
 1

2. LabVIEW Programming
Environment

LabVIEW constitutes a graphical programming environment that allows one to

design and analyze a DSP system in a shorter time as compared to text-based

programming environments. LabVIEW graphical programs are called Virtual

Instruments (VIs). VIs run based on the concept of data flow programming. This

means that execution of a block or a graphical component is dependent on the flow

of data, or more specifically a block executes when data is made available at all of its

inputs. Output data of the block are then sent to all other connected blocks. Data

flow programming allows multiple operations to be performed in parallel since its

execution is determined by the flow of data and not by sequential lines of code.

2.1 Virtual Instruments (VIs)

A VI consists of two major components which include a Front Panel (FP), and a

Block Diagram (BD). A FP provides the user-interface of a program while a BD

incorporates its graphical code. When a VI is located within the block diagram of

another VI, it is called a subVI. LabVIEW VIs are modular meaning that any VI or

subVI can be run by itself.

2.1.1 Front Panel and Block Diagram
A FP contains the user interfaces of a VI shown in a BD. Inputs to a VI are

represented by so called controls. Knobs, pushbuttons and dials are a few examples

of controls. Outputs from a VI are represented by so called indicators. Graphs, LEDs

(light indicators) and meters are a few examples of indicators. As a VI runs, its FP

provides a display or user-interface of controls (inputs) and indicators (outputs).

 2

A BD contains terminal icons, nodes, wires, and structures. Terminal icons

are interfaces through which data are exchanged between a FP and a BD. Terminal

icons correspond to controls or indicators that appear on a FP. Whenever a control or

indicator is placed on a FP, a terminal icon gets added to the corresponding BD. A

node represents an object which has input and/or output connectors and performs a

certain function. SubVIs and functions are examples of nodes. Wires establish the

flow of data in a BD. Structures are used to control the flow of a program such as

repetitions or conditional executions. Figure 2-1 shows what a FP and a BD window

look like.

Figure 2-1: LabVIEW windows: Front Panel and Block Diagram.

2.1.2 Icon and Connector Pane
A VI icon is a graphical representation of a VI. It appears in the top right corner of a

BD or a FP window. When a VI is inserted in a BD as a subVI, its icon gets displayed.

A connector pane defines inputs (controls) and outputs (indicators) of a VI.

The number of inputs and outputs can be changed by using different connector pane

 3

patterns. In Figure 2-1, a VI icon is shown at the top right corner of the BD and its

corresponding connector pane having two inputs and one output is shown at the top

right corner of the FP.

2.2 Graphical Environment

2.2.1 Functions Palette
The Functions palette, see Figure 2-2, provides various function VIs or blocks for

building a system. This palette can be displayed by right clicking on an open area of

a BD. Note that this palette can only be displayed in a BD.

Figure 2-2: Functions palette.

 4

2.2.2 Controls Palette
The Controls palette, see Figure 2-3, provides controls and indicators of a FP. This

palette can be displayed by right clicking on an open area of a FP. Note that this

palette can only be displayed in a FP.

Figure 2-3: Controls palette.

2.2.3 Tools Palette
The Tools palette provides various operation modes of the mouse cursor for building

or debugging a VI. The Tools palette and the frequently used tools are shown in

Figure 2-4.

 5

Automatic Tool Selection

Operating tool

Positioning tool

Labeling tool

Wiring tool

Probe tool

Icon Tool

Figure 2-4: Tools palette.

Each tool is utilized for a specific task. For example, the Wiring tool is used to

wire objects in a BD. If the automatic tool selection mode is enabled by clicking the

Automatic Tool Selection button, LabVIEW selects the best matching tool based on

a current cursor position.

2.3 Building a Front Panel

In general, a VI is put together by going back and forth between a FP and a BD,

placing inputs/outputs on the FP and building blocks on the BD.

2.3.1 Controls
Controls make up the inputs to a VI. Controls grouped in the Numeric Controls

palette (Controls » Express » Num Ctrls) are used for numerical inputs, grouped

in the Buttons & Switches palette (Controls » Express » Buttons) for Boolean

inputs, and grouped in the Text Controls palette (Controls » Express » Text Ctrls)

for text and enumeration inputs. These control options are displayed in Figure 2-5.

 6

Figure 2-5: Control palettes.

2.3.2 Indicators
Indicators make up the outputs of a VI. Indicators grouped in the Numeric

Indicators palette (Controls » Express » Num Inds) are used for numerical outputs,

grouped in the LEDs palette (Controls » Express » LEDs) for Boolean outputs,

grouped in the Text Indicators palette (Controls » Express » Text Inds) for text

outputs, and grouped in the Graph Indicators palette (Controls » Express » Graph

Indicators) for graphical outputs. These indicator options are displayed in Figure

2-6.

 7

Figure 2-6: Indicator palettes.

2.3.3 Align, Distribute and Resize Objects
The menu items on the toolbar of a FP, see Figure 2-7, provide options to align and

orderly distribute objects on the FP. Normally, after controls and indicators are

placed on a FP, one uses these options to tidy up their appearance.

Align Objects

Distribute Objects

Resize Objects

Reorder

Figure 2-7: Menu for align, distribute, resize, and reorder objects.

 8

2.4 Building a Block Diagram

2.4.1 Express VI and Function
Express VIs denote higher-level VIs that have been configured to incorporate lower-

level VIs or functions. These VIs are displayed as expandable nodes with a blue

background. Placing an Express VI in a BD brings up a configuration dialog window

allowing adjustment of its parameters. As a result, Express VIs demand less wiring.

A configuration window can be brought up by double clicking on its Express VI.

Basic operations such as addition or subtraction are represented by functions.

Figure 2-8 shows three examples corresponding to three types of a BD object (VI,

Express VI, and function).

(a) (b) (c)

Figure 2-8: Block Diagram objects (a) VI, (b) Express VI, and (c) function.

A subVI or an Express VI can be displayed as icons or expandable nodes. If a

subVI is displayed as an expandable node, the background appears yellow. Icons are

used to save space in a BD, while expandable nodes are used to provide easier

wiring or better readability. Expandable nodes can be resized to show their

connection nodes more clearly. Three appearances of a VI/Express VI are shown in

Figure 2-9.

 9

VI Express VI

Icon
(Default) Expandable node Expandable node

(Resized) Icon Expandable node
(Resized)

Expandable node
(Default)

Figure 2-9: Icon vs. expandable node.

2.4.2 Terminal Icons
FP objects get displayed as terminal icons in a BD. A terminal icon exhibits an input

or output as well as its data type. Figure 2-10 shows two terminal icon examples

consisting of a double precision numerical control and indicator. As shown in this

figure, terminal icons can be displayed as data type terminal icons to conserve space

in a BD.

Terminal Icons

Data Type Terminal Icons

Control Indicator

Figure 2-10: Terminal icon examples displayed in a BD.

 10

2.4.3 Wires
Wires transfer data from one node to another in a BD. Based on the data type of a

data source, the color and thickness of its connecting wires change.

Wires for the basic data types used in LabVIEW are shown in Figure 2-11.

Other than the data types shown in this figure, there are some other specific data

types. For example, the dynamic data type is always used for Express VIs, and the

waveform data type, which corresponds to the output from a waveform generation

VI, is a special cluster of waveform components incorporating trigger time, time

interval, and data value.

Scalar 1D Array 2D Array

Numeric

Boolean

String

Wire Type

Orange (Floating point)
Blue (Integer)

Green

Pink

Color

Figure 2-11: Basic types of wires [2].

2.4.4 Structures
A structure is represented by a graphical enclosure. The graphical code enclosed by a

structure gets repeated or executed conditionally. A loop structure is equivalent to a

for loop or a while loop statement encountered in text-based programming

languages, while a case structure is equivalent to an if-else statement.

2.4.4.1 For Loop

A For Loop structure is used to perform repetitions. As illustrated in Figure 2-12, the

displayed border indicates a For Loop structure, where the count terminal

represents the number of times the loop is to be repeated. It is set by wiring a value

 11

from outside of the loop to it. The iteration terminal denotes the number of

completed iterations, which always starts at zero.

Figure 2-12: For Loop.

2.4.4.2 While Loop

A While Loop structure allows repetitions depending on a condition, see Figure 2-13.

The conditional terminal initiates a stop if the condition is true. Similar to a For

Loop, the iteration terminal provides the number of completed iterations, always

starting at zero.

Figure 2-13: While Loop.

2.4.4.3 Case Structure

A Case structure, see Figure 2-14, allows running different sets of operations

depending on the value it receives through its selector terminal, which is indicated

by . In addition to Boolean type, the input to a selector terminal can be of integer,

string, or enumerated type. This input determines which case to execute. The case

selector shows the status being executed. Cases can be added or deleted as

needed.

 12

Figure 2-14: Case structure.

2.5 MathScript

MathScript is a new feature of the latest version of LabVIEW (LabVIEW 8.0)

which allows one to perform textual programming in conjunction with graphical

programming [6]. It includes more than 500 built-in functions and uses matrices and

arrays as fundamental data types with built-in operators for data manipulation.

User-defined functions can also be added to it. MathScript is compatible with the m-

file script syntax that is encountered in MATLAB codes. MathScript possesses an

interactive and a programming interface named MathScript Interactive Window and

MathScript Node, respectively.

The LabVIEW MathScript Interactive Window is shown in Figure 2-15. The

interfaces Command Window, Output Window, and MathScript Window are shown

in this figure. The Command Window interface is used to enter commands and for

script debugging or to view help statements for built-in functions. The Output

Window interface is used for viewing output values. The MathScript Window

interface is used to display variables, edit scripts, and display command history.

Script editing allows the execution of a group of commands.

 13

Figure 2-15: MathScript Interactive Window Interface.

A MathScript Node represents the textual code via a blue rectangle as shown in

Figure 2-16. Its inputs and outputs are defined on the border of this rectangle for

transferring data between the graphical environment and textual MathScript codes.

For example, as indicated in Figure 2-16, the input variables on the left side, namely

lowcutoff, uppcutoff and order, transfer values to the m-file script and the

output variables on the right side, namely F and sH, transfer values to the graphical

code. This process makes it easy to utilize m-file script variables within the graphical

programming environment.

 14

Figure 2-16: MathScript Node Interface.

2.6 Grouping Data: Array & Cluster

An array represents a group of elements having the same data type. An array

consists of data elements having a dimension up to 231 -1. For example, if a random

number is generated in a loop, it makes sense to build the output as an array since

the length of the data element is fixed at 1 and the data type is not changed during

iterations.

A cluster consists of a collection of different data type elements, similar to the

structure data type in text-based programming languages. Clusters allow one to

reduce the number of wires on a BD by bundling different data type elements

together and passing them to only one terminal. An individual element can be added

to or extracted from a cluster by using the cluster functions such as Bundle by

Name and Unbundle by Name.

 15

2.7 Debugging and Profiling VIs

2.7.1 Probe Tool
The Probe tool is used for debugging VIs as they run. The value on a wire can be

checked while a VI is running. Note that the Probe tool can only be accessed in a BD

window.

The Probe tool can be used together with breakpoints and execution

highlighting to identify the source of an incorrect or an unexpected outcome. A

breakpoint is used to pause the execution of a VI at a specific location while

execution highlighting helps one to visualize the flow of data during program

execution.

2.7.2 Profile Tool
The Profile tool can be used to gather timing and memory usage information, i.e.

how long a VI takes to run and how much memory it consumes. It is necessary to

make sure a VI is stopped before setting up a Profile window.

An effective way to become familiar with LabVIEW programming is by

going through examples. Thus, in the two labs that follow in this chapter, most of the

key programming features of LabVIEW are presented via building some simple VIs.

More detailed information on LabVIEW programming can be found in [1-6].

2.8 Bibliography

[1] National Instruments, LabVIEW Getting Started with LabVIEW, Part Number

323427A-01, 2003

[2] National Instruments, LabVIEW User Manual, Part Number 320999E-01, 2003

 16

[3] National Instruments, LabVIEW Performance and Memory Management, Part

Number 342078A-01, 2003.

[4] National Instruments, Introduction to LabVIEW Six-Hour Course, Part Number

323669B-01, 2003.

[5] Robert H. Bishop, Learning With Labview 7 Express, Prentice Hall, 2003.

[6] National Instruments, Inside LabVIEW MathScript,

http://zone.ni.com/devzone/conceptd.nsf/webmain.

