Paper 4 C2H Mark scheme

Question number	Answer	Mark
$\mathbf{1 (a)}$	B	(1)

Question number	Answer	Mark
$\mathbf{1 (b)}$	An answer that provides a description by making reference to: • adds carbon dioxide/adds water vapour (1) - removes oxygen (1)	

Question number	Answer	Additional guidance	Mark
1(c)	An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): - as concentration of carbon dioxide increases the (mean global) temperature increases (overall) (1) - \{but there is no evidence that the increase in (mean global) temperature is caused by the increase in concentration of carbon dioxide/other factors may cause the increase in (mean global) temperature\} (1) OR - as concentration of carbon dioxide increases the (mean global) temperature increases (1) - so this does provide evidence that an increase in carbon dioxide is causing the Earth's temperature to rise (1) OR - as concentration of carbon dioxide increases the (mean global) temperature overall increases but \{fluctuates/increases and decreases\} (1) - so this does not provide evidence that an increase in carbon dioxide is causing the Earth's temperature to rise (1)	Award for conclusion (second mark) only given if reason given	

Question number	Answer	Mark
$\mathbf{1 (d)}$	D	(1)

Question number	Answer	Additional guidance	Mark
2(a)	An answer that combines the following points of understanding to provide a logical description: (hydrogen produced as a gas so) there would be \{effervescence/fizzing/ bubbles (1) and (calcium hydroxide produced as a/ solid so) the water would \{go cloudy/a white precipitate would form\} (1)	Allow: calcium moves (around) (1) calcium decreases in size/disappears/dissolves (1)	

Question number	Answer	Mark
2(b)	$\mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2}$	
	• LHS (1)	(2)

Question number	Answer	Additional guidance	Mark
2(c)	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark): in calcium the outermost electron(s) fare further away from nucleus /experience(s) greater shielding\} (from the nucleus) (as shown by the electronic configuration) (1) therefore less attraction between nucleus and electron(s)/ the electron(s) is/are easier to remove (1)	Allow answers in terms of why reactivity of magnesium is less than that of calcium	

Question number	Answer	Additional guidance	Mark
2(d)	- divides mass by relative atomic mass (1) - calculates simplest ratio (1) - expresses ratio correctly as empirical formula (1)	Example of calculation Ca $:$ Br $\frac{0.2}{40}$ $:$ $\frac{0.8}{80}$ 0.005 $:$ 0.01 1 $:$ 2 empirical formula CaBr_{2} Formula alone scores max 1	(3)

Question number	Answer	Mark
3(a)	C	(1)

Question number	Answer	Mark
3(b)(i)	(oil well) C	$\mathbf{(1)}$

Question number	Answer	Mark
3(b)(ii)	(oil well) A	(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{3 (c) (i)}$	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (2 marks): (when the decane is heated it vaporises/turns to a gas (1) decane vapour/gas breaks down as it comes in contact with hot porous pot (1) large molecules of decane produce smaller molecules, including ethene (1)	Do not allow this point if ethane passes over hot porous pot	

Question number	Answer	Mark
3(c)(ii)	B	$\mathbf{(1)}$

Question number	Answer	Mark
$\mathbf{3 (c) (\text { iii) }}$	$2 \mathrm{C}_{10} \mathrm{H}_{22}+\mathbf{3 1 \mathrm { O } _ { 2 } \rightarrow \mathbf { 2 0 C O } + \mathbf { 2 2 H } \mathrm { H } _ { 2 } \mathrm { O }}$	
	\bullet LHS (1)	
	\bullet RHS both numbers correct (1)	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{4 (a)}$	$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ $\bullet \quad \mathrm{LHS}(1)$ $\bullet \mathrm{RHS}(1)$	Allow products in any order	

Question number	Answer	Mark
4(b)(i)	(line B) less steep/(line B) flattens later (1)	(1)

Question number	Answer	Mark
4(b)(ii)	\bullet Slope $=60 \div 72(1)$	
$=0.83(3)\left(\mathrm{cm}^{3} \mathrm{~s}^{-1}\right)(1)$	(2)	

Question number	Answer	Mark
4(c)	An explanation that makes reference to: identification - knowledge (1 mark) and reasoning/justification - knowledge (1 mark): fewer particles/as the reactants are used up there will be fewer particles to react/lower concentration of particles (1) this will result in a lower frequency of collisions so fewer particles reacting in a given time (1)	(2)

Question number	Answer	Mark
4(d)	C	(1)

Question number	Answer	Mark
4(e)	An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (2 marks): (the decrease in temperature will cause a decrease in rate of reaction (1) and the increase in pressure will cause an increase in rate of reaction (1) because the changes have opposite effects on the rate it is not possible which has the greater effect (1)	(3)

Question number	Answer	Mark
5(a)	Candidates relate information given to order of elements in the periodic table to predict: dark grey/black and solid/crystals	(1)

Question number	Indicative content	Mark
*5(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 (6 marks) - order of reactivity: chlorine $>$ bromine $>$ iodine The order of reactivity supported by suitable experiments from: - add (aqueous) chlorine to a solution of potassium bromide - the solution turns orange/yellow - bromine is produced / $\mathrm{Cl}_{2}+2 \mathrm{KBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KCl} / \mathrm{Cl}_{2}+2 \mathrm{Br}^{-}$ $\rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$ - (so) chlorine is more reactive than/displaces bromine /oxidises bromide ions - add (aqueous) bromine to a solution of potassium iodide - the solution turns brown - iodine is produced $/ \mathrm{Br}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KBr} / \mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+$ $2 \mathrm{Br}^{-}$ - (so) bromine is more reactive than/displaces iodine/ oxidises iodide ions - add (aqueous) chlorine to a solution of potassium iodide - the solution turns brown - iodine is produced $/ \mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KCl} / \mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+$ $2 \mathrm{Cl}^{-}$ - (so) chlorine is more reactive than/displaces iodine/oxidises iodide ions Allow use of suggested reactions which do not produce a displacement reaction, e.g. add (aqueous) bromine to a solution of a potassium chloride with suitable conclusion/explanation	(6)

Level	Mark	Descriptor
	0	Level 1
Level 2	$3-4$	No rewardable material. -Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas, enquiry, techniques and procedures lacks detail. (AO1) Presents an explanation with some structure and coherence. (AO1) Level 3 -Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1) Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1) -Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas, enquiry, (AO1) techniques and procedures is detailed and fully developed. (AO1) Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Question number	Answer	Additional guidance	Mark
5(c)(i)	- calculates mol of $\mathrm{Fe}(1)$ - calculates mol of Br_{2} (1) - determines simplest ratio/LHS of equation (1) - deduces formula of iron bromide produced/RHS of equation (1) OR - divides mass by relative atomic mass (1) - simplest ratio (1) - empirical formula (1) - deduces LHS to obtain balanced equation (1)	Example of calculation$\begin{aligned} & \mathrm{mol} \mathrm{Fe}=\frac{5.6}{56}=0.1 \\ & \mathrm{~mol} \mathrm{Br}_{2}=\frac{24}{(2 \times 80)}= \\ & 0.15 \\ & \text { ratio } \mathrm{Fe}: \mathrm{Br}_{2}=2: 3 / \\ & 2 \mathrm{Fe}+3 \mathrm{Br}_{2} \end{aligned}$$2 \mathrm{FeBr}_{3} / \mathrm{Fe}_{2} \mathrm{Br}_{6}$Fe Br $\frac{5.6}{56}$ $:$ $\underline{24}$ 0.1 $:$ 0.3 1 $:$ 3 FeBr_{3} $2 \mathrm{Fe}+3 \mathrm{Br}_{2} \rightarrow 2 \mathrm{FeBr}_{3}$	(4)

Question number	Answer	Mark
5(c)(ii)	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark): - bromine atoms are reduced (1) - because electrons are gained to form bromide ions (1)	(2)

Question number	Answer	Mark
$6(a)$	B	(1)

Question number	Answer	Marks
$\mathbf{6 (b)}$	An answer that combines the following points to provide a plan: • measure known volume of sodium hydroxide solution (1) - add same volume of each of the acids (1) - stir the mixture (1) - record the initial and final temperatures/temperature change (1)	

Question number	Answer	Mark
6(c)	 - Product line, labelled (2) $\mathrm{HCl} /$ product(s), to right of and lower than reactant line, labelled $\mathrm{H}_{2}+\mathrm{Cl}_{2}$ /reactants (1) - Curve drawn on diagram (1) - Activation energy labelled (1)	(3)

Question number	Answer	Additional guidance	Mark
6(d)	Calculates energy needed to break bonds (1) Calculates energy released in forming bonds (1)	Example of calculation Calculates energy change (1)	Bonds broken $=436+243=679$ $\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
	-Evaluation of final answer with negative sign (1)	Bonds formed $=2 \times 432=$ $864\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	
		Energy change $=679-864=$ $-185\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Award full marks for correct numerical answer without working	(4)

