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Units

The usual practice in particle and nuclear physics is to use Natural Units.

Energies are measured in units of eV:

Nuclear keV(103 eV), MeV(106 eV)

Particle GeV(109 eV), TeV(1012 eV)

Masses are quoted in units of MeV/c2 or GeV/c2 (using E = mc2)
e.g. electron mass me = 9.11× 10−31 kg = (9.11× 10−31)(3× 108)2 J/c2

= 8.20× 10−14/1.602× 10−19 eV/c2 = 5.11× 105 eV/c2 = 0.511 MeV/c2

Atomic/nuclear masses are often quoted in unified (or atomic) mass units

1 unified mass unit (u) = (mass of a 12
6 C atom) / 12

1 u = 1 g/NA = 1.66× 10−27kg = 931.5 MeV/c2

Cross-sections are usually quoted in barns: 1b = 10−28 m2.
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Units Natural Units

Choose energy as the basic ...and simplify by
unit of measurement... choosing ~ = c = 1

Energy GeV GeV
Momentum GeV/c GeV
Mass GeV/c2 GeV
Time ( GeV/~)−1 GeV−1

Length ( GeV/~c)−1 GeV−1

Cross-section ( GeV/~c)−2 GeV−2

Reintroduce “missing” factors of ~ and c to convert back to SI units.

~c = 0.197 GeV fm = 1 Energy ←→ Length
~ = 6.6× 10−25 GeV s = 1 Energy ←→ Time
c = 3.0× 108 ms−1 = 1 Length ←→ Time
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Units Examples

1 cross-section σ = 2× 10−6 GeV−2 change into standard units
Need to change units of energy to length. Use ~c = 0.197 GeVfm = 1.

GeV−1 = 0.197 fm

GeV−1 = 0.197× 10−15 m

GeV−2 = 3.89× 10−32 m2
σ = 2× 10−6 × (3.89× 10−32 m2)

= 7.76× 10−38 m2

And using 1 b = 10−28 m2, σ = 0.776 nb

2 lifetime τ = 1/Γ = 0.5 GeV−1 change into standard units
Need to change units of energy−1 to time. Use ~ = 6.6× 10−25 GeV s = 1.

GeV−1 = 6.6× 10−25 s

τ = 0.5× (6.6× 10−25 s) = 3.3× 10−25 s

Also, can have Natural Units involving electric charge: ε0 = µ0 = ~ = c = 1

3 Fine structure constant (dimensionless)

α = e2

4πε0~c ∼
1

137 becomes α = e2

4π ∼
1

137 i.e. e ∼ 0.30(n.u.)
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Symmetries and conservation laws

The most elegant and powerful idea in physics
Noether’s theorem:
every differentiable symmetry of the action of a
physical system has a corresponding conservation law.

Symmetry Conserved current

Time, t Energy, E

Translational, x Linear momentum, p

Rotational, θ Angular momentum, L

Probability Total probability always 1

Lorentz invariance Charge Parity Time (CPT)

Gauge charge (e.g. electric, colour, weak)

Lorentz invariance: laws of physics stay the same for all frames moving with a uniform velocity.

Gauge invariance: observable quantities unchanged (charge, E , v) when a field is transformed.
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Relativistic Kinematics Special Relativity

Nuclear reactions
Low energy, typically K.E. O(10 MeV)� nucleon rest energies.
⇒ non-relativistic formulae ok

Exception: always treat β-decay relativistically
(me ∼ 0.5 MeV < 1.3 MeV ∼ mn −mp)

Particle physics
High energy, typically K.E. O(100 GeV)� rest mass energies.
⇒ relativistic formulae usually essential.
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Relativistic Kinematics Special Relativity

Recall the energy E and momentum p of a particle with mass m

E = γm, |~p| = γβm γ =
1√

1− β2
, β =

v

c
= v

or γ =
E

m
, β =

|~p|
E

and these are related by E 2 = ~p2 + m2

Interesting cases

when a particle is at rest, ~p = 0, E = m,

when a particle is massless, m = 0, E = |~p|,
when a particle is ultra-relativistic E � m, E ∼ |~p|.

Kinetic energy (K.E., or T ) is the extra energy due to motion
T = E −m = (γ − 1)m

in the non-relativistic limit β � 1, T = 1
2mv 2
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Relativistic Kinematics Four-Vectors

The kinematics of a particle can be expressed as a four-vector, e.g.

pµ = (E ,−~p), pµ = (E , ~p) and xµ = (t,−~x), xµ = (t, ~x)

µ : 0→ 3
multiply by a metric tensor to raise/lower indices

pµ = gµvpv , pµ = gµvpv gµv = gµv =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Scalar product of two four-vectors Aµ = (A0, ~A), Bµ = (B0, ~B) is invariant:

AµBµ = A.B = A0B0 − ~A.~B

or pµpµ = pµgµvpv =
∑
µ=0,3

∑
v=0,3

pµgµvpv = g00p2
0 + g11p2

1 + g22p2
2 + g33p2

3

= E 2 − |~p|2 = m2 invariant mass

(t, ~x) and (E , ~p) transform between frames of reference, but
d 2 = t2 − ~x2 Invariant interval is constant
m2 = E 2 − ~p2 Invariant mass is constant
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Relativistic Kinematics Invariant Mass

A common technique to identify particles is to form the invariant mass from
their decay products.

Remember, for a single particle m2 = E 2 − ~p2.

For a system of particles, where X → 1 + 2 + 3...n:

M2
X = ((E1, ~p1) + (E2, ~p2) + ...)2 =

(
n∑

i=1

Ei

)2

−

(
n∑

i=1

~pi

)2

In the specific (and common) case of a two-body
decay, X → 1 + 2, this reduces to

M2
X = m2

1 + m2
2 + 2 (E1E2 − |~p1||~p2| cos θ)

n.b. sometimes invariant mass M is called “centre-of-mass

energy” ECM , or
√

s
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Relativistic Kinematics Decay Example

Consider a charged pion decaying at rest in the lab frame π−→ µ−ν̄µ

Find the momenta of the decay products
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How do we study particles and forces?
Static Properties
What particles/states exist?
Mass, spin and parity (JP), magnetic moments, bound states

Particle Decays
Most particles and nuclei are unstable.
Allowed/forbidden decays → Conservation Laws.

Particle Scattering
Direct production of new massive particles in matter-antimatter
annihilation.
Study of particle interaction cross-sections.
Use high-energies to study forces at short distances.

Force Typical Lifetime [s] Typical cross-section [mb]

Strong 10−23 10

Electromagnetic 10−20 10−2

Weak 10−8 10−13
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Particle Decays Reminder

Most particles are transient states – only a few live forever (e−, p, ν, γ...).
Number of particles remaining at time t

N(t) = N(0)p(t) = N(0)e−λt

where N(0) is the number at time t = 0.

Rate of decays dN

dt
= −λN(0)e−λt = −λN(t)

Assuming the nuclei only decay. More complicated if they are also being created.

Activity A(t) =

∣∣∣∣ dN

dt

∣∣∣∣ = λN(t)

It’s rather common in nuclear physics to use the half-life (i.e. the time
over which 50% of the particles decay). In particle physics, we usually
quote the mean life. They are simply related:

N(τ1/2) =
N(0)

2
= N(0)e−λτ1/2 ⇒ τ1/2 =

ln 2

λ
= 0.693τ
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Particle Decays Multiple Particle Decay

Decay Chains frequently occur in nuclear physics

N1 λ1−→ N2 λ2−→ N3 −→ ...

Parent Daughter Granddaughter

e.g. 235U → 231Th → 231Pa
τ1/2(235U) = 7.1× 108 years
τ1/2(231Th) = 26 hours

Activity (i.e. rate of decay) of the daughter is λ2N2(t).
Rate of change of population of the daughter

dN2(t)

dt
= λ1N1(t) − λ2N2(t)

Units of Radioactivity are defined as the number of decays per unit time.
Becquerel (Bq) = 1 decay per second
Curie (Ci) = 3.7× 1010 decays per second.
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Particle Decays

A decay is the transition from one quantum state (initial state) to another
(final or daughter).

The transition rate is given by Fermi’s Golden Rule:

Γ(i → f ) = λ = 2π |Mfi |2 ρ(Ef ) ~ = 1

where λ is the number of transitions per unit time
Mfi is the transition matrix element
ρ(Ef ) is the density of final states.

⇒ λ dt is the (constant) probability a particle will decay in time dt.
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Particle Decays Single Particle Decay

Let p(t) be the probability that a particle still exists at time t, given that it
was known to exist at t = 0.

Probability for particle decay in the next time interval dt is = p(t)λ dt
Probability that particle survives the next is = p(t + dt) = p(t)(1− λ dt)

p(t)(1− λ dt) = p(t + dt) = p(t) +
dp

dt
dt

dp

dt
= −p(t)λ∫ p

1

dp

p
= −

∫ t

0

λ dt

⇒ p(t) = e−λt Exponential Decay Law

Probability that a particle lives until time t and then decays in time dt is

p(t)λ dt = λe−λt dt
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Particle Decays Single Particle Decay

The average lifetime of the particle

τ = 〈t〉 =

∫ ∞
0

tλe−λt dt =
[
−te−λt

]∞
0

+

∫ ∞
0

e−λt dt =

[
−1

λ
e−λt

]∞
0

=
1

λ

τ =
1

λ
p(t) = e−t/τ

Finite lifetime ⇒ uncertain energy ∆E , (c.f. Resonances, Breit-Wigner)

Decaying states do not correspond to a single energy – they have a width
∆E

∆E .τ ∼ ~ ⇒ ∆E ∼ ~
τ

= ~λ ~ = 1 (n.u.)

The width, ∆E , of a particle state is therefore

Inversely proportional to the lifetime τ
Proportional to the decay rate λ (or equal in natural units)
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Decay of Resonances

QM description of decaying states
Consider a state formed at t = 0 with energy E0 and mean lifetime τ

ψ(t) = ψ(0)e−iE0te−t/2τ |ψ(t)|2 = |ψ(0)|2 e−t/τ

i.e. the probability density decays exponentially (as required).

The frequencies (i.e. energies, since E = ω if ~ = 1) present in the
wavefunction are given by the Fourier transform of ψ(t), i.e.

f (ω) = f (E ) =

∫ ∞
0

ψ(t)eiEt dt =

∫ ∞
0

ψ(0)e−t(iE0+ 1
2τ )eiEt dt

=

∫ ∞
0

ψ(0)e−t(i(E0−E )+ 1
2τ ) dt =

iψ(0)

(E0 − E )− i
2τ

Probability of finding state with
energy E = f (E ) ∗ f (E ) is P(E ) = |f (E )|2 =

|ψ(0)|2

(E0 − E )2 + 1
4τ 2
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Decay of Resonances Breit-Wigner

Probability for producing the decaying state has
this energy dependence, i.e. resonant when E = E0

P(E ) ∝ 1

(E0 − E )2 + 1/4τ 2

Consider full-width at half-maximum Γ

P(E = E0) ∝ 4τ 2

P(E = E0 ±
1

2
Γ) ∝ 1

(E0 − E0 ∓ 1
2Γ)2 + 1/4τ 2

=
1

Γ2

4 + 1
4τ 2

P(E = E0 ±
1

2
Γ) =

1

2
P(E = E0), ⇒ 1

Γ2

4 + 1
4τ 2

= 2τ 2

Total width (using natural units) Γ =
1

τ
= λ
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Partial Decay Widths

Particles can often decay with more than one decay mode
e.g. Z → e+e−, or µ+µ−, or qq̄ etc, each with its own transition rate,

i.e. from initial state i to final state f : λf = 2π |Mfi |2 ρ(Ef )

The total decay rate is given by λ =
∑

f λf

This determines the average lifetime τ = 1
λ

The total width of a particle state Γ = λ =
∑

f λf

is defined by the partial widths Γf = λf

The proportion of decays to a particular
decay mode is called the branching fraction
or branching ratio

Bf = Γf

Γ ,
∑

f Bf = 1
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Reactions and Cross-sections

The strength of a particular reaction between two particles is specified by the
interaction cross-section.

Cross-section σ – the effective target area presented to the incoming particle
for it to cause the reaction.

Units: σ 1 barn (b) = 10−28m2 Area

σ is defined as the reaction rate per target particle Γ, per unit incident flux Φ

Γ = Φσ

where the flux Φ is the number of beam particles passing through unit area per
second.

Γ is given by Fermi’s Golden Rule (previously used λ).
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Scattering with a beam
Consider a beam of particles incident upon a target:

Beam of N particles per
unit time in an area A

Target of n nuclei per
unit volume

Target thickness dx is
small

Number of target particles in area A, NT = nA dx
Effective area for absorption = σNT = σnA dx
Incident flux Φ = N/A
Number of particles scattered per unit time

= −dN = ΦσNT = N
AσnA dx

σ =
−dN

nN dx
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Attenuation of a beam

Beam attenuation in a target of thickness L:

Thick target σnL� 1: ∫ N

N0

−dN

N
=

∫ L

0

σn dx

N = N0e
−σnL This is exact.

i.e. the beam attenuates exponentially.

Thin target σnL << 1, e−σnL ∼ 1− σnL

N = N0(1− σnL)

Useful approximation for thin targets.

Or, the number scattered = N0 − N = N0σnL

Mean free path between interactions = 1/nσ
often referred to as “interaction length”.
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Differential Cross-section
The angular distribution of the scattered
particles is not necessarily uniform
** n.b. dΩ can be considered in position space, or

momentum space **

Number of particles scattered per unit time into dΩ is dN dΩ = dσΦNT

Differential cross-section
units: area/steradian

dσ

dΩ
=

dN dΩ

(Φ× NT × dΩ)

The differential cross-section is the number of particles scattered per unit time and solid angle,

divided by the incident flux and by the number of target nuclei, NT , defined by the beam area.

Most experiments do not cover 4π solid angle, and in general we measure
dσ/ dΩ.

Angular distributions provide more information than the total cross-section
about the mechanism of the interaction, e.g. angular momentum.
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Partial Cross-section

Different types of interaction can occur between particles
e.g. e+e−→ γ, or e+e−→ Z ...

σtot =
∑

i

σi

where the σi are called partial cross-sections for different final states.

Types of interaction

Elastic scattering: a + b → a + b
only the momenta of a and b change

Inelastic scattering: a + b → c + d
final state is not the same as initial state
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Scattering in QM

Consider a beam of particles scattering from a fixed potential V (r):

~q = ~pf − ~pi

“momentum transfer”

NOTE: using natural units ~p = ~~k → ~p = ~k etc

The scattering rate is characterised by the interaction cross-section

σ =
Γ

Φ
=

Number of particles scattered per unit time

Incident flux

How can we calculate the cross-section?

Use Fermi’s Golden Rule to get the transition rate

Γ = 2π|Mfi |2ρ(Ef )

where Mfi is the matrix element and ρ(Ef ) is the density of final states.
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Scattering in QM
1st order Perturbation Theory using plane wave solutions of form

ψ = Ne−i(Et−~p.~r)

Require:
1 Wave-function normalisation
2 Matrix element in perturbation theory Mfi

3 Expression for incident flux Φ
4 Expression for density of states ρ(Ef )

1 Normalisation
Normalise wave-functions to one particle in a box of side L:

|ψ|2 = N2 = 1/L3

N = (1/L)3/2
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Scattering in QM
2 Matrix Element

This contains the interesting physics of the interaction:

Mfi = 〈ψf |Ĥ |ψi〉 =

∫
ψ∗f Ĥψi d3~r =

∫
Ne−i ~pf .~rV (~r)Nei ~pi .~r d3~r

Mfi =
1

L3

∫
e−i~q.~rV (~r) d3~r where ~q = ~pf − ~pi

3 Incident Flux
Consider a “target” of area A and a beam of particles travelling at velocity
vi towards the target. Any incident particle within a volume viA will cross
the target area every second.

Φ =
viA

A
n = vin

where n is the number density of incident particles = 1 per L3

Flux = number of incident particles crossing unit area per second

Φ = vi/L3
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Scattering in QM

4 Density of States also known as “phase space”
For a box of side L, states are given by the periodic boundary conditions:

~p = (px , py , pz) =
2π

L
(nx , ny , nz)

Each state occupies a volume (2π/L)3 in p space (neglecting spin).

Number of states between p and p + dp in solid angle dΩ

dN =

(
L

2π

)3

d3~p =

(
L

2π

)3

p2 dp dΩ ( d3~p = p2 dp dΩ)

∴ ρ(p) =
dN

dp
=

(
L

2π

)3

p2 dΩ

Density of states in energy E 2 = p2 + m2 ⇒ 2E dE = 2p dp ⇒ dE
dp = p

E

ρ(E ) =
dN

dE
=

dN

dp

dp

dE
=

(
L

2π

)3

p2E

p
dΩ

For relativistic scattering (E ∼ p) ρ(E ) =

(
L

2π

)3

E 2 dΩ
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Scattering in QM

Putting all the parts together:

dσ =
1

Φ
2π |Mfi |2 ρ(Ef ) =

L3

vi
2π

∣∣∣∣ 1

L3

∫
e−i~q.~rV (~r) d3~r

∣∣∣∣2( L

2π

)3

pf Ef dΩ

dσ

dΩ
=

1

(2π)2vi

∣∣∣∣∫ e−i~q.~rV (~r) d3~r

∣∣∣∣2 pf Ef

For relativistic scattering, vi = c = 1 and p ∼ E
Born approximation for the differential cross-section

dσ

dΩ
=

E 2

(2π)2

∣∣∣∣∫ e−i~q.~rV (~r) d3~r

∣∣∣∣2
n.b. may have seen the non-relativistic version, using m2 instead of E 2
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Rutherford Scattering
Consider relativistic elastic scattering in a Coulomb potential

V (~r) = − Z e2

4πε0r
= −Zα

r

Special case of Yukawa potential V = ge−mr/r
with g = Zα and m = 0 (see Appendix C)

|Mif |2 =
16π2Z 2α2

q4

~q = ~pf − ~pi

|~q|2 = |~pi |2 + |~pf |2 − 2~pi .~pf

elastic scattering, |~pi | = |~pf | = |~p|

= 2|~p|2(1− cos θ) = 4E 2 sin2 θ

2

dσ

dΩ
=

4E 2Z 2α2

q4
=

4E 2Z 2α2

16E 4 sin4 θ
2

=
Z 2α2

4E 2 sin4 θ
2
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Cross-section for Resonant Scattering

Some particle interactions take
place via an intermediate
resonant state which then
decays

a + b → Z∗→ c + d

Two-stage picture: (Bohr Model)

Formation a + b → Z∗

Occurs when the collision energy
ECM ∼ the natural frequency (i.e.
mass) of a resonant state.

Decay Z∗→ c + d

The decay of the resonance Z ∗ is
independent of the mode of
formation and depends only on the
properties of the Z ∗.
May be multiple decay modes.

Prof. Tina Potter 2. Kinematics, Decays and Reactions 32



Resonance Cross-Section
The resonance cross-section is given by

σ =
Γ

Φ
with Γ = 2π |Mfi |2 ρ(Ef )

dσ =
1

Φ
2π |Mfi |2 ρ(Ef ) ∗∗

=
L3

vi
2π |Mfi |2

p2
f L3

vf (2π)3
dΩ

dσ

dΩ
=

p2
f

(2π)2vivf
|Mfi |2 factors of L cancel

as before, M ∝ 1/L3

** same as Born Approx.

incident flux Φ =
vi
L3

density of states ρ(p) =
dN

dp
=

(
L

2π

)3

p2 dΩ

Only need to account for ρ(E ) of one particle.
Energy conservation fixes the other.

→ ρ(E ) =
dN

dp

dp

dE
=

(
L

2π

)3

p2
E

p
dΩ

=

(
L

2π

)3

p2
1

v
dΩ

The matrix element Mfi is given by 2nd order Perturbation Theory

Mfi =
∑

Z

MiZ MZf

E − EZ

n.b. 2nd order effects are large since

E − EZ is small → large perturbation

where the sum runs over all intermediate states.
Near resonance, effectively only one state Z contributes.
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Resonance Cross-Section
Consider one intermediate state described by

ψ(t) = ψ(0)e−iE0te−t/2τ = ψ(0)e−i(E0−i Γ
2)t

this describes a states with energy = E0 − iΓ/2

|Mfi |2 =
|MiZ |2 |MZf |2

(E − E0)2 + Γ2

4

Rate of decay of Z :

ΓZ→f = 2π |MZf |2 ρ(Ef ) = 2π |MZf |2
4πp2

f

(2π)3 vf

= |MZf |2
p2

f

πvf

Rate of formation of Z :

Γi→Z = 2π |MiZ |2 ρ(Ei) = 2π |MiZ |2
4πp2

i

(2π)3 vi

= |MiZ |2
p2

i

πvi

nb. |MZi |2 = |MiZ |2.

Hence MiZ and MZf can be expressed in terms of partial widths.
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Resonance Cross-Section

Putting everything together:
dσ

dΩ
=

p2
f

(2π)2 vivf

|Mfi |2

⇒ σ =
4πp2

f

(2π)2 vivf

πvf

p2
f

πvi

p2
i

ΓZ→iΓZ→f

(E − E0)2 + Γ2

4

=
π

p2
i

ΓZ→iΓZ→f

(E − E0)2 + Γ2

4

We need to include one more piece of information to account for spin...
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Resonance Cross-Section

Breit-Wigner Cross-Section σ =
πg

p2
i

.
ΓZ→iΓZ→f

(E − E0)2 + Γ2

4

The g factor takes into account the spin

a + b→ Z∗ → c + d, g =
2JZ + 1

(2Ja + 1)(2Jb + 1)

and is the ratio of the number of spin states for the resonant state to the total number of spin

states for the a+b system,

i.e. the probability that a+b collide in the correct spin state to form Z∗.

Useful points to remember:

pi is calculated in the centre-of-mass frame (σ is independent of frame of reference!)

pi ∼ lab momentum if the target is heavy (often true in nuclear physics, but not in

particle physics).

E is the total energy (if two particles colliding, E = E1 + E2)

Γ is the total decay rate

ΓZ→i and ΓZ→f are the partial decay rates
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Resonance Cross-Section Notes

Total cross-section σtot =
∑

f

σ(i → f ) σ =
πg

p2
i

ΓZ→iΓZ→f

(E − E0)2 + Γ2

4

Replace Γf by Γ in the Breit-Wigner formula

Elastic cross-section σel = σ(i → i)

so, Γf = Γi

On peak of resonance (E = E0) σpeak =
4πgΓiΓf

p2
i Γ2

Thus σel =
4πgB2

i

p2
i

, σtot =
4πgBi

p2
i

, Bi =
Γi

Γ
=
σel

σtot

By measuring σtot and σel, can cancel Bi and infer g and hence the spin of the
resonant state.
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Resonances Nuclear Physics Example

Can produce the same resonance from
different initial states, decaying into
various final states, e.g.

σ[60Ni(α, n)63Zn] ∼ σ[63Cu(p, n)63Zn]

n.b. common notation for nuclear
reactions:
a+A → b+B ≡ A(a,b)B

Energy of p selected to give same
c.m. energy as for α interaction.
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Resonances Particle Physics Example

The Z boson

ΓZ ∼ 2.5 GeV

τ =
1

ΓZ
= 0.4 GeV−1

= 0.4× ~

= 2.5× 10−25 s

(~ = 6.6×10−25 GeV s)

Prof. Tina Potter 2. Kinematics, Decays and Reactions 39



Resonances π−p scattering example

Resonance observed at pπ ∼ 0.3 GeV, ECM ∼ 1.25 GeV

σtotal = σ(π−p → R → anything) ∼ 72 mb

σelastic = σ(π−p → R → π−p) ∼ 28 mb
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Resonances π−p scattering example
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Summary

Units: MeV, GeV, barns

Natural units: ~ = c = 1

Relativistic kinematics: most particle physics calculations require this!

Revision of scattering theory: cross-section, Born Approximation.

Resonant scattering

Breit-Wigner formula (important in both nuclear and particle physics):

σ =
πg

p2
i

ΓZ→iΓZ→f

(E − E0)2 + Γ2

4

Measure total and elastic σ to measure spin of resonance.

Up next...
Section 3: Colliders and Detectors
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