2 Sequences

2.7 Limits of Sequences \& 2.8 A Discussion about Proofs

Sequences of numbers are the fundamental tool of our approach to analysis.
Definition 2.1. A sequence is a function s with domain $\{n \in \mathbb{Z}: n \geq m\}$ for some integer m. Alternatively, a sequence is an ordered set:

$$
\left(s_{n}\right)_{n=m}^{\infty}=\left(s_{m}, s_{m+1}, s_{m+2}, \ldots\right)
$$

- This is strictly the definition of an infinite sequence. We won't consider finite sequences.
- Most commonly $m=0$ or 1 so that the initial term of the sequence is s_{0} or s_{1}.
- If the domain is understood or not relevant, we might simply refer to the sequence $\left(s_{n}\right)$.
- The codomain of a sequence can be any set. In elementary analysis, typically every s_{n} is a real number: in such a case we will say that " $\left(s_{n}\right)$ is a sequence of real numbers." Towards the end of the course, se shall consider sequences of functions (e.g. examples $2 \& 3$ below).

Examples

1. For each $n \in \mathbb{N}$, let $s_{n}=\left(1+\frac{1}{n}\right)^{n}$. Then

$$
s_{1}=2, \quad s_{2}=\frac{9}{4}, \quad s_{3}=\frac{64}{27}, \quad \ldots
$$

2. For each $n \in \mathbb{N}_{0}$, let s_{n} be the function $s_{n}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
s_{n}(x)=n x^{n}(1-x)
$$

3. For each $n \in \mathbb{N}$, define the function $s_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
s_{0} \equiv 1, \quad s_{n+1}=1+\int_{0}^{x} s_{n}(t) \mathrm{d} t
$$

so that

$$
s_{1}(x)=1+x, \quad s_{2}(x)=1+x+\frac{1}{2} x^{2}, \quad s_{3}(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}, \quad \ldots
$$

Limits

We want to describe what it means for the terms of a sequence to approach arbitrarily close to some value. In a calculus class you should have become used to writing expressions such as

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}+3 n-1}{3 n^{2}-2}=\frac{2}{3} \quad \text { and } \quad \lim _{n \rightarrow \infty} \sqrt{n^{2}+4}-n=\lim _{n \rightarrow \infty} \frac{4}{\sqrt{n^{2}+4}+n}=0
$$

Our first order of business is to make this logically watertight.

Definition 2.2. Let $\left(s_{n}\right)$ be a sequence of real numbers and let $s \in \mathbb{R}$.
We say that $\left(s_{n}\right)$ converges to s, if

$$
\forall \epsilon>0, \exists N \text { such that } n>N \Longrightarrow\left|s_{n}-s\right|<\epsilon
$$

We call s the limit of $\left(s_{n}\right)$ and write $\lim s_{n}=s$ or simply $s_{n} \rightarrow s$ (read s_{n} approaches $\left.s\right)$.
We say that $\left(s_{n}\right)$ converges if it has a limit, and that it diverges otherwise.

- A limit must be finite! We shall discuss sequences which diverge to infinity later.
- It is your choice whether to insist that N be an integer or to allow it to be a (general) real number; the definitions are equivalent ${ }_{-1}^{1}$ Unless stated otherwise, we'll assume $N \in \mathbb{R}$. You should certainly state $N \in \mathbb{N}$ if something in your answer requires it!
- It is common but unnecessary to see $n \rightarrow \infty$ written: e.g. $\lim _{n \rightarrow \infty} s_{n}=s$ or $s_{n} \xrightarrow[n \rightarrow \infty]{ }$ s. Feel free to do so if you feel it useful.
Below is a clickable version ${ }^{2}$ of the limit definition for the sequence with $n^{\text {th }}$ term

$$
s_{n}=1+\frac{3}{2} e^{-n / 20} \cos \frac{n}{4}
$$

You should believe without proof that $s=\lim s_{n}=1$. Try viewing the definition as a game:
Given $\epsilon>0$, we choose N so that all terms s_{n} coming after N are closer to s than ϵ.
A proof amounts to a strategy that shows you will always win the game! We'll not give an explicit proof here (try it later once you've seen more examples...). Instead use the animation to help you understand that, as ϵ gets smaller, we're forced to choose N larger in order to satisfy the definition.

[^0]
A Fully Worked Example

We prove that the sequence defined by $s_{n}=2-\frac{1}{\sqrt{n}}$ converges to $s=2$.
The definition requires us to show that a 'for all' statement is true. Our proof should therefore have the following structure:

- Start by supposing that $\epsilon>0$ has been given to us.
- Describe how to choose a number N (dependent on ϵ).
- Check (usually a direct proof with simple algebra) that if $n>N$ then $\left|s_{n}-s\right|<\epsilon$.

Scratch work. It is usually difficult to choose a suitable N, so it is a good idea to start with what you want to be true and let it inspire you.

- We want $n>N \Longrightarrow\left|\left(2-\frac{1}{\sqrt{n}}\right)-2\right|<\epsilon$.
- This requires $\left|\frac{1}{\sqrt{n}}\right|<\epsilon$, which is equivalent to $n>\frac{1}{\epsilon^{2}}$.
- Choosing $N=\frac{1}{\epsilon^{2}}$ should be enough to complete the proof!

Warning! We do not yet have a proof! If your argument finishes " $\ldots \Longrightarrow N=\frac{1}{\epsilon^{2}}$ " then your conclusion is incorrect. Rearrange your scratch work to make it clear that you've satisfied the definition!

Proof. Let $\epsilon>0$ be given. Let $N=\frac{1}{\epsilon^{2}}$. Then

$$
\begin{aligned}
n>N & \Longrightarrow n>\frac{1}{\epsilon^{2}} \Longrightarrow \frac{1}{\sqrt{n}}<\epsilon \\
& \Longrightarrow\left|s_{n}-s\right|=\left|2-\frac{1}{\sqrt{n}}-2\right|<\epsilon
\end{aligned}
$$

Thus $s_{n} \rightarrow 2$ as required.
With practice, you might be able to produce a correct argument immediately for such a simple example. However, in most cases even experts expect to first need some scratch work.

Uniqueness of Limit As suggested by the definite article (...call s the limit...) in Definition 2.2...
Theorem 2.3. If $\left(s_{n}\right)$ converges, then its limit is unique.
Proof. Suppose s and t are two limits. Take $\epsilon=\frac{|s-t|}{2}$ in the definition of limit. Then $\exists N_{1}, N_{2}$ such that

$$
n>N_{1} \Longrightarrow\left|s_{n}-s\right|<\frac{|s-t|}{2} \text { and } n>N_{2} \Longrightarrow\left|s_{n}-t\right|<\frac{|s-t|}{2}
$$

Let $n>\max \left\{N_{1}, N_{2}\right\}$. Then,

$$
\begin{aligned}
|s-t|=\left|s-s_{n}+s_{n}-t\right| & \leq\left|s_{n}-s\right|+\left|s_{n}-t\right| \\
& <\frac{|s-t|}{2}+\frac{|s-t|}{2} \\
& =|s-t|
\end{aligned}
$$

Contradiction.
The idea of the proof is very simple: there exists a tail of the sequence (all terms s_{n} coming after some N) all of whose terms are close to both limits: this is complete nonsense!

For all $n>N, s_{n}$ must lie both here and here!

Further Examples We give several more examples of using the limit definition. In all cases, only the formal argument needs to be presented. The challenge is figuring out what to write, so we present varying amounts of scratch work first.

1. Generalizing our previous example, we show that, for any $k \in \mathbb{R}^{+}$the sequence defined by

$$
s_{n}=\frac{1}{n^{k}} \quad \text { has } \quad s_{n} \rightarrow 0
$$

Again a little scratch work, but faster this time. Given $\epsilon>0$, we want to choose N such that

$$
n>N \Longrightarrow \frac{1}{n^{k}}<\epsilon
$$

This amounts to having $n>\frac{1}{\epsilon^{1 / k}}$. We can now write a formal argument:
Proof. Let $\epsilon>0$ be given. Let $N=\frac{1}{\epsilon^{1 / k}}$. Then

$$
\begin{aligned}
n>N & \Longrightarrow n>\frac{1}{\epsilon^{1 / k}} \Longrightarrow \frac{1}{n}<\epsilon^{1 / k} \\
& \Longrightarrow\left|\frac{1}{n^{k}}-0\right|<\epsilon
\end{aligned}
$$

We conclude that $\frac{1}{n^{k}} \rightarrow 0$.
2. We prove that $s_{n}=\frac{2 n+1}{3 n-7}$ converges to $\frac{2}{3}$.

First some scratch work: we must conclude $\left|\frac{2 n+1}{3 n-7}-\frac{2}{3}\right|<\epsilon$, or equivalently $\left|\frac{17}{3(3 n-7)}\right|<\epsilon$.
For large n everything is positive, so it is sufficient for us to have

$$
3 n-7>\frac{17}{\epsilon} \Longleftrightarrow n>\frac{7}{3}+\frac{17}{9 \epsilon}
$$

We now have enough for a proof:
Proof 1. Let $\epsilon>0$ be given and let $N=\frac{7}{3}+\frac{17}{9 \epsilon}$. Then

$$
\begin{aligned}
n>N & \Longrightarrow n>\frac{7}{3}+\frac{17}{9 \epsilon} \Longrightarrow 0<\frac{17}{3(3 n-7)}<\epsilon \\
& \Longrightarrow\left|\frac{2 n+1}{3 n-7}-\frac{2}{3}\right|=\left|\frac{3(2 n+1)-2(3 n-7)}{3(3 n-7)}\right|=\frac{17}{3(3 n-7)}<\epsilon
\end{aligned}
$$

where the absolute values are dropped since $n>\frac{7}{3}$. We conclude that $\frac{2 n+1}{3 n-7} \rightarrow \frac{2}{3}$.
Here is an alternative proof where we use a simpler expression for N.
Proof 2. Let $\epsilon>0$ be given and let $N=\max \left\{7, \frac{3}{\epsilon}\right\}$. Then

$$
\begin{array}{rlr}
n>N \Longrightarrow\left|\frac{2 n+1}{3 n-7}-\frac{2}{3}\right| & =\left|\frac{17}{3(3 n-7)}\right|<\left|\frac{17}{6 n}\right| \quad & \quad \text { (since } n>7 \Longrightarrow 3 n-7>2 n \text {) } \\
& <\frac{3}{n}<\frac{3}{N} \leq \epsilon & \quad\left(\text { since } N \geq \frac{3}{\epsilon}\right. \text {) }
\end{array}
$$

Hence result.
The plot illustrates the two choices of N as functions of ϵ. Note that the second is always larger than the first! This is fine: if a particular choice of $N=N_{1}(\epsilon)$ works in a proof, so will any other $N_{2}(\epsilon)$ which is larger than N_{1} ! Use this to your advantage to produce simpler arguments.

3. We prove that $s_{n}=\frac{4 n^{4}-5 n+1}{3 n^{4}+2 n^{2}+3}$ converges to $\frac{4}{3}$.

We want to conclude that

$$
\left|\frac{4 n^{4}-5 n+1}{3 n^{4}+2 n^{2}+3}-\frac{4}{3}\right|=\left|\frac{-8 n^{2}-15 n-9}{3\left(3 n^{4}+2 n^{2}+3\right)}\right|<\epsilon
$$

Attempting to solve for n (as in the first method in Example 2) is crazy! Instead, as in the second approach, we simplify by observing that if n is sufficiently large, then

$$
\left|\frac{-8 n^{2}-15 n-9}{3\left(3 n^{4}+2 n^{2}+3\right)}\right|<\left|\frac{9 n^{2}}{9 n^{4}}\right|=\frac{1}{n^{2}}
$$

Indeed it is enough to have

$$
9 n^{2} \geq 8 n^{2}+15 n+9
$$

which, by solving the quadratic, holds when $n \geq \frac{15+\sqrt{261}}{2}$. Round this up to 16 and we have enough for the proof.

Proof 1. Let $\epsilon>0$ be given and let $N=\max \left\{16, \frac{1}{\sqrt{\epsilon}}\right\}$. Then

$$
\begin{align*}
n>N \Longrightarrow\left|s_{n}-\frac{4}{3}\right| & =\left|\frac{-8 n^{2}-15 n-9}{3\left(3 n^{4}+2 n^{2}+3\right)}\right|<\left|\frac{9 n^{2}}{9 n^{4}}\right| \\
& =\frac{1}{n^{2}}<\frac{1}{N^{2}} \leq \epsilon
\end{align*}
$$

If this were a formal answer, it would be wise to give a little scratch work to justify why $n>16$ is sufficient for the inequality.

Here is an alternative: this time we include a little of the scratch work in the answer, as you might do for a homework submission.

Proof 2. Suppose that $n \geq 24$, then

$$
n \geq 15+\frac{9}{n} \Longrightarrow n^{2} \geq 15 n+9 \Longrightarrow 9 n^{2} \geq 8 n^{2}+15 n+9
$$

Let $\epsilon>0$ be given, and let $N=\max \left\{24, \frac{1}{\sqrt{\epsilon}}\right\}$. Then

$$
\begin{aligned}
n>N \Longrightarrow\left|s_{n}-\frac{4}{3}\right| & =\left|\frac{4 n^{4}-5 n+1}{3 n^{4}+2 n^{2}+3}-\frac{4}{3}\right|=\left|\frac{-8 n^{2}-15 n-9}{3\left(3 n^{4}+2 n^{2}+3\right)}\right|<\left|\frac{9 n^{2}}{9 n^{4}}\right| \\
& =\frac{1}{n^{2}}<\frac{1}{N^{2}} \leq \epsilon
\end{aligned} \quad \quad \begin{aligned}
& \text { (since } \left.N \geq \frac{1}{\sqrt{\epsilon}}\right)
\end{aligned}
$$

Therefore $s_{n} \rightarrow \frac{4}{3}$, as required.

Divergent sequences

Definition 2.4. Negating Definition 2.2 says that a sequence $\left(s_{n}\right)$ does not converge to s if,

$$
\exists \epsilon>0 \text { such that } \forall N, \exists n>N \text { with }\left|s_{n}-s\right| \geq \epsilon
$$

Furthermore, we say that $\left(s_{n}\right)$ is divergent if it does not converge to any limit $s \in \mathbb{R}$. Otherwise said,

$$
\forall s \in \mathbb{R}, \exists \epsilon>0 \text { such that } \forall N, \exists n>N \text { with }\left|s_{n}-s\right| \geq \epsilon
$$

It can be helpful when proving divergence to assume $N \in \mathbb{N}$ so that you can quickly define n in terms of N. At the bottom of the page we'll explain what happens if you don't...

Examples

1. We prove that the sequence with $s_{n}=\frac{7}{n}$ does not converge to $s=1$. We need to show that

$$
\begin{equation*}
\exists \epsilon>0 \text { such that } \forall N, \exists n>N \text { with }\left|\frac{7}{n}-1\right| \geq \epsilon \tag{*}
\end{equation*}
$$

This is easy to visualize: we know that $s_{n} \rightarrow 0$, so the sequence must eventually be nearly a distance 1 from $s=1$. Any value of ϵ smaller that 1 should satisfy $(*)$. We prove twice: once using the Definition directly, and once by contradiction.

Direct Proof. Let $\epsilon=\frac{1}{2}$. We need to force $\left|\frac{7}{n}-1\right| \geq \frac{1}{2}$. Since we are only concerned with large values of n, the term in the absolute value is negative,

$$
\left|\frac{7}{n}-1\right| \geq \frac{1}{2} \Longleftrightarrow 1-\frac{7}{n} \geq \frac{1}{2} \Longleftrightarrow \frac{7}{n} \leq \frac{1}{2} \Longleftrightarrow n \geq 14
$$

Given $N \in \mathbb{N}$, let $n=\max \{14, N+1\}$ to see that $\left|\frac{7}{n}-1\right| \geq \epsilon$. We conclude that $s_{n} \nrightarrow 1$.
If we had only assumed that N were real, then the definition of n fails to be an integer. This can be fixed in a couple of ways:

- Define $n=\max \{14,\lceil N\rceil+1\}$ using the ceiling function.
- Appeal to the Archimidean property to show that $\exists n \in \mathbb{N}$ such that $n>\max \{13, N\}$.

Restricting to $N \in \mathbb{N}$ makes the argument easier to follow: just remember to state it to help the reader!

Contradiction Proof. Suppose $s_{n} \rightarrow 1$. Then

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \text { such that } n>N \Longrightarrow\left|\frac{7}{n}-1\right|<\epsilon
$$

In particular, this should hold for $\epsilon=\frac{1}{2}$. But then, for all large n, we would require

$$
\left|\frac{7}{n}-1\right|<\frac{1}{2} \Longleftrightarrow \frac{1}{2}<\frac{7}{n}<\frac{3}{2} \Longleftrightarrow n<14 \text { and } n>\frac{14}{3}
$$

Simply let $n=\max \{14, N+1\}$ for a contradiction.
2. The sequence defined by $s_{n}=(-1)^{n}$ is divergent. We prove by contradiction and, for variety, this time we invoke Archimedes.

Proof. Suppose that $s_{n} \rightarrow s$ and let $\epsilon=1$ in the definition of limit. Then $\exists N \in \mathbb{R}$ such that

$$
n>N \Longrightarrow\left|(-1)^{n}-s\right|<1
$$

However, there exist (Archimedes ${ }^{3}$) both even $n_{e}>N$ and odd $n_{0}>N$. There are two cases:

- If $s \geq 0$ then $\left|(-1)^{n_{o}}-s\right|=|-1-s|=s+1 \geq \epsilon$.
- If $s<0$ then $\left|(-1)^{n_{e}}-s\right|=|1-s|=1-s \geq \epsilon$.

Either way we have a contradiction and we conclude that $\left(s_{n}\right)$ is divergent.

The picture shows what happens when $s \geq 0$.

We chose $\epsilon=1$ because it is easy to work with, and because at least some of the elements of any tail of the sequence are $s_{n}=-1$, which are at least a distance of 1 from s.

[^1]3. The sequence define by $s_{n}=\ln n$ diverges.

Before embarking on a proof, first visualize the sequence: you should recall from calculus that logarithms increase unboundedly. It therefore seems reasonable that, for any purported limit s, letting $\epsilon=1$ will cause trouble, for eventually $\ln n \geq s+1$. Again we present two proofs, the first verifies Definition 2.4 directly, the second is by contradiction.

Proof 1. Suppose $s \in \mathbb{R}$ is given. Let $\epsilon=1$ and suppose that $N \in \mathbb{N}$ is given. We define $n=\max \left\{N+1, e^{s+1}\right\}$. Then $n>N$ and

$$
\ln n \geq \ln \left(e^{s+1}\right)=s+1
$$

In particular,

$$
\left|s_{n}-s\right|=|\ln n-s| \geq \epsilon
$$

whence $\left(s_{n}\right)$ is divergent.
Proof 2. Suppose that $\left(s_{n}\right)$ converges to $s \in \mathbb{R}$. Let $\epsilon=1$: we may therefore assume $N \in \mathbb{N}$ exists satisfying the limit definition (Definition 2.2. Now define $n=\max \left\{N+1, e^{s+1}\right\}$. But then

$$
n>N \quad \text { and } \quad \ln n>s+1 \Longrightarrow|\ln n-s|>1=\epsilon
$$

Contradiction. We conclude that $\left(s_{n}\right)$ diverges.
From now on we'll typically prefer contradiction arguments: these have the advantage of only having to remember one definition!

A Little Abstraction

Working explicitly with the limit definition is tedious. In the next section we'll develop the limit laws so we can combine limits of sequences without providing new ϵ-proofs. Of course, all the limit laws must first be proved based on the definition! To build up to this, here are three general results.
Lemma 2.5. Suppose that $s_{n} \rightarrow s$. Then $s_{n}^{2} \rightarrow s^{2}$.
The challenge here is that we want to bound $\left|s_{n}^{2}-s^{2}\right|=\left|s_{n}-s\right|\left|s_{n}+s\right|$, which means we need some control over $\left|s_{n}+s\right|$. There are several ways to do this: for instance by the triangle-inequality,

$$
\left|s_{n}+s\right|=\left|s_{n}-s+2 s\right| \leq\left|s_{n}-s\right|+2|s|
$$

We can now begin a proof.
Proof. Let $\epsilon>0$ be given and let $\delta=\min \left\{1, \frac{\epsilon}{1+2|s|}\right\}$. Since $s_{n} \rightarrow s, \exists N$ such that

$$
n>N \Longrightarrow\left|s_{n}-s\right|<\delta
$$

But then

$$
\begin{array}{rlr}
n>N \Longrightarrow\left|s_{n}^{2}-s^{2}\right| & =\left|s_{n}-s\right|\left|s_{n}+s\right| \leq\left|s_{n}-s\right|\left(\left|s_{n}-s\right|+2|s|\right) & \quad \text { (since }\left|s_{n}-s\right|<\delta \leq 1 \text {-inequality) } \\
& <\delta(1+2|s|)
\end{array}
$$

$$
\leq \epsilon
$$

Theorem 2.6. Suppose that $s_{n} \rightarrow s$ where $\left(s_{n}\right)$ is bounded below by m. Then $s \geq m$.
Proof. Suppose that $s<m$ and let $\epsilon=\frac{m-s}{2}>0$. Then $\exists N$ such that

$$
\begin{array}{rlrl}
n>N & \Longrightarrow\left|s_{n}-s\right|<\frac{m-s}{2} \Longrightarrow s_{n}-s<\frac{m-s}{2} & (|x|<y \Longleftrightarrow-y<x<y \ldots) \\
& \Longrightarrow s_{n}-m<\frac{s-m}{2}<0 & & \text { (add } s-m \text { to both sides) }
\end{array}
$$

Contradiction.

The picture should make clear the contradicton in the proof. There are several simple variations on the Theorem.

Strict Lower Bounds The same proof (and conclusion!) is valid when $\left(s_{n}\right)$ has a strict lower bound.
For example the sequence with $s_{n}=\frac{1}{n}$ satisfies

$$
\forall n \in \mathbb{N}, s_{n}>0, \quad \text { and } \lim s_{n}=0
$$

precisely in accordance with the Theorem. In particular, we cannot conclude that $\lim s_{n}>0$.
Upper Bounds The corresponding result for sequences bounded above should be clear:

$$
\text { If } s_{n} \rightarrow s \text { and } \forall n, s_{n} \leq M \text { then } s \leq M
$$

Sequence Tails We need only assume that $s_{n} \geq m$ for all but finitely many s_{n}. In such a situation there must exist a final $s_{k}<m$, and the proof can easily be modified:

$$
n>\max \{N, k\} \Longrightarrow\left|s_{n}-s\right|<\frac{m-s}{2} \Longrightarrow \cdots \text { etc. }
$$

For example, the sequence $\left(s_{n}\right)$ with $n^{\text {th }}$ term

$$
s_{n}=\frac{10}{n^{2}}-\frac{1}{n}=\frac{10-n}{n^{2}}
$$

is bounded above by $M=0$ whenever $n \geq 10$. Theorem 2.6 confirms our belief that $\lim s_{n} \leq 0$ (clearly $\lim s_{n}=0$ in this case!).
The caveats for all large n and for some tail of the sequence are equivalent, and often used. Many theorems can be modified this way; in the interests of brevity, it is common to avoid explicitly stating such, and even more common to ignore the caveat in the proof. Here is another famous example...

Theorem 2.7 (Squeeze Theorem). Suppose that three sequences satisfy $a_{n} \leq s_{n} \leq b_{n}$ (for all large n) and that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ both converge to s. Then $s_{n} \rightarrow s$.
Proof. Since $a_{n} \leq s_{n} \leq b_{n}$, it is immediate that

$$
a_{n}-s \leq s_{n}-s \leq b_{n}-s \Longrightarrow\left|s_{n}-s\right| \leq \max \left\{\left|a_{n}-s\right|,\left|b_{n}-s\right|\right\}
$$

We now bound the RHS by ϵ : let $\epsilon>0$ be given, then there exists N_{a}, N_{b} such that

$$
n>N_{a} \Longrightarrow\left|a_{n}-s\right|<\epsilon \quad \text { and } \quad n>N_{b} \Longrightarrow\left|b_{n}-s\right|<\epsilon
$$

Let $N=\max \left\{N_{a}, N_{b}\right\}$. Then

$$
n>N \Longrightarrow\left|s_{n}-s\right| \leq \max \left\{\left|a_{n}-s\right|,\left|b_{n}-s\right|\right\}<\epsilon
$$

2.9 Limit Theorems for Sequences

Our immediate goal is to be able to calculate limits naturally, without using $\epsilon-N$ proofs: these results are often known as the limit laws. We start with a result that allows us to compute the limit of any rational sequence.

Theorem 2.8. Suppose $\left(s_{n}\right)$ and $\left(t_{n}\right)$ converge, to s and t respectively, and that $k \in \mathbb{R}$ is constant. Then
(a) $\lim k s_{n}=k s$
(b) $\lim \left(s_{n}+t_{n}\right)=s+t$
(c) $\lim \left(s_{n} t_{n}\right)=s t \quad$ (this extends Lemma 2.5. by induction we now have $s_{n}^{k} \rightarrow s^{k}$ for any $k \in \mathbb{N}$)
(d) If $t \neq 0$ then $\lim \frac{s_{n}}{t_{n}}=\frac{s}{t}$

Before proving this, here is an example of its power.

$$
\begin{align*}
\lim \frac{3 n^{2}+2 n-1}{5 n^{2}-2} & =\lim \frac{3+\frac{2}{n}-\frac{1}{n^{2}}}{5-\frac{2}{n^{2}}}=\frac{\lim \left(3+\frac{2}{n}-\frac{1}{n^{2}}\right)}{\lim \left(5-\frac{2}{n^{2}}\right)} \tag{d}\\
& =\frac{\lim 3+\lim \frac{2}{n}-\lim \frac{1}{n^{2}}}{\lim 5-\lim \frac{2}{n^{2}}} \tag{b}\\
& =\frac{3+0-0}{5-0}=\frac{3}{5}
\end{align*}
$$

(part (a) and example 1, page 4
This involves some (generally accepted) sleight of hand; one shouldn't really write lim s_{n} until one knows it exists!
Proving Theorem 2.8 requires a little work. We start by recalling the notion of boundedness.
Lemma 2.9. $\left(s_{n}\right)$ convergent $\Longrightarrow\left(s_{n}\right)$ bounded ($\exists M$ such that $\forall n,\left|s_{n}\right| \leq M$).
Proof. Suppose $s_{n} \rightarrow s$ and let $\epsilon=1$ in the definition of limit. Then $\exists N$ such that

$$
n>N \Longrightarrow\left|s_{n}-s\right|<1 \Longrightarrow s-1<s_{n}<s+1 \Longrightarrow\left|s_{n}\right|<\max \{|s-1|,|s+1|\}
$$

The RHS bounds the tail of the sequence where $n>N$. We may therefore define the bound

$$
M=\max \left\{|s-1|,|s+1|,\left|s_{n}\right|: n \leq N\right\}
$$

Note that the converse to this is false! For instance, $s_{n}=(-1)^{n}$ is bounded but not convergent!

Proof of Theorem 2.8 . These arguments will likely be difficult to follow at first read. A crucial observation, used in all four parts, is that we can replace ϵ in the limit definition with any positive number: for instance $\frac{\epsilon}{|k|}$ in part (a). Compare with how we introduced δ in the proof of Lemma 2.5 at the cost of more symbols, all these arguments could be rephrased similarly.
(a) If $k=0$, the result is trivial. Otherwise $]_{4}^{4}$ let $\epsilon>0$ be given. Since $\frac{\epsilon}{|k|}>0, \exists N$ such that

$$
n>N \Longrightarrow\left|s_{n}-s\right|<\frac{\epsilon}{|k|} \Longrightarrow\left|k s_{n}-k s\right|=|k|\left|s_{n}-s\right|<\epsilon
$$

(b) Let $\epsilon>0$ be given. Then $\exists N$ such that

$$
n>N \Longrightarrow\left|s_{n}-s\right|,\left|t_{n}-t\right|<\frac{\epsilon}{2}
$$

Apply the \triangle-inequality to see that

$$
n>N \Longrightarrow\left|s_{n}+t_{n}-(s+t)\right| \leq\left|s_{n}-s\right|+\left|t_{n}-t\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

(c) Let $\epsilon>0$ be given. Since $s_{n} \rightarrow s$ and $t_{n} \rightarrow t$, there exists N such that

$$
n>N \Longrightarrow\left|s_{n}-s\right|<\frac{\epsilon}{2|t|} \quad \text { and } \quad\left|t_{n}-t\right|<\frac{\epsilon}{2 M}
$$

where M is a (positive) bound for $\left(s_{n}\right)$ (Lemma 2.9). But now

$$
\begin{aligned}
\left|s_{n} t_{n}-s t\right| & =\left|s_{n} t_{n}-s_{n} t+s_{n} t-s t\right| \leq\left|s_{n}\right|\left|t_{n}-t\right|+|t|\left|s_{n}-s\right| \\
& \leq M\left|t_{n}-t\right|+|t|\left|s_{n}-s\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

In the exceptional case of $t=0$, instead choose N such that $n>N \Longrightarrow\left|t_{n}\right|<\frac{\epsilon}{M}$.
(d) Since $t_{n} \rightarrow t \neq 0$, we se ${ }^{5}$ that $\exists N_{1}$ such that

$$
n>N_{1} \Longrightarrow\left|t_{n}-t\right|<\frac{|t|}{2} \Longrightarrow\left|t_{n}\right|>\frac{|t|}{2}
$$

Now let $\epsilon>0$ be given, whence $\exists N_{2}$ such that

$$
n>N_{2} \Longrightarrow\left|t_{n}-t\right|<\frac{|t|^{2} \epsilon}{2}
$$

Let $N=\max \left\{N_{1}, N_{2}\right\}$ to see that

$$
n>N \Longrightarrow\left|\frac{1}{t_{n}}-\frac{1}{t}\right|=\frac{\left|t-t_{n}\right|}{|t|\left|t_{n}\right|}<\frac{2\left|t-t_{n}\right|}{|t|^{2}}<\epsilon
$$

whence $\frac{1}{t_{n}} \rightarrow \frac{1}{t}$. An appeal to part (c) completes the proof.

[^2]The next result tells us how to take limits of powers.
Theorem 2.10. 1. If $k>0$ then $\frac{1}{n^{k}} \rightarrow 0$
2. If $|a|<1$ then $a^{n} \rightarrow 0$
3. If $a>0$ then $a^{1 / n} \rightarrow 1$
4. $n^{1 / n} \rightarrow 1$

We give only a sketch proof: you should try to formalize these arguments as much as you can.
Sketch Proof. 1. This is covered as an example on page4. given $\epsilon>0$, let $N=\epsilon^{-1 / k} \ldots$
2. The $a=0$ case is trivial. Otherwise: given $\epsilon>0$, let $N=\log _{|a|} \epsilon \ldots$
3. WLOG ${ }^{6}$ suppose $a>1$. We want to show that $s_{n}:=a^{1 / n}-1 \rightarrow 0$. Since $s_{n}>0$, the Binomial Theorem shows that

$$
a=\left(1+s_{n}\right)^{n} \geq 1+n s_{n} \Longrightarrow s_{n} \leq \frac{a-1}{n}
$$

The squeeze theorem (or explicitly choosing $N=\frac{a-1}{\epsilon}$) completes the argument.
4. We must show that $s_{n}=n^{1 / n}-1 \rightarrow 0$. Again apply the Binomial Theorem: since $s_{n}>0$,

$$
n=\left(s_{n}+1\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} s_{n}^{k} \geq 1+n s_{n}+\frac{1}{2} n(n-1) s_{n}^{2}>\frac{1}{2} n(n-1) s_{n}^{2} \Longrightarrow s_{n}<\sqrt{\frac{2}{n-1}}
$$

The squeeze theorem finishes things off (or choose $N=2 \epsilon^{-2}+1$ if you prefer).
We need one last result in order to compute all limits of sequences involving algebraic functions:
Corollary 2.11 (Limits of Roots). Suppose $s_{n} \rightarrow s$. If $k \in \mathbb{N}$ then $\sqrt[k]{s_{n}} \rightarrow \sqrt[k]{s}$ (k even only if $s_{n} \geq 0$).
We omit the proof: see if you can complete it yourself, using the following factorization/inequality (valid when $s_{n}, s>0$)

$$
\left|s_{n}^{1 / k}-s^{1 / k}\right|=\frac{\left|s_{n}-s\right|}{\left|s_{n}^{\frac{k-1}{k}}+s_{n}^{\frac{k-2}{k}} s^{\frac{1}{k}}+\cdots+s^{\frac{k-1}{k}}\right|}<\frac{\left|s_{n}-s\right|}{s^{\frac{k-1}{k}}}
$$

Examples

1. $\lim (3 n)^{2 / n}=\left(\lim 3^{1 / n}\right)^{2}\left(\lim n^{1 / n}\right)^{2}=1$.
2. $\lim \frac{n^{2 / n}+\left(3-n^{-1} \sin n\right)^{1 / 5}}{4 n^{-3 / 2}+7}=\frac{1+\sqrt[5]{3}}{7}$, where $\frac{\sin n}{n} \rightarrow 0$ follows from the squeeze theorem.
[^3]
Divergence laws

We now consider unbounded sequences.
Definition 2.12. We say that $\left(s_{n}\right)$ diverges to ∞ if,

$$
\forall M>0, \exists N \text { such that } n>N \Longrightarrow s_{n}>M
$$

We write $s_{n} \rightarrow \infty$ or $\lim s_{n}=\infty$. The definition for $s_{n} \rightarrow-\infty$ is similar.
If $\left(s_{n}\right)$ neither converges nor diverges to $\pm \infty$, we say that it diverges by oscillation. In such cases lim s_{n} is meaningless, though it is common to write $\lim s_{n}=$ DNE for 'does not exist.'

Examples

1. Prove that $n^{2}+4 n \rightarrow \infty$.

Let $M>0$ be given 7 and let $N=\sqrt{M}$. Then

$$
n>N \Longrightarrow n^{2}+4 n>n^{2}>N^{2}=M
$$

2. Prove that $s_{n}=n^{5}-n^{4}-2 n+1 \rightarrow \infty$.

This is trickier, and not just because of the fifth power. We cannot simply ignore the lower order terms and concentrate on the highest power, since the extra terms are not all summed. Instead, note that ${ }^{8}$

$$
s_{n}>\frac{1}{2} n^{5} \Longleftrightarrow n^{5}>2\left(n^{4}+2 n-1\right) \Longleftrightarrow n>2+\frac{4}{n^{3}}-\frac{1}{n^{4}}
$$

Certainly this holds if $n>6$: we can now provide a proof.
Let $M>0$ be given, and let $N=\max \{6, \sqrt[5]{2 M}\}$. Then

$$
n>N \Longrightarrow s_{n}>\frac{1}{2} n^{5}>\frac{1}{2}(2 M)=M
$$

3. Prove that the sequence defined by $s_{n}=n^{2}-n^{3}$ diverges to $-\infty$.

For some scratch work here, consider

$$
s_{n}=n^{2}(1-n)<-\frac{1}{2} n^{3} \Longleftrightarrow 1-n<-\frac{1}{2} n \Longleftrightarrow n \geq 2
$$

Now let $M>0$ be given ${ }^{9}$ and define $N=\max \{2, \sqrt[3]{2 M}\}$. Then

$$
n>N \Longrightarrow n>2 \Longrightarrow s_{n}<-\frac{1}{2} n^{3}<-\frac{1}{2} N^{3} \leq-M
$$

We conclude that $s_{n} \rightarrow-\infty$
${ }^{7}$ Try some scratch work first! We want $n^{2}+4 n>M$ for large n which is certainly true if $n>\sqrt{M} \ldots$
${ }^{8}$ Compare this trick with the second proof of example 3 on page 6
${ }^{9}$ The notion that $s_{n} \rightarrow-\infty$ can be phrased in multiple ways: some people prefer

$$
\forall m<0, \exists N \text { such that } n>N \Longrightarrow s_{n}<m
$$

It should be clear that our M is simply $-m$.

Several of the limit laws can be adapted to sequences which diverge to $\pm \infty$.
Theorem 2.13. Suppose $s_{n} \rightarrow \infty$. (Corresponding statements when $s_{n} \rightarrow-\infty$ should be clear.)
(a) If $t_{n} \geq s_{n}$ for all n, then $t_{n} \rightarrow \infty$
(b) If $t_{n} \rightarrow t$ (finite), then $s_{n}+t_{n} \rightarrow \infty$.
(c) If $t_{n} \rightarrow t>0$ then $s_{n} t_{n} \rightarrow \infty$.
(d) $\frac{1}{s_{n}} \rightarrow 0$
(e) If $t_{n}>0$ satisfies $t_{n} \rightarrow 0$, then $\frac{1}{t_{n}} \rightarrow \infty$

Proof. We prove two of the results: try the rest yourself.
(b) Since $\left(t_{n}\right)$ converges, it is bounded, whence $\exists A$ such that $\forall n, t_{n} \geq A$. Let M be given: since $s_{n} \rightarrow \infty, \exists N$ such that

$$
n>N \Longrightarrow s_{n}>M-A \Longrightarrow s_{n}+t_{n}<M-A+A=M
$$

(d) Let $\epsilon>0$ be given, and let $M=\frac{1}{\epsilon}$. Then $\exists N$ such that

$$
n>N \Longrightarrow s_{n}>M=\frac{1}{\epsilon} \Longrightarrow \frac{1}{s_{n}}<\epsilon
$$

Rational Functions We can now find the limit of any rational sequence: $\frac{p_{n}}{q_{n}}$ where $\left(p_{n}\right),\left(q_{n}\right)$ are polynomials in n. For example

$$
\frac{3 n^{3}+4}{2 n^{2}-1}=\frac{3 n+4 n^{-2}}{2-n^{-2}}=\left(3 n+4 n^{-2}\right) \cdot \frac{1}{2-n^{-2}} \rightarrow \infty
$$

by applying Theorem 2.13 (c) to

$$
s_{n}:=3 n+4 n^{-2} \rightarrow \infty \quad \text { and } \quad t_{n}=\frac{1}{2-n^{-2}} \rightarrow \frac{1}{2}
$$

Indeed, you should be able to confirm the familiar result from elementary calculus:
Corollary 2.14. If p_{n}, q_{n} are polynomials in n with leading coefficients p, q respectively then

$$
\lim \frac{p_{n}}{q_{n}}= \begin{cases}0 & \text { if } \operatorname{deg}\left(p_{n}\right)<\operatorname{deg}\left(q_{n}\right) \\ \frac{p}{q} & \text { if } \operatorname{deg}\left(p_{n}\right)=\operatorname{deg}\left(q_{n}\right) \\ \operatorname{sgn}\left(\frac{p}{q}\right) \infty & \text { if } \operatorname{deg}\left(p_{n}\right)>\operatorname{deg}\left(q_{n}\right)\end{cases}
$$

2.10 Monotone and Cauchy Sequences

The first goal of this section is to address a difficulty with the definition of convergence: How do we show that a sequence is convergent without first knowing its limit? Monotone and Cauchy sequences are two classes of sequences where one has convergence without having to know the limit. The existence of limits for both types of sequences depends crucially on the completeness axiom. As a byproduct, we obtain an alternative construction of the real numbers.

Definition 2.15. - $\left(s_{n}\right)$ is non-decreasing or monotone-up if $s_{n+1} \geq s_{n}$ for all n.

- $\left(s_{n}\right)$ is non-increasing or monotone-down if $s_{n+1} \leq s_{n}$ for all n.
- $\left(s_{n}\right)$ is monotone or monotonic if either of the above is true.

For example $s_{n}=\frac{7}{n}+4$ is monotone-down/non-increasing.
Theorem 2.16 (Monotone Convergence). Bounded monotone sequences are convergent. Specifically:
(a) If $\left(s_{n}\right)$ is bounded above and non-decreasing, then $\lim s_{n}=\sup \left\{s_{n}\right\}$.
(b) If $\left(s_{n}\right)$ is bounded below and non-increasing, then $\lim s_{n}=\inf \left\{s_{n}\right\}$.

Proof. Suppose $\left(s_{n}\right)$ is non-decreasing and bounded above. Let $s=\sup \left\{s_{n}\right\}$; this exists by the completeness axiom and is finite since $\left(s_{n}\right)$ is bounded.
Let $\epsilon>0$ be given. Since s is the supremum, there exists some element $s_{N}>s-\epsilon$. The nondecreasing property means that

$$
n>N \Longrightarrow s_{n} \geq s_{N}>s-\epsilon \Longrightarrow\left|s-s_{n}\right|<\epsilon
$$

The non-increasing case is similar.

Examples

1. Suppose $\left(s_{n}\right)$ is defined by $s_{n}=1$ and $s_{n+1}=\frac{1}{5}\left(s_{n}+8\right)$. Then:

- (Bounded above) $s_{n}<2 \Longrightarrow s_{n+1}<\frac{1}{5}[2+8]=2$. By induction, $\left(s_{n}\right)$ is bounded above by 2.
- (Monotone-up) $s_{n+1}-s_{n}=\frac{4}{5}\left[2-s_{n}\right]>0$ since $s_{n}<2$.

We conclude that $\left(s_{n}\right)$ converges. Indeed, if $s=\lim s_{n}$, then the limit laws show that s satisfies

$$
s=\lim s_{n+1}=\frac{1}{5}\left(\lim s_{n}+8\right)=\frac{1}{5}(s+8) \Longrightarrow s=2
$$

2. Define a sequence $\left(s_{n}\right)$ by $s_{0}=2$ and

$$
\begin{equation*}
s_{n+1}=\frac{1}{2}\left(s_{n}+\frac{2}{s_{n}}\right) \tag{*}
\end{equation*}
$$

The AM-GM inequality ${ }^{10}$ says that $s_{n+1} \geq \sqrt{2}$ for all n, whence the sequence is bounded below. Moreover,

$$
s_{n}-s_{n+1}=\frac{1}{2}\left(s_{n}-\frac{2}{s_{n}}\right)=\frac{s_{n}^{2}-2}{2 s_{n}} \geq 0
$$

since $s_{n} \geq \sqrt{2}$. We have a monotone-down sequence which is bounded below; it thus converges to some limit s. Indeed taking limits of $(*)$ yields

$$
s=\frac{1}{2}\left(s+\frac{2}{s}\right) \Longrightarrow s^{2}=2 \Longrightarrow s=\sqrt{2}
$$

This example shows why we need completeness in the proof: $\left(s_{n}\right)$ is a monotone, bounded sequence of rational numbers, but it doesn't converge in Q.
3. It can be shown that $s_{n}=\left(1+\frac{1}{n}\right)^{n}$ defines a monotone-up sequence which is bounded above (see the worksheet on the class website). This provides one of the many definitions of e :

$$
e:=\lim \left(1+\frac{1}{n}\right)^{n}
$$

Theorem 2.17. If $\left(s_{n}\right)$ is unbounded and non-decreasing then $s_{n} \rightarrow \infty$. Similarly, if (s_{n}) is unbounded and non-decreasing then $s_{n} \rightarrow-\infty$.
Proof. Since $\left(s_{n}\right)$ is unbounded, given $M, \exists s_{N}>M$. Since $\left(s_{n}\right)$ is non-decreasing we see that

$$
n>N \Longrightarrow s_{n} \geq s_{N}>M
$$

It now makes sense to write $\lim s_{n}=\sup \left\{s_{n}\right\}$ for any non-decreasing sequence even if this is ∞.

Limits Superior and Inferior

When analyzing a sequence, one is primarily interested in its long-term behavior: what can we say about the values s_{n} when n is very large? We currently have two tools at our disposal:

Limits Unfortulately, most sequences diverge by oscillation, so $\lim s_{n}$ is usually meaningless.
Suprema/Infima These are also unhelpful for discussing the long-term behaviour of most sequences.
For example, consider the sequences defined by

$$
s_{n}=\frac{1}{n} \quad \text { and } \quad t_{n}= \begin{cases}1000 & \text { if } n \leq 1,000,000 \\ \frac{1}{n} & \text { if } n>1,000,000\end{cases}
$$

when $n \geq 1$. These sequences clearly have the same long-term behavior $\left(\lim s_{n}=\lim t_{n}=\right.$ 0), but due to the fact that the first million terms are different, they have different suprema: $\sup \left\{t_{n}\right\}=1000>1=\sup \left\{s_{n}\right\}$.

Combining these concepts, however, turns out to pack a bigger punch...

[^4]Definition 2.18. Let $\left(s_{n}\right)$ be a sequence. We define its limit superior $\lim \sup s_{n}$ and limit inferior $\lim \inf s_{n}$ as follows:

1. $\left(s_{n}\right)$ is bounded above, define $v_{N}=\sup \left\{s_{n}: n>N\right\}$ and

$$
\limsup s_{n}=\lim _{N \rightarrow \infty} v_{N}
$$

2. $\left(s_{n}\right)$ is unbounded above, define $\lim \sup s_{n}=\infty$.
3. $\left(s_{n}\right)$ is bounded below, define $u_{N}=\inf \left\{s_{n}: n>N\right\}$ and

$$
\liminf s_{n}=\lim _{N \rightarrow \infty} u_{N}
$$

4. $\left(s_{n}\right)$ is unbounded below, define $\lim \inf s_{n}=-\infty$.

The picture below shows the sequences $\left(s_{n}\right),\left(u_{N}\right)$ and $\left(v_{N}\right)$ when

$$
s_{n}=6+5\left(\frac{4}{5}\right)^{n}+(-1)^{n}
$$

Computing $\limsup s_{n}=7$ and $\lim \inf s_{n}=5$ directly is a little messy, so we omit the calculation. What should be plausible from the picture is the the sequence $\left(s_{n}\right)$ consists of two subsequences, one decreasing towards 7 and the other increasing towards 5 : from this observation, the construction of the sequences $\left(u_{N}\right)$ and $\left(v_{N}\right)$ should be clear.

It should be clear from the definitions that, whenever they exist,
$\left(u_{N}\right)$ is monotone-up, $\left(v_{N}\right)$ monotone-down, and $u_{N} \leq v_{N}$.
These facts and the Monotone Convergence Theorem combine for a little housekeeping:
Lemma 2.19. 1. $\lim \sup s_{n}$ and $\lim \inf s_{n}$ exist for any sequence (they might be infinite).
2. $\liminf s_{n} \leq \liminf s_{n}$.

Examples

1. Let $s_{n}=(-1)^{n}$. Then

$$
\forall N \in \mathbb{N}, \quad u_{N}=\inf \left\{s_{n}: n>N\right\}=-1 \quad \text { and } \quad v_{N}=\sup \left\{s_{n}: n>N\right\}=1
$$

Therefore $\lim \sup s_{n}=1$ and $\liminf s_{n}=-1$.
2. Let $s_{n}=\frac{(-1)^{n}}{n}$. Then

$$
u_{N}=\inf \left\{s_{n}: n>N\right\}=\left\{\begin{array}{ll}
-\frac{1}{N+2} & \text { if } N \text { odd } \\
-\frac{1}{N+1} & \text { if } N \text { even }
\end{array} \quad \text { and } \quad v_{N}= \begin{cases}\frac{1}{N+1} & \text { if } N \text { odd } \\
\frac{1}{N+2} & \text { if } N \text { even }\end{cases}\right.
$$

Clearly $\liminf s_{n}=0=\limsup s_{n}$.
These examples should suggest a result:
Theorem 2.20. Let $\left(s_{n}\right)$ be a sequence. Then $\lim \inf s_{n}=\limsup s_{n}$ if and only if $\lim s_{n}=s$ for some $s \in[-\infty, \infty]$, in which case all three expressions equal s.

Before proving this, here are two pictures to help visualize the concepts $\sqrt{11}$

Convergence: $\liminf s_{n}=\lim s_{n}=\limsup s_{n}$

Divergence: $\liminf t_{n}<\limsup t_{n}$

In both pictures, the sequence $\left(u_{N}\right)$ is in green and $\left(v_{N}\right)$ in blue. It should be clear from the definition that for all N we have

$$
u_{N}=\inf \left\{s_{n}: n>N\right\} \leq s_{N+1} \leq v_{N}=\sup \left\{s_{n}: n>N\right\}
$$

so that the original sequence is almost trapped between $\left(u_{N}\right)$ and $\left(v_{N}\right)$. A minor redefinition could remove the word 'almost,' though the cost of fixing several inequalities in later proofs makes this counter-productive.

[^5]Proof of Theorem. We first prove the \Rightarrow direction: there are three cases.
(a) Suppose $\limsup s_{n}=\liminf s_{n}=s$ is finite. Since $u_{n-1} \leq s_{n} \leq v_{n-1}$ for all n, the squeeze theorem tells us that $s_{n} \rightarrow s$.
(b) Suppose $\lim \sup s_{n}=\liminf s_{n}=\infty$. Then $u_{n-1} \leq s_{n}$ for all n with $u_{n-1} \rightarrow \infty$. Theorem 2.13(a) shows that $s_{n} \rightarrow \infty$.
(c) $\limsup s_{n}=\lim \inf s_{n}=-\infty$ is similar.

Now for the \Leftarrow direction: again there are three cases.
(a) Suppose $\lim s_{n}=s$ is finite. Then $\lim s_{n}=s$ says that, for all $\epsilon>0, \exists M$ such that

$$
\begin{align*}
N>M & \Longrightarrow\left|s_{N}-s\right|<\epsilon \Longrightarrow s_{N}<s+\epsilon \\
& \Longrightarrow v_{N}=\sup \left\{s_{n}: n>N\right\} \leq s+\epsilon \tag{Theorem2.6}\\
& \Longrightarrow \lim \sup s_{n}=\lim _{N \rightarrow \infty} v_{N} \leq s+\epsilon
\end{align*}
$$

$$
\Longrightarrow v_{N}=\sup \left\{s_{n}: n>N\right\} \leq s+\epsilon \quad \text { (definition of supremum) }
$$

Since this holds for every $\epsilon>0$ we conclude ${ }^{12}$ that $\lim \sup s_{n} \leq s$.
Similarly liminf $s_{n} \geq s$. Combining with Lemma 2.19 we obtain

$$
s \leq \liminf s_{n} \leq \limsup s_{n} \leq s
$$

whence all terms are equal.
(b) Suppose $\lim s_{n}=\infty$. Then $\forall M>0, \exists N$ such that $n>N \Longrightarrow s_{n}>M$. But then

$$
u_{N}=\inf \left\{s_{n}: n>N\right\} \geq M
$$

whence $u_{N} \rightarrow \infty$ and so $\liminf s_{n}=\infty$. Clearly $\limsup s_{n}=\infty$ also.
(c) Again, $\lim s_{n}=-\infty$ is similar.

Cauchy Sequences

A sequence is Cauchy ${ }^{13}$ when terms in the tails of the sequence are constrained to stay close to one another. This will shortly provide an alternative way of describing convergence.
Definition 2.21. $\left(s_{n}\right)$ is a Cauchy sequence if

$$
\forall \epsilon>0, \exists N \text { such that } m, n>N \Longrightarrow\left|s_{n}-s_{m}\right|<\epsilon
$$

Examples

1. Let $s_{n}=\frac{1}{n}$. Let $\epsilon>0$ be given and let $N=\frac{1}{\epsilon}$. Then ${ }^{14}$

$$
m \geq n>N \Longrightarrow\left|s_{m}-s_{n}\right|=\frac{1}{n}-\frac{1}{m} \leq \frac{1}{n}<\frac{1}{N}=\epsilon
$$

Thus $\left(s_{n}\right)$ is Cauchy. A similar argument works for any $s_{n}=\frac{1}{n^{k}}$ for positive k.

[^6]2. Let $\left(s_{n}\right)_{n=0}^{\infty}$ be the sequence defined inductively as follows:
\[

s_{0}=1, \quad s_{n+1}=\left\{$$
\begin{array}{ll}
s_{n}+3^{-n} & \text { if } n \text { even } \\
s_{n}-4^{-n} & \text { if } n \text { odd }
\end{array}
$$ \quad that is\left(s_{n}\right)=\left(1,2, \frac{5}{3}, \frac{67}{36}, ···\right)\right.
\]

Then $\left|s_{n+1}-s_{n}\right| \leq 3^{-n}$, whence

$$
m>n \Longrightarrow\left|s_{m}-s_{n}\right| \leq \sum_{k=n}^{m-1} 3^{-k}=\frac{3^{-n}-3^{-m}}{1-\frac{1}{3}}<\frac{3}{2} \cdot 3^{-n}
$$

where we used the familiar formula for geometric series from calculus. Now let $\epsilon>0$ be given and let $N=-\log _{3} \frac{2}{3} \epsilon$, whence

$$
m>n>N \Longrightarrow\left|s_{m}-s_{n}\right| \leq \frac{3}{2} \cdot 3^{-n}<\frac{3}{2} \cdot 3^{-N}=\epsilon
$$

We conclude that $\left(s_{n}\right)$ is Cauchy.
Theorem 2.22 (Cauchy Completeness). A sequence of real numbers is convergent if and only if it is Cauchy.
Proof. $\quad(\Rightarrow)$ Suppose $s_{n} \rightarrow s$. Given $\epsilon>0$ we may choose N such that

$$
\begin{aligned}
m, n>N & \Longrightarrow\left|s_{n}-s\right|<\frac{\epsilon}{2} \quad \text { and } \quad\left|s_{m}-s\right|<\frac{\epsilon}{2} \\
& \Longrightarrow\left|s_{n}-s_{m}\right|=\left|s_{n}-s+s-s_{m}\right| \leq\left|s_{n}-s\right|+\left|s-s_{m}\right|<\epsilon
\end{aligned}
$$

whence $\left(s_{n}\right)$ is Cauchy.
(\Leftarrow) To discuss the convergence of $\left(s_{n}\right)$ we first need a potential limit! In view of Theorem 2.20 , the obvious candidates are $\lim \sup s_{n}$ and $\lim \inf s_{n}$. We have two goals: show that $\left(s_{n}\right)$ is bounded, whence the limits superior and inferior are finite, and then show that they are equal.
(Boundedness of $\left(s_{n}\right)$) Take $\epsilon=1$ in the definition of Cauchy to see that $\exists N \in \mathbb{N}$ such that

$$
m, n>N \Longrightarrow\left|s_{n}-s_{m}\right|<1
$$

It follows that

$$
n>N \Longrightarrow\left|s_{n}-s_{N+1}\right|<1 \Longrightarrow s_{n}<s_{N+1}+1
$$

Thus $\left(s_{n}\right)$ is bounded above. Similarly $\left(s_{n}\right)$ is bounded below.
$\left(\limsup s_{n}=\liminf s_{n}\right) \quad$ Given $\epsilon>0, \exists N$ such that

$$
m, n>N \Longrightarrow\left|s_{n}-s_{m}\right|<\epsilon \Longrightarrow s_{n}<s_{m}+\epsilon
$$

But then

$$
\begin{array}{rlrl}
m>N & \Longrightarrow v_{N} \leq s_{m}+\epsilon & & \text { (since } \left.v_{N}=\sup \left\{s_{n}: n>N\right\}\right) \\
& \Longrightarrow v_{N} \leq u_{N}+\epsilon & \left(\text { since } u_{N}=\inf \left\{s_{n}: n>N\right\}\right)
\end{array}
$$

Since $\left(v_{N}\right)$ is monotone-down and $\left(u_{N}\right)$ monotone-up, we see that
$\forall \epsilon>0, \limsup s_{n} \leq v_{N} \leq u_{N}+\epsilon \leq \liminf s_{n}+\epsilon$
whence $\limsup s_{n} \leq \lim \inf s_{n}$. By Lemma 2.19 we have equality.
By Theorem 2.20 we conclude that $\left(s_{n}\right)$ converges to $\lim \sup s_{n}=\lim \inf s_{n}$.
Now that we have the Theorem, the above examples are seen to converge. Clearly example 1 converges to zero! Example 2 can be shown to converge to $\frac{223}{120}=1.8583333 \ldots$ using geometric series.

The main point of the Cauchy Completeness Theorem is easy to miss. To show that $\left(s_{n}\right)$ is convergent using the original Definition (2.2) one must already know the limit! We are now in the position of (hopefully) being able to show that a sequence is Cauchy (and thus convergent) without first knowing its limit. There are many applications of this idea, here is a simple example.

Decimals and the Real Numbers

What should a decimal expression mean? It is clear what a terminating decimal means, since every such can be written as a rational number; for instance

$$
12.31452=\frac{1231452}{10000}
$$

What about a decimal that does not terminate? We can instead view the decimal as representing a sequence of rational numbers; for example
$3.14159 \cdots$ represents the sequence $\left(s_{n}\right)=\left(3, \frac{31}{10}, \frac{314}{100}, \frac{3141}{1000}, \ldots\right)$
Naturally, we'd like every such sequence to converge!
Generally, it is enough to consider decimals of the form

$$
\begin{equation*}
s=0 . d_{1} d_{2} d_{3} \cdots \tag{*}
\end{equation*}
$$

Consider the sequence $\left(s_{n}\right)$ where

$$
s_{n}=0 . d_{1} d_{2} \cdots d_{n}=\sum_{k=1}^{n} 10^{-k} d_{k}
$$

is the rational number comprising the first n decimal places of s. We prove that $\left(s_{n}\right)$ is Cauchy:
Let $\epsilon>0$ be given and choose $N=-\log _{10} \epsilon$. Then

$$
\begin{aligned}
m>n>N \Longrightarrow\left|s_{n}-s_{m}\right| & =\sum_{k=n+1}^{m} 10^{-k} d_{k} \quad\left(=0.0 \cdots 0 d_{n+1} \cdots d_{m} 000 \cdots\right) \\
& <10^{-n}<10^{-N}=\epsilon
\end{aligned}
$$

The sequence $\left(s_{n}\right)$ is Cauchy and thus converges to some real number s. This limit is precisely what it meant by the expression $(*)$. The upshot is that every decimal represents a single real number.

Aside: An alternative definition of \mathbb{R} We can moreover use this approach to give another definition of the real numbers which does not rely on Dedekind cuts.
Consider the set \mathcal{C} of all Cauchy sequences of rational numbers and define an equivalence relation on \mathcal{C} :

$$
\left(s_{n}\right) \sim\left(t_{n}\right) \Longleftrightarrow\left|s_{n}-t_{n}\right| \rightarrow 0
$$

We may then define $\mathbb{R}=\mathcal{C} / \sim_{\sim}$. Intuitively, $\left(s_{n}\right)$ and $\left(t_{n}\right)$ have the same limit, though this notion is not required in order to make the definition rigorous. Some work is still required to define $+, \cdot, \leq$, etc., and to check all the axioms of an ordered field.

2.11 Subsequences

Most often a sequence does not exhibit any general properties (convergence, etc.). However, if we delete some of the sequence we may obtain a subsequence with interesting behavior.

Definition 2.23. $\left(s_{n_{k}}\right)$ is a subsequence of $\left(s_{n}\right)$ if it is a subset $\left(s_{n_{k}}\right) \subseteq\left(s_{n}\right)$, and

$$
n_{1}<n_{2}<n_{3}<\cdots
$$

A subsequence is simply an infinite subset, ordered the same as the original sequence.
Example Take $s_{n}=(-1)^{n}$ and $s_{n_{k}}=1$ (where $n_{k}=2 k$). Note that $\left(s_{n}\right)$ is a non-convergent sequence with a convergent subsequence. Indeed our main goal for this section is to prove the famous Bolzano-Weierstrass Theorem, that all bounded sequences possess a convergent subsequence.

Lemma 2.24. Every subsequence of a convergent sequence converges to the same limit: $s_{n} \rightarrow s \Longrightarrow s_{n_{k}} \rightarrow s$.
Proof. Let $\epsilon>0$ be given. Then $\exists N$ such that

$$
n>N \Longrightarrow\left|s_{n}-s\right|<\epsilon
$$

Now $n_{k} \geq k$ for all k, whence

$$
k>N \Longrightarrow n_{k}>N \Longrightarrow\left|s_{n_{k}}-s\right|<\epsilon
$$

Theorem 2.25. Every sequence has a monotonic subsequence.

Proof. Let $\left(s_{n}\right)$ be a sequence. We call s_{n} 'dominant' if $m>n \Longrightarrow s_{m}<s_{n}$. There are two cases:

1. There are infinitely many dominant terms. The subsequence of dominant terms is decreasing. Moreover if s_{n} is dominant, then $v_{n-1}=\sup \left\{s_{k}: k>n-1\right\}=s_{n}$, whence the subsequence of dominant terms converges to $\lim \sup s_{n}$ (or diverges to $\lim \sup s_{n}=-\infty$ in the special case).
2. There are finitely many dominant terms. Choose $s_{n_{1}}$ to come after all dominant terms. Similarly, since $s_{n_{1}}$ is not dominant, $\exists n_{2}>n_{1}$ such that $s_{n_{2}} \geq s_{n_{1}}$. Repeat this process to obtain a nondecreasing subsequence.

Case 1: dominant subsequence monotone-down

Case 2: Finitely many dominant terms
Monotone-up subsequence

Theorem 2.26. Given a sequence $\left(s_{n}\right)$, there exist subsequences $\left(s_{n_{k}}\right)$ and $\left(s_{n_{l}}\right)$ such that
$\lim s_{n_{k}}=\limsup s_{n}$ and $\lim s_{n_{l}}=\liminf s_{n}$
Proof. We prove only the claim regarding $\lim \sup s_{n}$, since the other is similar. There are three cases to consider; visualizing the third is particularly difficult and may take several readings...

1. $\lim \sup s_{n}=\infty$: Define a subsequence $\left(s_{n_{k}}\right)$ inductively via

$$
n_{1}=\min \left\{n \in \mathbb{N}: s_{n_{1}}>1\right\} \quad n_{k}=\min \left\{n \in \mathbb{N}: n_{k}>n_{k-1}, s_{n_{k}}>k\right\}
$$

Since $\lim \sup s_{n}=\infty$, the sequence $\left(s_{n}\right)$ is unbounded above; for any $k>0$, there exist infinitely many terms s_{n} greater than k. At each step in the creation of $\left(s_{n_{k}}\right)$ we are taking the minimum of a non-empty set of natural numbers; $\left(s_{n_{k}}\right)$ is therefore well-defined. Clearly

$$
s_{n_{k}}>k \text { whence } s_{n_{k}} \rightarrow \infty=\limsup s_{n}
$$

2. $\limsup s_{n}=-\infty$: Since $\liminf s_{n} \leq \limsup s_{n}=-\infty$, we conclude (Theorem 2.20) that $\lim s_{n}=-\infty$. It follows that $\left(s_{n}\right)$ is itself a suitable subsequence.
3. $\lim \sup s_{n}=v$ is finite: Let $n_{1}=1$. For each $k \geq 2$, perform a dual construction:

- Since $\left(v_{N}\right)$ is monotone-down and converges to v,

$$
\exists N_{k} \geq n_{k-1} \text { such that } v \leq v_{N_{k}}<v+\frac{1}{2 k}
$$

- Since $v_{N_{k}}=\sup \left\{s_{n}: n>N_{k}\right\}$,

$$
\exists n_{k}>N_{k} \text { such that } v_{N_{k}}-s_{n_{k}}<\frac{1}{2 k}
$$

But then $\left|v-s_{n_{k}}\right|<\frac{1}{k}$, whence $s_{n_{k}}$ is a subsequence convergent to v.
Corollary 2.27. There exists a monotonic subsequence $s_{n_{k}} \rightarrow \lim \sup s_{n}$ (to $\lim \inf s_{n}$ similarly).
Proof. By Theorem 2.26, $\exists\left(s_{n_{l}}\right)$ such that $s_{n_{l}} \rightarrow \lim \sup s_{n}$. This subsequence has a monotonic subsequence by Theorem 2.25, which must converge to the same limit lim sup s_{n} by Lemma 2.24 .

Example: Monotonic sequences converging to $\lim \sup s_{n}=1$ and $\liminf s_{n}=0$

Theorem 2.28 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence.
We give three proofs! The first two are corollaries of the above discussion; the third is the classic proof and is independent of the discussion of limits superior/inferior.

Proof 1. Theorem 2.25 says there exists a monotone subsequence. This is bounded and thus converges by the monotone convergence theorem.

Proof 2. By Theorem 2.26, there exists a subsequence converging to the finite value lim sup s_{n}.
Proof 3. Suppose $\left(s_{n}\right)$ is bounded by M. One of the intervals $[-M, 0]$ or $[0, M]$ must contain infinitely many terms of the sequence (perhaps both!). Call this interval E_{0} and define

$$
n_{0}=\min \left\{n \in \mathbb{N}: s_{n_{0}} \in E_{0}\right\}
$$

Now repeat. Split E_{0} into left and right half-intervals. One of these intervals must contain infinitely many terms of the subsequence

$$
\left(s_{n} \in E_{0}: n>n_{0}\right)
$$

Call this half-interval E_{1} and choose $n_{2}=\min \left\{n \in \mathbb{N}: n_{1}>n_{0}, s_{n_{1}} \in E_{1}\right\}$. Repeat this process ad infinitum, we obtain a family of nested intervals

$$
E_{0} \supset E_{1} \supset E_{2} \supset \cdots \quad \text { of width } \quad\left|E_{k}\right|=\frac{M}{2^{k}}
$$

and a subsequence $\left(s_{n_{k}}\right)$ where each $s_{n_{k}} \in E_{k}$.
Now let $\epsilon>0$ be given and let $N \in \mathbb{N}$ satisfy $N>\log _{2} \frac{M}{\epsilon}$. Then

$$
k, l>N \Longrightarrow s_{n_{k}}, s_{n_{l}} \in E_{N} \Longrightarrow\left|s_{n_{k}}-s_{n_{l}}\right| \leq \frac{M}{2^{N}}<\epsilon
$$

The subsequence $\left(s_{n_{k}}\right)$ is Cauchy, and thus converges.
The advantage of the final proof is that it generalizes to higher dimensions: rather than intervals, a family of shrinking boxes is constructed...

Divergence by Oscillation Recall Definition 2.12. where we stated that a sequence $\left(s_{n}\right)$ diverges by oscillation if it neither converges nor diverges to $\pm \infty$. We can now give a more positive statement which gives light to the notion of oscillation.
Corollary 2.29. Let $\left(s_{n}\right)$ be a sequence. The following are equivalent:

- $\left(s_{n}\right)$ diverges by oscillation
- $\liminf s_{n} \neq \lim \sup s_{n}$
- $\left(s_{n}\right)$ has at least two subsequences which converges to different limits.

We omit a proof, though it requires nothing more than putting together some of the previous results. The word oscillation comes from the third interpretation: if $s_{1} \neq s_{2}$ are the limits of the two subsequences, then in any tail of the sequence $\left\{s_{n}: n>N\right\}$ there are infinitely many terms arbitrarily close to s_{1} and infinitely many (different!) terms arbitrarily close to s_{2}. In this sense the original sequence oscillates between the neighborhoods of s_{1} and s_{2}. Of course the sequence could have many other subsequential limits.

Subsequential Limits \& Closed Sets - non-examinable

Definition 2.30. We call $s \in \mathbb{R} \cup\{ \pm \infty\}$ a subsequential limit of a sequence (s_{n}), if there exists a subsequence $\left(s_{n_{k}}\right)$ such that $s_{n_{k}} \rightarrow s$.

Examples

1. The sequence defined by $s_{n}=\frac{1}{n}$ has only one subsequential limit, namely zero. Recall Lemma 2.24. $s_{n} \rightarrow 0$ implies that every subsequence also converges to 0 .
2. If $s_{n}=(-1)^{n}$, then the subsequential limits of $\left(s_{n}\right)$ are ± 1.
3. The sequence $s_{n}=n^{2}\left(1+(-1)^{n}\right)$ has subsequential limits 0 and ∞.
4. $\left(s_{n}\right)=(2,4,2,6,4,2,8,6,4,2,10, \ldots)$ has all positive even numbers as subsequential limits.

Denseness and the countability of Q The set of subsequential limits of a sequence can be surprisingly large, as we now show. You have seen in a previous class that the rational numbers are a countable set: otherwise said, $\exists f: \mathbb{N} \rightarrow \mathbb{Q}$ bijective. This means that there exists a sequence $\left(r_{n}\right)$ defined by $r_{n}=f(n)$ which lists every rational number: here is a concrete example

$$
\left(r_{n}\right)=(\frac{0}{1}, \underbrace{\frac{1}{1},-\frac{1}{1}}_{|p|+q=2}, \underbrace{\frac{1}{2}}_{|p|+q=3},-\frac{1}{2}, \frac{2}{1},-\frac{2}{1}, ~ \underbrace{\frac{1}{3}}_{|p|+q=4},-\frac{1}{3}, \frac{3}{1},-\frac{3}{1}, \underbrace{\frac{1}{4},-\frac{1}{4}, \frac{2}{3},-\frac{2}{3}, \frac{3}{2},-\frac{3}{2}, \frac{4}{1},-\frac{4}{1}}_{|p|+q=5}, \ldots)
$$

where $\mathbb{Q}=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{N}, \operatorname{gcd}(p, q)=1\right\}$ and terms are grouped by increasing $|p|+q$. The following consequence of this should seem truly bizarre...

Theorem 2.31. Let $a \in \mathbb{R}$. Then (r_{n}) has a subsequence which converges to a.
Proof. Define a subsequence $\left(r_{n_{k}}\right)$ of rational numbers inductively:
$n_{1}:=\min \left\{n \in \mathbb{N}:\left|r_{n}-a\right|<1\right\} \quad n_{k}:=\min \left\{n \in \mathbb{N}: n>n_{k-1}\right.$ and $\left.\left|r_{n}-a\right|<\frac{1}{k}\right\}$

- The interval ($a-1, a+1$) contains infinitely many rational numbers (Archimedes), thus $r_{n_{1}}$ is well-defined.
- For some fixed $k \geq 2$, suppose $r_{n_{1}}, \ldots, r_{n_{k-1}}$ have been defined, where

$$
n_{1}<n_{2}<\ldots<n_{k-1} \text { and } \forall j \leq k-1,\left|r_{n_{j}}-a\right|<\frac{1}{j}
$$

The interval ($a-\frac{1}{k}, a+\frac{1}{k}$) contains infinitely many rational numbers. Since $r_{1}, \ldots, r_{n_{k-1}}$ is a finite list, there is at least one (indeed infinitely many) rational $r_{n_{k}} \in\left(a-\frac{1}{k}, a+\frac{1}{k}\right)$ such that $n_{k}>n_{k-1}$. Thus $r_{n_{k}}$ is well-defined.

- By induction, the subsequence $\left(r_{n_{k}}\right)$ is well-defined. Clearly $\left|r_{n_{k}}-a\right|<\frac{1}{k} \Longrightarrow r_{n_{k}} \rightarrow a$.

We already know that every real number is the limit of some sequence of rational numbers. The Theorem goes further: every real number is the limit of some subsequence of a particular sequence!

Theorem 2.32. Let $\left(s_{n}\right)$ be a sequence in \mathbb{R} and let S be its set of subsequential limits. Then

1. S is non-empty (as a subset of $\mathbb{R} \cup\{ \pm \infty\}$).
2. $\sup S=\limsup s_{n}$ and $\inf S=\liminf s_{n}$.
3. $\lim s_{n}$ exists iff S has only one element: namely $\lim s_{n}$.

Proof. 1. By Theorem 2.26, $\lim \sup s_{n} \in S$.
2. By $1, \lim \sup s_{n} \leq \sup S$. For any subsequence $\left(s_{n_{k}}\right)$, we have $n_{k} \geq k$, whence

$$
\forall N,\left\{s_{n_{k}}: k>N\right\} \subseteq\left\{s_{n}: n>N\right\} \Longrightarrow \lim s_{n_{k}}=\lim \sup s_{n_{k}} \leq \lim \sup s_{n}
$$

This holds for every convergent subsequence, whence $\sup S \leq \lim \sup s_{n}$, and we have equality. The result for $\inf S$ is similar.
3. Applying Theorem 2.20, we see that $\lim s_{n}$ exists if and only if

$$
\begin{aligned}
\lim \sup s_{n}=\liminf s_{n} & \Longleftrightarrow \sup S=\inf S \\
& \Longleftrightarrow S \text { has only one element }
\end{aligned}
$$

Closed Sets You've used the notion of a closed interval for years. Here is the sequential definition of a closed set.

Definition 2.33. A subset $A \subseteq \mathbb{R}$ is closed if every convergent sequence in A has its limit in A.

Examples

1. The interval $[0,1]$ is closed. If $\left(s_{n}\right) \subseteq[0,1]$ is a convergent sequence $s_{n} \rightarrow s$, then

$$
0 \leq s_{n} \leq 1 \Longrightarrow s \in[0,1]
$$

More generally, every closed interval $[a, b]$ is closed, as are finite unions of closed intervals, e.g. $[1,5] \cup[7,11]$.
2. The interval $(0,1]$ is not closed. In particular, the sequence $s_{n}=\frac{1}{n}$ lies entirely in the interval but has limit lying outside.

Theorem 2.34. If $\left(s_{n}\right)$ is a sequence, then its set of (finite) subsequential limits is closed.
We omit the proof: it is not difficult, but involves unpleasantly many subscripts (subsequences of subsequences...). The theorem essentially says that one can make a set closed by throwing in all its sequential limits.

2.12 Lim sup's and Lim inf's

In this section we collect a couple of useful results, mostly for later use. Firstly we observe that the limit laws do not work as tightly for limits superior and inferior.

Theorem 2.35. 1. For any bounded sequences $\left(s_{n}\right),\left(t_{n}\right)$ we have

$$
\limsup \left(s_{n}+t_{n}\right) \leq \limsup s_{n}+\limsup t_{n}
$$

In general we do not expect equality.
2. If, in addition, $s_{n} \rightarrow s$ is convergent, then we have equality

$$
\limsup \left(s_{n}+t_{n}\right)=s+\limsup t_{n}
$$

Careful modifications can be made for unbounded sequences.
Proof. 1. For any N, observe that $\left\{s_{n}+t_{n}: n>N\right\}$ has upper bound

$$
\sup \left\{s_{n}: n>N\right\}+\sup \left\{t_{n}: n>N\right\}
$$

from which

$$
\sup \left\{s_{n}+t_{n}: n>N\right\} \leq \sup \left\{s_{n}: n>N\right\}+\sup \left\{t_{n}: n>N\right\}
$$

Now take limits as $N \rightarrow \infty$.
To see that equality is unlikely, consider the sequences $s_{n}=(-1)^{n}=-t_{n}$. Then

$$
\limsup \left(s_{n}+t_{n}\right)=0<2=\limsup s_{n}+\lim \sup t_{n}
$$

2. By Theorem $2.26 \exists t_{n_{k}} \rightarrow \lim \sup t_{n}$. Therefore

$$
s_{n_{k}}+t_{n_{k}} \rightarrow s+\limsup t_{n}
$$

By Theorem 2.32, $\lim \sup \left(s_{n}+t_{n}\right)$ is the supremum of the set of subsequential limits of $\left(s_{n}+t_{n}\right)$, whence

$$
s+\lim \sup t_{n} \leq \lim \sup \left(s_{n}+t_{n}\right)
$$

Combining with part 1 gives the result.
A similar result is available for products:
Corollary 2.36. 1. For any bounded non-negative sequences $\left(s_{n}\right),\left(t_{n}\right)$ we have

$$
\limsup \left(s_{n} t_{n}\right) \leq\left(\limsup s_{n}\right)\left(\limsup t_{n}\right)
$$

with no expectation of equality.
2. If, in addition, $s_{n} \rightarrow s>0$ is convergent, then

$$
\limsup \left(s_{n} t_{n}\right)=s \limsup t_{n}
$$

The next result will be critical when we study infinite series.
Theorem 2.37. Let $\left(s_{n}\right)$ be a non-zero sequence. Then

$$
\lim \inf \left|\frac{s_{n+1}}{s_{n}}\right| \leq \liminf \left|s_{n}\right|^{1 / n} \leq \lim \sup \left|s_{n}\right|^{1 / n} \leq \lim \sup \left|\frac{s_{n+1}}{s_{n}}\right|
$$

Proof. We prove only the first inequality. Suppose liminf $\left|\frac{s_{n+1}}{s_{n}}\right|>0$, for otherwise the inequality is trivial, and assume that $0<L<\lim \inf \left|\frac{s_{n+1}}{s_{n}}\right|$. Then

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \inf \left\{\left|\frac{s_{n+1}}{s_{n}}\right|: n>N\right\}>L & \Longrightarrow \exists N \text { such that } \inf \left\{\left|\frac{s_{n+1}}{s_{n}}\right|: n>N\right\}>L \\
& \Longrightarrow\left|\frac{s_{n+1}}{s_{n}}\right|>L, \quad \forall n>N
\end{aligned}
$$

If $n>N$, we then have

$$
\begin{equation*}
\left|s_{n}\right|>L^{n-N}\left|s_{N}\right| \Longrightarrow\left|s_{n}\right|^{1 / n}>L\left(L^{-N}\left|s_{N}\right|\right)^{1 / n} \rightarrow L \tag{c}
\end{equation*}
$$

Therefore $\liminf \left|s_{n}\right|^{1 / n} \geq L$ for all $L<\liminf \left|\frac{s_{n+1}}{s_{n}}\right|$, which establishes the first inequality.
Corollary 2.38. $\lim \left|\frac{s_{n+1}}{s_{n}}\right|=L \Longrightarrow \lim \left|s_{n}\right|^{1 / n}=L$

Examples

1. Here is a quick proof that $\lim n^{1 / n}=1$ (recall Theorem 2.10. (d)): let $s_{n}=n$, then

$$
\lim \left|\frac{s_{n+1}}{s_{n}}\right|=\lim \frac{n+1}{n}=1 \Longrightarrow \lim n^{1 / n}=\lim \left|s_{n}\right|^{1 / n}=1
$$

2. $\lim (n!)^{1 / n}=\infty$. Simply let $s_{n}=n$! and apply the corollary:

$$
\lim \left|\frac{s_{n+1}}{s_{n}}\right|=\lim (n+1)=\infty
$$

3. We compute $\lim \left(\frac{(2 n)!}{(n!)^{2}}\right)^{1 / n}=4$. Taking $s_{n}=\frac{(2 n)!}{(n!)^{2}}$, we obtain

$$
\lim \left|s_{n}\right|^{1 / n}=\lim \left|\frac{s_{n+1}}{s_{n}}\right|=\lim \frac{(2 n+2)!(n!)^{2}}{(2 n)!(n+1)!^{2}}=\frac{(2 n+2)(2 n+1)}{(n+1)^{2}}=4
$$

4. Note that the converse to the corollary is false! For example, consider

$$
\left(s_{n}\right)=\left(1,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \ldots\right), \text { where } s_{2 n-1}=s_{2 n}=2^{1-n}
$$

and check that this satisfies

$$
\lim \inf \left|\frac{s_{n+1}}{s_{n}}\right|=\frac{1}{2}<\lim \left|s_{n}\right|^{1 / n}=\frac{1}{\sqrt{2}}<\lim \sup \left|\frac{s_{n+1}}{s_{n}}\right|=1
$$

[^0]: ${ }^{1}$ This follows from the Archimidean principle: if $\exists N \in \mathbb{R}$ satisfying the definition, then $\exists \tilde{N} \in \mathbb{N}$ such that $\tilde{N} \geq N$. Certainly $n>\tilde{N} \Longrightarrow n>N \ldots$
 ${ }^{2}$ If you want to the picture to move, you'll need to open these notes in a full-function pdf reader such as Acrobat. A lightweight pdf viewer or a web-broswer will likely only show a single still frame.

[^1]: ${ }^{3} \exists n \in \mathbb{N}$ such that $n>N$. Clearly n is even or odd; $n+1$ provides the other.

[^2]: ${ }^{4}$ It is tempting to apply the squeeze theorem rather than working with ϵ : consider $0 \leq\left|k s_{n}-k s\right|=|k|\left|s_{n}-s\right|$

 Unfortunately, showing that $|k|\left|s_{n}-s\right| \rightarrow 0$ requires the very statement we're trying to prove! You really need an ϵ-proof.
 ${ }^{5}$ Take $\epsilon=\frac{|t|}{2}$ in the definition of limit.

[^3]: ${ }^{6}$ The $a=1$ case is trivial. If $a<1$, then $b=\frac{1}{a}>1$ has $a^{1 / n}=\frac{1}{b^{1 / n}} \rightarrow 1$ courtesy of Theorem 2.8 (d).

[^4]: ${ }^{10} \sqrt{x y} \leq \frac{x+y}{2}$ for all real x, y, with equality if and only if $x=y$. To prove this, start by expanding $(x-y)^{2} \geq 0 \ldots$

[^5]: ${ }^{11}$ In case you're interested, the explicit sequences are $s_{n}=2+3 e^{-\frac{n}{10}} \cos \frac{n}{2}$ with limit 2 , and $t_{n}=4+\sin \frac{n}{2}+4 e^{-\frac{n}{20}} \cos \frac{n}{2}$ which diverges by oscillation.

[^6]: ${ }^{12}$ In case this makes you nervous...Suppose $a \leq b+\epsilon$ for all $\epsilon>0$. If $a>b$, let $\epsilon=\frac{1}{2}(a-b)$ to get a contradiction...
 ${ }^{13}$ Augustin-Louis Cauchy (1789-1857) was a French mathematician, responsible (in part) for the ϵ-definition of limit.
 ${ }^{14}$ WLOG we may assume $m \geq n$. This assumption is very common!

