section

$$
\sigma=\frac{\Gamma}{\phi}=\frac{\text { Number of particles scattered per unit time }}{\text { Incident flux }}
$$

How can we calculate the cross-section?
Use Fermi's Golden Rule to get the transition rate

$$
\Gamma=2 \pi\left|M_{f i}\right|^{2} \rho\left(E_{f}\right)
$$

where $M_{f i}$ is the matrix element and $\rho\left(E_{f}\right)$ is the density of final states.

Scattering in QM

$1^{\text {st }}$ order Perturbation Theory using plane wave solutions of form

$$
\psi=N \mathrm{e}^{-i(E t-\vec{p} . \vec{r})}
$$

Require:

(1) Wave-function normalisation
(2) Matrix element in perturbation theory $M_{f i}$
(3) Expression for incident flux Φ
(4) Expression for density of states $\rho\left(E_{f}\right)$
(1) Normalisation

Normalise wave-functions to one particle in a box of side L :

$$
\begin{aligned}
|\psi|^{2} & =N^{2}=1 / L^{3} \\
N & =(1 / L)^{3 / 2}
\end{aligned}
$$

Scattering in QM

(2) Matrix Element

This contains the interesting physics of the interaction:

$$
\begin{gathered}
M_{f i}=\left\langle\psi_{f}\right| \hat{H}\left|\psi_{i}\right\rangle=\int \psi_{f}^{*} \hat{H} \psi_{i} \mathrm{~d}^{3} \vec{r}=\int N \mathrm{e}^{-i \overrightarrow{i \vec{p} \cdot} \cdot \vec{r}} V(\vec{r}) N \mathrm{e}^{i \vec{p}_{\cdot} \cdot \vec{r}} \mathrm{~d}^{3} \vec{r} \\
M_{f i}=\frac{1}{L^{3}} \int \mathrm{e}^{-i \vec{q} \cdot \vec{r}} V(\vec{r}) \mathrm{d}^{3} \vec{r} \quad \text { where } \vec{q}=\vec{p}_{f}-\vec{p}_{i}
\end{gathered}
$$

(3) Incident Flux

Consider a "target" of area A and a beam of particles travelling at velocity v_{i} towards the target. Any incident particle within a volume $v_{i} A$ will cross the target area every second.

$$
\Phi=\frac{v_{i} A}{A} n=v_{i} n
$$

where n is the number density of incident particles $=1$ per L^{3}
Flux $=$ number of incident particles crossing unit area per second

$$
\Phi=v_{i} / L^{3}
$$

Scattering in QM

(4) Density of States also known as "phase space"

For a box of side L, states are given by the periodic boundary conditions:

$$
\vec{p}=\left(p_{x}, p_{y}, p_{z}\right)=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

Each state occupies a volume $(2 \pi / L)^{3}$ in p space (neglecting spin).
Number of states between p and $p+\mathrm{d} p$ in solid angle $\mathrm{d} \Omega$

$$
\begin{gathered}
\mathrm{d} N=\left(\frac{L}{2 \pi}\right)^{3} \mathrm{~d}^{3} \vec{p}=\left(\frac{L}{2 \pi}\right)^{3} p^{2} \mathrm{~d} p \mathrm{~d} \Omega \quad\left(\mathrm{~d}^{3} \vec{p}=p^{2} \mathrm{~d} p \mathrm{~d} \Omega\right) \\
\therefore \rho(p)=\frac{\mathrm{d} N}{\mathrm{~d} p}=\left(\frac{L}{2 \pi}\right)^{3} p^{2} \mathrm{~d} \Omega
\end{gathered}
$$

Density of states in energy $E^{2}=p^{2}+m^{2} \Rightarrow 2 E \mathrm{~d} E=2 p \mathrm{~d} p \Rightarrow \frac{\mathrm{~d} E}{\mathrm{~d} p}=\frac{p}{E}$

$$
\rho(E)=\frac{\mathrm{d} N}{\mathrm{~d} E}=\frac{\mathrm{d} N}{\mathrm{~d} p} \frac{\mathrm{~d} p}{\mathrm{~d} E}=\left(\frac{L}{2 \pi}\right)^{3} p^{2} \frac{E}{p} \mathrm{~d} \Omega
$$

For relativistic scattering $(E \sim p) \quad \rho(E)=\left(\frac{L}{2 \pi}\right)^{3} E^{2} \mathrm{~d} \Omega$

Scattering in QM

Putting all the parts together:

$$
\begin{gathered}
\mathrm{d} \sigma=\frac{1}{\phi} 2 \pi\left|M_{f i}\right|^{2} \rho\left(E_{f}\right) \quad=\frac{L^{3}}{v_{i}} 2 \pi\left|\frac{1}{L^{3}} \int \mathrm{e}^{-i \vec{q} \cdot \vec{r}} V(\vec{r}) \mathrm{d}^{3} \vec{r}\right|^{2}\left(\frac{L}{2 \pi}\right)^{3} p_{f} E_{f} \mathrm{~d} \Omega \\
\frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{(2 \pi)^{2} v_{i}}\left|\int \mathrm{e}^{-i \vec{q} \cdot \vec{r}} V(\vec{r}) \mathrm{d}^{3} \vec{r}\right|^{2} p_{f} E_{f}
\end{gathered}
$$

For relativistic scattering, $v_{i}=c=1$ and $p \sim E$
Born approximation for the differential cross-section

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{E^{2}}{(2 \pi)^{2}}\left|\int \mathrm{e}^{-i \vec{q} \cdot \vec{r}} V(\vec{r}) \mathrm{d}^{3} \vec{r}\right|^{2}
$$

n.b. may have seen the non-relativistic version, using m^{2} instead of E^{2}

Rutherford Scattering

Consider relativistic elastic scattering in a Coulomb potential

$$
V(\vec{r})=-\frac{Z e^{2}}{4 \pi \epsilon_{0} r}=-\frac{Z \alpha}{r}
$$

Special case of Yukawa potential $V=g \mathrm{e}^{-m r} / r$ with $g=Z \alpha$ and $m=0$ (see Appendix C)

$$
\left|M_{i f}\right|^{2}=\frac{16 \pi^{2} Z^{2} \alpha^{2}}{q^{4}}
$$

$$
\vec{q}=\vec{p}_{f}-\vec{p}_{i}
$$

$$
|\vec{q}|^{2}=\left|\overrightarrow{p_{i}}\right|^{2}+\left|\vec{p}_{f}\right|^{2}-2 \vec{p}_{i} \cdot \vec{p}_{f}
$$

$$
\text { elastic scattering, }\left|\vec{p}_{i}\right|=\left|\vec{p}_{f}\right|=|\vec{p}|
$$

$$
=2|\vec{p}|^{2}(1-\cos \theta)=4 E^{2} \sin ^{2} \frac{\theta}{2}
$$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{4 E^{2} Z^{2} \alpha^{2}}{q^{4}}=\frac{4 E^{2} Z^{2} \alpha^{2}}{16 E^{4} \sin ^{4} \frac{\theta}{2}}=\frac{Z^{2} \alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}}
$$

Cross-section for Resonant Scattering

Some particle interactions take place via an intermediate resonant state which then decays

$$
a+b \rightarrow Z^{*} \rightarrow c+d
$$

Two-stage picture: (Bohr Model)

Formation $a+b \rightarrow Z^{*}$

Occurs when the collision energy $E_{C M} \sim$ the natural frequency (i.e. mass) of a resonant state.

Decay $\quad Z^{*} \rightarrow c+d$
The decay of the resonance Z^{*} is independent of the mode of formation and depends only on the properties of the Z^{*}.
May be multiple decay modes.

Resonance Cross-Section

The resonance cross-section is given by

$$
\begin{aligned}
& \sigma=\frac{\Gamma}{\Phi} \quad \text { with } \Gamma=2 \pi\left|M_{f i}\right|^{2} \rho\left(E_{f}\right) \\
& \mathrm{d} \sigma=\frac{1}{\phi} 2 \pi\left|M_{f i}\right|^{2} \rho\left(E_{f}\right)^{* *} \\
& =\frac{L^{3}}{v_{i}} 2 \pi\left|M_{f i}\right|^{2} \frac{p_{f}^{2} L^{3}}{v_{f}(2 \pi)^{3}} \mathrm{~d} \Omega \\
& \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{p_{f}^{2}}{(2 \pi)^{2} v_{i} v_{f}}\left|M_{f i}\right|^{2} \\
& \text { factors of } L \text { cancel } \\
& \text { as before, } M \propto 1 / L^{3} \\
& \text { ** same as Born Approx. } \\
& \text { incident flux } \Phi=\frac{v_{i}}{L^{3}} \\
& \text { density of states } \rho(p)=\frac{\mathrm{d} N}{\mathrm{~d} p}=\left(\frac{L}{2 \pi}\right)^{3} p^{2} \mathrm{~d} \Omega \\
& \text { Only need to account for } \rho(E) \text { of one particle. } \\
& \text { Energy conservation fixes the other. } \\
& \rightarrow \rho(E)=\frac{\mathrm{d} N}{\mathrm{~d} p} \frac{\mathrm{~d} p}{\mathrm{~d} E}=\left(\frac{L}{2 \pi}\right)^{3} p^{2} \frac{E}{p} \mathrm{~d} \Omega \\
& =\left(\frac{L}{2 \pi}\right)^{3} p^{2} \frac{1}{v} \mathrm{~d} \Omega
\end{aligned}
$$

The matrix element $M_{f i}$ is given by $2^{\text {nd }}$ order Perturbation Theory

$$
M_{f i}=\sum_{Z} \frac{M_{i Z} M_{Z f}}{E-E_{Z}}
$$

n.b. $2^{\text {nd }}$ order effects are large since
$E-E_{Z}$ is small \rightarrow large perturbation
where the sum runs over all intermediate states.
Near resonance, effectively only one state Z contributes.

Resonance Cross-Section

Consider one intermediate state described by

$$
\psi(t)=\psi(0) \mathrm{e}^{-i E_{0} t} \mathrm{e}^{-t / 2 \tau}=\psi(0) \mathrm{e}^{-i\left(E_{0}-i \frac{\Gamma}{2}\right) t}
$$

this describes a states with energy $=E_{0}-i \Gamma / 2$

$$
\left|M_{f i}\right|^{2}=\frac{\left|M_{i z}\right|^{2}\left|M_{z f}\right|^{2}}{\left(E-E_{0}\right)^{2}+\frac{\Gamma^{2}}{4}}
$$

Rate of decay of Z :

$$
\Gamma_{Z \rightarrow f}=2 \pi\left|M_{Z f}\right|^{2} \rho\left(E_{f}\right)=2 \pi\left|M_{Z f}\right|^{2} \frac{4 \pi p_{f}^{2}}{(2 \pi)^{3} v_{f}}=\left|M_{Z f}\right|^{2} \frac{p_{f}^{2}}{\pi v_{f}}
$$

Rate of formation of Z :

$$
\Gamma_{i \rightarrow z}=2 \pi\left|M_{i Z}\right|^{2} \rho\left(E_{i}\right)=2 \pi\left|M_{i Z}\right|^{2} \frac{4 \pi p_{i}^{2}}{(2 \pi)^{3} v_{i}}=\left|M_{i z}\right|^{2} \frac{p_{i}^{2}}{\pi v_{i}}
$$

nb. $\left|M_{z i}\right|^{2}=\left|M_{i z}\right|^{2}$.
Hence $M_{i Z}$ and $M_{Z f}$ can be expressed in terms of partial widths.

Resonance Cross-Section

Putting everything together: $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=\frac{p_{f}^{2}}{(2 \pi)^{2} v_{i} v_{f}}\left|M_{f i}\right|^{2}$

$$
\Rightarrow \sigma=\frac{4 \pi p_{f}^{2}}{(2 \pi)^{2} v_{i} v_{f}} \frac{\pi v_{f}}{p_{f}^{2}} \frac{\pi v_{i}}{p_{i}^{2}} \frac{\Gamma_{Z \rightarrow i} \Gamma_{Z \rightarrow f}}{\left(E-E_{0}\right)^{2}+\frac{\Gamma^{2}}{4}}=\frac{\pi}{p_{i}^{2}} \frac{\Gamma_{Z \rightarrow i} \Gamma_{Z \rightarrow f}}{\left(E-E_{0}\right)^{2}+\frac{\Gamma^{2}}{4}}
$$

We need to include one more piece of information to account for spin...

Resonance Cross-Section

Breit-Wigner Cross-Section

$$
\sigma=\frac{\pi g}{p_{i}^{2}} \cdot \frac{\Gamma_{Z \rightarrow i} \Gamma_{Z \rightarrow f}}{\left(E-E_{0}\right)^{2}+\frac{\Gamma^{2}}{4}}
$$

The g factor takes into account the spin

$$
\mathrm{a}+\mathrm{b} \rightarrow \mathrm{Z}^{*} \rightarrow \mathrm{c}+\mathrm{d}, \quad g=\frac{2 J_{Z}+1}{\left(2 J_{\mathrm{a}}+1\right)\left(2 J_{\mathrm{b}}+1\right)}
$$

and is the ratio of the number of spin states for the resonant state to the total number of spin states for the $a+b$ system, i.e. the probability that $a+b$ collide in the correct spin state to form Z^{*}.

Useful points to remember:

- p_{i} is calculated in the centre-of-mass frame (σ is independent of frame of reference!)
- $p_{i} \sim$ lab momentum if the target is heavy (often true in nuclear physics, but not in particle physics).
- E is the total energy (if two particles colliding, $E=E_{1}+E_{2}$)
- 「 is the total decay rate
- $\Gamma_{Z \rightarrow i}$ and $\Gamma_{Z \rightarrow f}$ are the partial decay rates

Resonance Cross-Section Notes

- Total cross-section

$$
\sigma_{\mathrm{tot}}=\sum_{f} \sigma(i \rightarrow f)
$$

$$
\sigma=\frac{\pi g}{p_{i}^{2}} \frac{\Gamma_{Z \rightarrow i} \Gamma_{z \rightarrow f}}{\left(E-E_{0}\right)^{2}+\frac{\Gamma^{2}}{4}}
$$

Replace Γ_{f} by Γ in the Breit-Wigner formula

- Elastic cross-section

$$
\sigma_{\mathrm{el}}=\sigma(i \rightarrow i)
$$

so, $\Gamma_{f}=\Gamma_{i}$

- On peak of resonance $\left(E=E_{0}\right) \quad \sigma_{\text {peak }}=\frac{4 \pi g \Gamma_{i} \Gamma_{f}}{p_{i}^{2} \Gamma^{2}}$

Thus

$$
\sigma_{\mathrm{el}}=\frac{4 \pi g B_{i}^{2}}{p_{i}^{2}}, \quad \sigma_{\mathrm{tot}}=\frac{4 \pi g B_{i}}{p_{i}^{2}}, \quad B_{i}=\frac{\Gamma_{i}}{\Gamma}=\frac{\sigma_{\mathrm{el}}}{\sigma_{\mathrm{tot}}}
$$

By measuring $\sigma_{\text {tot }}$ and σ_{el}, can cancel B_{i} and infer g and hence the spin of the resonant state.

Resonances Nuclear Physics Example

Can produce the same resonance from different initial states, decaying into various final states, e.g.

$\sigma\left[{ }^{60} \mathrm{Ni}(\alpha, n)^{63} \mathrm{Zn}\right] \sim \sigma\left[{ }^{63} \mathrm{Cu}(p, n)^{63} \mathrm{Zn}\right]$
n.b. common notation for nuclear reactions:
$a+A \rightarrow b+B \equiv A(a, b) B$

Energy of p selected to give same c.m. energy as for α interaction.

Resonances
 Particle Physics Example

The Z boson

$$
\begin{gathered}
\Gamma_{Z} \sim 2.5 \mathrm{GeV} \\
\tau=\frac{1}{\Gamma_{Z}}=0.4 \mathrm{GeV}^{-1} \\
=0.4 \times \hbar \\
=2.5 \times 10^{-25} \mathrm{~s}
\end{gathered}
$$

$$
\left(\hbar=6.6 \times 10^{-25} \mathrm{GeV} \mathrm{~s}\right)
$$

Resonances
 $\pi^{-} p$ scattering example

Resonance observed at $p_{\pi} \sim 0.3 \mathrm{GeV}, E_{C M} \sim 1.25 \mathrm{GeV}$

$$
\begin{gathered}
\sigma_{\text {total }}=\sigma\left(\pi^{-} p \rightarrow R \rightarrow \text { anything }\right) \sim 72 \mathrm{mb} \\
\sigma_{\text {elastic }}=\sigma\left(\pi^{-} p \rightarrow R \rightarrow \pi^{-} p\right) \sim 28 \mathrm{mb}
\end{gathered}
$$

Resonances
 $\pi^{-} p$ scattering example

Summary

- Units: MeV, GeV, barns
- Natural units: $\hbar=c=1$
- Relativistic kinematics: most particle physics calculations require this!
- Revision of scattering theory: cross-section, Born Approximation.
- Resonant scattering
- Breit-Wigner formula (important in both nuclear and particle physics):

$$
\sigma=\frac{\pi g}{p_{i}^{2}} \frac{\Gamma_{Z \rightarrow i} \Gamma_{Z \rightarrow f}}{\left(E-E_{0}\right)^{2}+\frac{\Gamma^{2}}{4}}
$$

- Measure total and elastic σ to measure spin of resonance.

Up next...
Section 3: Colliders and Detectors

