\qquad
CHAPTER 2 Chemical Reactions
$\mathbf{2}$ Chemical Formulas and Equations

BEFORE YOU READ

After you read this section, you should be able to answer these questions:

- What are chemical formulas?
- What are chemical equations?
- How do you balance a chemical equation?

What Is a Chemical Formula?

We use letters to form words. We put words together to form sentences. In the same way, scientists use symbols to form chemical formulas that describe different substances. They put chemical formulas together to show how chemical reactions happen.

Remember that substances are formed from different elements. Each element has its own chemical symbol. You can find the symbol for an element in the periodic table. Scientists combine the symbols for different elements when they write chemical formulas. A chemical formula shows which elements are found in a substance. It also shows how many atoms of each element are found in a molecule of the substance.

In order to learn how chemical formulas work, let's look at an example. The chemical formula for water is $\mathrm{H}_{2} \mathrm{O}$. This formula means that a molecule of water is made of two hydrogen (H) atoms and one oxygen (O) atom.

The small 2 in the formula is a subscript. A subscript is a number that tells you how many atoms of an element are in a molecule. Subscripts are always written below and to the right of the symbol for an element. No subscript with an element's chemical symbol means the substance has only one atom of the element.

Water A molecule of water contains 2 hydrogen (H) atoms and 1 oxygen

Oxygen A molecule of oxygen is made of 2 oxygen (0) atoms.

(O) atom.

Glucose A molecule of glucose cotains 6 carbon (C) atoms, 12 hydrogen (H) atoms and 6 oxygen (O) atoms.

National Science Education Standards PS 1b

STUDY TIP

Ask Questions As you read this section, make a list of questions that you have. Talk about your questions with a small group. When you figure out the answers to your questions, write them in your notebook.

READING CHECK

1. Identify What are two things that are shown by a chemical formula?

Math Focus

2. Calculate How many oxygen atoms are in three molecules of water?
\qquad
SECTION 2 Chemical Formulas and Equations continued

Critical Thinking

3. Apply Concepts Write the formula for the covalent compound whose name is phosphorus trichloride.

Math Focus

4. Identify What is the charge on the Fe ion in the ionic compound FeCl_{3} ? Hint: find the charge of a chloride ion.

FORMULAS FOR COVALENT COMPOUNDS

In many cases, the name of a covalent compound tells you how to write its chemical formula. This is because the names of many covalent compounds use prefixes. Prefixes represent numbers. For example, the prefix dimeans "two." The prefixes tell you how many atoms of an element are found in a substance. The table below shows the meanings of different prefixes.

Prefix	Number
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5

Prefix	Number
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

The absence of a prefix indicates one carbon atom. The prefix di- indicates two oxygen atoms.

Dinitrogen monoxide

The prefix di- indicates two nitrogen atoms.

The prefix mono- indicates one oxygen atom.

FORMULAS FOR IONIC COMPOUNDS

If the name of a compound contains the name of a metal and a nonmetal, the compound is ionic. To write the name of an ionic compound, make sure the compound's charge is 0 . Therefore, the formula must have subscripts that cause the charges of the ions to cancel. The figure below shows some examples of how to name ionic compounds.

Sodium chloride
NaCl

A sodium ion has a $1+$ charge.
A chloride ion has a 1-charge.
One sodium ion and one chloride ion have an overall charge of $(1+)+(1-)=0$.

A magnesium ion has a $2+$ charge.
A chloride ion has
a 1- charge.
One magnesium ion and two chloride ions have an overall charge of $(2+)+2(1-)=0$.
\qquad

SECTION 2 Chemical Formulas and Equations continued

How Are Chemical Formulas Used to Write Chemical Equations?

Scientists use chemical equations to describe reactions. A chemical equation uses chemical symbols and formulas as a short way to show what happens in a chemical reaction. A chemical equation shows that atoms are only rearranged in a chemical reaction. No atoms are gained or lost in a chemical reaction. | |
| :--- |

The starting materials in a chemical reaction are the reactants. The substances that form during the reaction are the products. In a chemical equation, the reactants and products are written using chemical formulas. Scientists use a plus sign to separate the formulas of two or more reactants or products. An arrow points from the formulas of the reactants to the formulas of the products.

READING CHECK

5. Define What is a chemical equation?

TAKE A LOOK

6. Identify List the reactants and the products of the reaction in the figure. Use chemical symbols and chemical formulas in your answer. reactants: \qquad products: \qquad
\qquad
SECTION 2 Chemical Formulas and Equations continued

READING CHECK

7. Explain Why is it important to check to make sure that your chemical formulas are correct?

STANDARDS CHECK
PS 1b Substances react chemi- cally in characteristic ways with other substances to form new substances (compounds) with different characteristic prop- erties. In chemical reactions, the total mass is conserved. Substances often are placed in categories or groups if they react in similar ways; metas is an example of such a group. Word Help: chemical of or having to do wvith the properties or actions of substances 8. Explain How does a balanced chemical equation show the law of conservation of mass?

CHECKING SYMBOLS

When you write a chemical formula, it is important that you check to make sure that it is correct. If you use the wrong formula or symbol in an equation, the equation will not describe the correct reaction. Even a small mistake can make a big difference. \square

As an example, consider the three formulas Co, CO, and CO_{2}. These formulas look very similar. However, the substances they represent are very different. Co is the symbol for the element cobalt, a hard, bluish-grey metal. CO is the formula for carbon monoxide, a colorless, poisonous gas. CO_{2} is the formula for carbon dioxide, a colorless gas that living things give off when they breathe.

Examples of Similar Symbols and Formulas

CO_{2}
The chemical formula for the compound carbon dioxide is CO_{2}. Carbon dioxide is a colorless, odorless gas that you exhale.

CO
The chemical formula for the compound carbon monoxide is CO. Carbon monoxide is a colorless, odorless, and poisonous gas.

The chemical symbol for the element cobalt is Co. Cobalt is a hard, bluish gray metal.

CONSERVING MASS

The law of conservation of mass states that mass cannot be lost or gained during a chemical reaction. The total mass of the reactants in a chemical reaction is the same as the total mass of the products. You can use this law to help you figure out how to write a chemical equation.

During a chemical reaction, atoms are not lost or gained. Every atom in the reactants becomes part of the products. Therefore, in a chemical equation, the numbers and kinds of atoms in the reactants and products must be equal. In other words, the chemical equation must be balanced.
\qquad
SECTION 2 Chemical Formulas and Equations continued

HOW TO BALANCE A CHEMICAL EQUATION

To balance an equation, you must use coefficients. A coefficient is a number that is placed in front of a chemical formula. For example, 2CO represents two carbon monoxide molecules. The number 2 is the coefficient. \square

For an equation to be balanced, all atoms must be counted. So you must multiply the subscript for each element in a formula by the formula's coefficient. For example, $2 \mathrm{H}_{2} \mathrm{O}$ contains a total of four hydrogen atoms and two oxygen atoms. Only coefficients, not subscripts, may be changed when balancing equations. The figure below shows you how to use coefficients to balance an equation. $\boxed{\square}$

Follow these steps to write a balanced equation for $\mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}$.

(1) Count the atoms of

 each element in the reactants and the products. Here, you can see that there are more oxygen atoms in the reactants than in the products. Therefore, the chemical equation is not balanced.(2) Add coefficients to balance the atoms of oxygen. There are two atoms of oxygen in the reactants. Place the coefficient 2 in front of the products to give two atoms of oxygen in the products. Then, count the atoms again. Now, the hydrogen atoms are not balanced.
(3) Add coefficients to balance the atoms of hydrogen. Add the coefficient 2 to the H_{2} reactant to give four atoms of hydrogen in the reactants. Then, count the atoms again to double-check your work.

READING CHECK
9. Describe What is a coefficient?
\qquad
\qquad
\qquad

READING CHECK

10. Identify What can't be changed when balancing a chemical equation?

Math Focus
11. Applying Concepts Balance the equation: $— \mathrm{Na}+\ldots \mathrm{Cl}_{2} \longrightarrow$ — NaCl by putting coefficients where needed.
\qquad
\qquad

SECTION VOCABULARY

chemical equation a representation of a chemical reaction that uses symbols to show the relationship between the reactants and the products
chemical formula a combination of chemical symbols and numbers to represent a substance
law of conservation of mass the law that states the mass cannot be created or destroyed in ordinary chemical and physical changes
product a substance that forms in a chemical reaction
reactant a substance or molecule that participates in a chemical reaction

1. Compare How is a chemical equation different from a chemical formula?
2. Identify Fill in the blank spaces in the table.

Chemical equation	Number of atoms in the reactants	Number of atoms in the products	Is the equation balanced?
$\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$	$\mathrm{Na}=$ $\mathrm{Cl}=$	$\mathrm{Na}=$ $\mathrm{Cl}=$	
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}=$ $\mathrm{Cl}=$ $\mathrm{Na}=$ $\mathrm{O}=$	$\mathrm{H}=$ $\mathrm{Cl}=$ $\mathrm{Na}=$ $\mathrm{O}=$	
$2 \mathrm{Sb}+3 \mathrm{I}_{2} \rightarrow 2 \mathrm{Sbl}_{3}$	$\mathrm{Sb}=$	$\mathrm{Sb}=$	
$\mathrm{I}=$	$\mathrm{I}=$		

3. Describe Give the names of the covalent compounds listed below.
SiO_{2}
SbF_{3}
4. Explain Why can't you change the subscripts in a formula in order to balance a chemical equation?
\qquad
\qquad
5. Applying Concepts Balance the equation:
$\ldots \ldots \mathrm{Mg}+\ldots \mathrm{N}_{2} \rightarrow \ldots \mathrm{Mg}_{3} \mathrm{~N}_{2}$ by putting coefficients where needed.
6. The properties of oxygen change; water does not have the same properties as oxygen.
7. Metals can conduct electricity, can be stretched into wires, and can be hammered into thin sheets.

Chapter 2 Chemical Reactions

SECTION 1 FORMING NEW SUBSTANCES

1. One or more substances break apart or combine to form one or more new substances.
2. A solid forms in a solution.
3. No, some physical changes, like boiling, may produce a gas.
4. The chemical properties of the new substances are different from those of the original substances.
5. Some bonds are broken and new bonds form.
6. The bonds in the hydrogen and chlorine molecules are broken. The bonds in the hydrogen chloride molecule form.

Review

1. New substances are formed during a chemical reaction. Formation of a precipitate is one sign that a new substance has been formed.
2.

Observed during a chemical reaction	Sign of a chemical reaction
precipitate in a solution	solid formation
heat given off	energy change
green gas	gas formation
colorless solution turned blue	color change

3. chemical bond
4. When water boils, a new substance is not formed. The water vapor that forms during boiling can condense into liquid water.
5. The chemical properties of the material in the beaker are different from those of the original substances. This shows that a chemical reaction must have occurred.

SECTION 2 CHEMICAL FORMULAS AND EQUATIONS

1. the elements found in a substance and how many atoms of each element are in a molecule
2. three
3. PCl_{3}
4. $3+$
5. a short way to show what happens in a chemical reaction using symbols and formulas
6. Reactants: $\mathrm{C}, \mathrm{O}_{2}$ Products: CO_{2}
7. If you use the wrong chemical formula, a chemical equation will not describe the reaction you are trying to describe.
8. A chemical equation shows that no atoms are lost or gained during a chemical reaction.
9. a number that is placed in front of a chemical formula
10. subscripts
11. $2 \mathrm{Na}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NaCl}$

Review

1. A chemical formula represents a substance. A chemical equation represents a chemical reaction.

2. SiO_{2} : silicon dioxide
SbF_{3} : antimony trifluoride
3. Changing the subscripts changes the substance in the chemical reaction. Therefore, if you change subscripts, you change the chemical reaction that you are describing.
4. $3 \mathrm{Mg}+\mathrm{N}_{2} \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$
