
2 Sequences

2.7 Limits of Sequences & 2.8 A Discussion about Proofs

Sequences of numbers are the fundamental tool of our approach to analysis.

Definition 2.1. A sequence is a function s with domain {n ∈ Z : n ≥ m} for some integer m.
Alternatively, a sequence is an ordered set:

(sn)
∞
n=m = (sm, sm+1, sm+2, . . .)

• This is strictly the definition of an infinite sequence. We won’t consider finite sequences.

• Most commonly m = 0 or 1 so that the initial term of the sequence is s0 or s1.

• If the domain is understood or not relevant, we might simply refer to the sequence (sn).

• The codomain of a sequence can be any set. In elementary analysis, typically every sn is a real
number: in such a case we will say that “(sn) is a sequence of real numbers.” Towards the end
of the course, se shall consider sequences of functions (e.g. examples 2 & 3 below).

Examples

1. For each n ∈N, let sn =
(
1 + 1

n

)n
. Then

s1 = 2, s2 =
9
4

, s3 =
64
27

, . . .

2. For each n ∈N0, let sn be the function sn : [0, 1]→ R defined by

sn(x) = nxn(1− x)

3. For each n ∈N, define the function sn : R→ R by

s0 ≡ 1, sn+1 = 1 +
∫ x

0
sn(t)dt

so that

s1(x) = 1 + x, s2(x) = 1 + x +
1
2

x2, s3(x) = 1 + x +
1
2

x2 +
1
6

x3, . . .

Limits

We want to describe what it means for the terms of a sequence to approach arbitrarily close to some
value. In a calculus class you should have become used to writing expressions such as

lim
n→∞

2n2 + 3n− 1
3n2 − 2

=
2
3

and lim
n→∞

√
n2 + 4− n = lim

n→∞

4√
n2 + 4 + n

= 0

Our first order of business is to make this logically watertight.



Definition 2.2. Let (sn) be a sequence of real numbers and let s ∈ R.

We say that (sn) converges to s, if

∀ε > 0, ∃N such that n > N =⇒ |sn − s| < ε

We call s the limit of (sn) and write lim sn = s or simply sn → s (read sn approaches s).

We say that (sn) converges if it has a limit, and that it diverges otherwise.

• A limit must be finite! We shall discuss sequences which diverge to infinity later.

• It is your choice whether to insist that N be an integer or to allow it to be a (general) real number;
the definitions are equivalent.1 Unless stated otherwise, we’ll assume N ∈ R. You should
certainly state N ∈N if something in your answer requires it!

• It is common but unnecessary to see n → ∞ written: e.g. lim
n→∞

sn = s or sn −−−→n→∞
s. Feel free to

do so if you feel it useful.

Below is a clickable version2 of the limit definition for the sequence with nth term

sn = 1 +
3
2

e−n/20 cos
n
4

You should believe without proof that s = lim sn = 1. Try viewing the definition as a game:

Given ε > 0, we choose N so that all terms sn coming after N are closer to s than ε.

A proof amounts to a strategy that shows you will always win the game! We’ll not give an explicit
proof here (try it later once you’ve seen more examples. . . ). Instead use the animation to help you
understand that, as ε gets smaller, we’re forced to choose N larger in order to satisfy the definition.

1This follows from the Archimidean principle: if ∃N ∈ R satisfying the definition, then ∃Ñ ∈ N such that Ñ ≥ N.
Certainly n > Ñ =⇒ n > N. . .

2If you want to the picture to move, you’ll need to open these notes in a full-function pdf reader such as Acrobat. A
lightweight pdf viewer or a web-broswer will likely only show a single still frame.
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A Fully Worked Example

We prove that the sequence defined by sn = 2− 1√
n converges to s = 2.

The definition requires us to show that a ‘for all’ statement is true. Our proof should therefore have
the following structure:

• Start by supposing that ε > 0 has been given to us.

• Describe how to choose a number N (dependent on ε).

• Check (usually a direct proof with simple algebra) that if n > N then |sn − s| < ε.

0

1

sn

0 20 40 60 80 100
n

s + ε

s − ε

N

s = 2

. . . guarantees that sn lives here

n being at least this large. . .

}

Scratch work. It is usually difficult to choose a suitable N, so it is a good idea to start with what you
want to be true and let it inspire you.

• We want n > N =⇒
∣∣∣
(

2− 1√
n

)
− 2
∣∣∣ < ε.

• This requires
∣∣∣ 1√

n

∣∣∣ < ε, which is equivalent to n > 1
ε2 .

• Choosing N = 1
ε2 should be enough to complete the proof!

Warning! We do not yet have a proof! If your argument finishes “. . . =⇒ N = 1
ε2 ” then your con-

clusion is incorrect. Rearrange your scratch work to make it clear that you’ve satisfied the definition!

Proof. Let ε > 0 be given. Let N = 1
ε2 . Then

n > N =⇒ n >
1
ε2 =⇒ 1√

n
< ε

=⇒ |sn − s| =
∣∣∣∣2−

1√
n
− 2
∣∣∣∣ < ε

Thus sn → 2 as required.

With practice, you might be able to produce a correct argument immediately for such a simple exam-
ple. However, in most cases even experts expect to first need some scratch work.
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Uniqueness of Limit As suggested by the definite article (. . . call s the limit. . . ) in Definition 2.2. . .

Theorem 2.3. If (sn) converges, then its limit is unique.

Proof. Suppose s and t are two limits. Take ε = |s−t|
2 in the definition of limit. Then ∃N1, N2 such that

n > N1 =⇒ |sn − s| < |s− t|
2

and n > N2 =⇒ |sn − t| < |s− t|
2

Let n > max{N1, N2}. Then,

|s− t| = |s− sn + sn − t| ≤ |sn − s|+ |sn − t| (4-inequality)

<
|s− t|

2
+
|s− t|

2
= |s− t|

Contradiction.

The idea of the proof is very simple: there exists a tail of the sequence (all terms sn coming after some
N) all of whose terms are close to both limits: this is complete nonsense!

st s + εt − ε
s+t

2

For all n > N, sn must lie both here and here!

Further Examples We give several more examples of using the limit definition. In all cases, only the
formal argument needs to be presented. The challenge is figuring out what to write, so we present
varying amounts of scratch work first.

1. Generalizing our previous example, we show that, for any k ∈ R+ the sequence defined by

sn =
1
nk has sn → 0

Again a little scratch work, but faster this time. Given ε > 0, we want to choose N such that

n > N =⇒ 1
nk < ε

This amounts to having n > 1
ε1/k . We can now write a formal argument:

Proof. Let ε > 0 be given. Let N = 1
ε1/k . Then

n > N =⇒ n >
1

ε1/k =⇒ 1
n
< ε1/k

=⇒
∣∣∣∣

1
nk − 0

∣∣∣∣ < ε

We conclude that
1
nk → 0.
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2. We prove that sn =
2n + 1
3n− 7

converges to
2
3

.

First some scratch work: we must conclude
∣∣∣∣
2n + 1
3n− 7

− 2
3

∣∣∣∣ < ε, or equivalently
∣∣∣∣

17
3(3n− 7)

∣∣∣∣ < ε.

For large n everything is positive, so it is sufficient for us to have

3n− 7 >
17
ε
⇐⇒ n >

7
3
+

17
9ε

We now have enough for a proof:

Proof 1. Let ε > 0 be given and let N =
7
3
+

17
9ε

. Then

n > N =⇒ n >
7
3
+

17
9ε

=⇒ 0 <
17

3(3n− 7)
< ε

=⇒
∣∣∣∣
2n + 1
3n− 7

− 2
3

∣∣∣∣ =
∣∣∣∣
3(2n + 1)− 2(3n− 7)

3(3n− 7)

∣∣∣∣ =
17

3(3n− 7)
< ε

where the absolute values are dropped since n >
7
3

. We conclude that
2n + 1
3n− 7

→ 2
3

.

Here is an alternative proof where we use a simpler expression for N.

Proof 2. Let ε > 0 be given and let N = max
{

7,
3
ε

}
. Then

n > N =⇒
∣∣∣∣
2n + 1
3n− 7

− 2
3

∣∣∣∣ =
∣∣∣∣

17
3(3n− 7)

∣∣∣∣ <
∣∣∣∣
17
6n

∣∣∣∣ (since n > 7 =⇒ 3n− 7 > 2n)

<
3
n
<

3
N
≤ ε (since N ≥ 3

ε )

Hence result.

The plot illustrates the two choices of N as functions of ε. Note that the second is always larger
than the first! This is fine: if a particular choice of N = N1(ε) works in a proof, so will any other
N2(ε) which is larger than N1! Use this to your advantage to produce simpler arguments.

0

20

40

60

80

100N

0 0.2 0.4 0.6 0.8 1
ε

N1 =
7
3
+

17
9ε

N2 = max
(

7,
3
ε

)

5



3. We prove that sn =
4n4 − 5n + 1
3n4 + 2n2 + 3

converges to
4
3

.

We want to conclude that
∣∣∣∣

4n4 − 5n + 1
3n4 + 2n2 + 3

− 4
3

∣∣∣∣ =
∣∣∣∣
−8n2 − 15n− 9
3(3n4 + 2n2 + 3)

∣∣∣∣ < ε

Attempting to solve for n (as in the first method in Example 2) is crazy! Instead, as in the second
approach, we simplify by observing that if n is sufficiently large, then

∣∣∣∣
−8n2 − 15n− 9
3(3n4 + 2n2 + 3)

∣∣∣∣ <
∣∣∣∣
9n2

9n4

∣∣∣∣ =
1
n2

Indeed it is enough to have

9n2 ≥ 8n2 + 15n + 9

which, by solving the quadratic, holds when n ≥ 15+
√

261
2 . Round this up to 16 and we have

enough for the proof.

Proof 1. Let ε > 0 be given and let N = max{16, 1√
ε
}. Then

n > N =⇒
∣∣∣∣sn −

4
3

∣∣∣∣ =
∣∣∣∣
−8n2 − 15n− 9
3(3n4 + 2n2 + 3)

∣∣∣∣ <
∣∣∣∣
9n2

9n4

∣∣∣∣ (since n > 16)

=
1
n2 <

1
N2 ≤ ε

If this were a formal answer, it would be wise to give a little scratch work to justify why n > 16
is sufficient for the inequality.

Here is an alternative: this time we include a little of the scratch work in the answer, as you
might do for a homework submission.

Proof 2. Suppose that n ≥ 24, then

n ≥ 15 +
9
n

=⇒ n2 ≥ 15n + 9 =⇒ 9n2 ≥ 8n2 + 15n + 9

Let ε > 0 be given, and let N = max{24, 1√
ε
}. Then

n > N =⇒
∣∣∣∣sn −

4
3

∣∣∣∣ =
∣∣∣∣

4n4 − 5n + 1
3n4 + 2n2 + 3

− 4
3

∣∣∣∣ =
∣∣∣∣
−8n2 − 15n− 9
3(3n4 + 2n2 + 3)

∣∣∣∣ <
∣∣∣∣
9n2

9n4

∣∣∣∣

=
1
n2 <

1
N2 ≤ ε (since N ≥ 1√

ε
)

Therefore sn →
4
3

, as required.
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Divergent sequences

Definition 2.4. Negating Definition 2.2 says that a sequence (sn) does not converge to s if,

∃ε > 0 such that ∀N, ∃n > N with |sn − s| ≥ ε

Furthermore, we say that (sn) is divergent if it does not converge to any limit s ∈ R. Otherwise said,

∀s ∈ R, ∃ε > 0 such that ∀N, ∃n > N with |sn − s| ≥ ε

It can be helpful when proving divergence to assume N ∈ N so that you can quickly define n in
terms of N. At the bottom of the page we’ll explain what happens if you don’t. . .

Examples

1. We prove that the sequence with sn = 7
n does not converge to s = 1. We need to show that

∃ε > 0 such that ∀N, ∃n > N with
∣∣∣∣
7
n
− 1
∣∣∣∣ ≥ ε (∗)

This is easy to visualize: we know that sn → 0, so the sequence must eventually be nearly a
distance 1 from s = 1. Any value of ε smaller that 1 should satisfy (∗). We prove twice: once
using the Definition directly, and once by contradiction.

0

2

3

4

5

6

7sn

0 10 20

s + ε

s − ε

N

s = 1

n

Every tail of the sequence
after here. . .

. . . contains some elements
sn that do not lie here

}

Direct Proof. Let ε = 1
2 . We need to force

∣∣ 7
n − 1

∣∣ ≥ 1
2 . Since we are only concerned with large

values of n, the term in the absolute value is negative,
∣∣∣∣
7
n
− 1
∣∣∣∣ ≥

1
2
⇐⇒ 1− 7

n
≥ 1

2
⇐⇒ 7

n
≤ 1

2
⇐⇒ n ≥ 14

Given N ∈N, let n = max{14, N + 1} to see that
∣∣ 7

n − 1
∣∣ ≥ ε. We conclude that sn 9 1.

If we had only assumed that N were real, then the definition of n fails to be an integer. This can
be fixed in a couple of ways:

• Define n = max{14, dNe+ 1} using the ceiling function.
• Appeal to the Archimidean property to show that ∃n ∈N such that n > max{13, N}.

Restricting to N ∈N makes the argument easier to follow: just remember to state it to help the
reader!
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Contradiction Proof. Suppose sn → 1. Then

∀ε > 0, ∃N ∈N such that n > N =⇒
∣∣∣∣
7
n
− 1
∣∣∣∣ < ε

In particular, this should hold for ε = 1
2 . But then, for all large n, we would require

∣∣∣∣
7
n
− 1
∣∣∣∣ <

1
2
⇐⇒ 1

2
<

7
n
<

3
2
⇐⇒ n < 14 and n >

14
3

Simply let n = max{14, N + 1} for a contradiction.

2. The sequence defined by sn = (−1)n is divergent. We prove by contradiction and, for variety,
this time we invoke Archimedes.

Proof. Suppose that sn → s and let ε = 1 in the definition of limit. Then ∃N ∈ R such that

n > N =⇒ |(−1)n − s| < 1

However, there exist (Archimedes3) both even ne > N and odd no > N. There are two cases:

• If s ≥ 0 then |(−1)no − s| = |−1− s| = s + 1 ≥ ε.

• If s < 0 then |(−1)ne − s| = |1− s| = 1− s ≥ ε.

Either way we have a contradiction and we conclude that (sn) is divergent.

The picture shows what happens when s ≥ 0.

−1

1

2

sn

10 20

s + ε

s − ε N

s

n

Regardless of N, every tail
of the sequence after here. . . . . . contains some elements

sn that do not lie here





We chose ε = 1 because it is easy to work with, and because at least some of the elements of
any tail of the sequence are sn = −1, which are at least a distance of 1 from s.

3∃n ∈N such that n > N. Clearly n is even or odd; n + 1 provides the other.
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3. The sequence define by sn = ln n diverges.

Before embarking on a proof, first visualize the sequence: you should recall from calculus that
logarithms increase unboundedly. It therefore seems reasonable that, for any purported limit s,
letting ε = 1 will cause trouble, for eventually ln n ≥ s + 1. Again we present two proofs, the
first verifies Definition 2.4 directly, the second is by contradiction.

Proof 1. Suppose s ∈ R is given. Let ε = 1 and suppose that N ∈ N is given. We define
n = max{N + 1, es+1}. Then n > N and

ln n ≥ ln(es+1) = s + 1

In particular,

|sn − s| = |ln n− s| ≥ ε

whence (sn) is divergent.

Proof 2. Suppose that (sn) converges to s ∈ R. Let ε = 1: we may therefore assume N ∈ N

exists satisfying the limit definition (Definition 2.2). Now define n = max{N + 1, es+1}. But
then

n > N and ln n > s + 1 =⇒ |ln n− s| > 1 = ε

Contradiction. We conclude that (sn) diverges.

From now on we’ll typically prefer contradiction arguments: these have the advantage of only
having to remember one definition!

A Little Abstraction

Working explicitly with the limit definition is tedious. In the next section we’ll develop the limit laws
so we can combine limits of sequences without providing new ε-proofs. Of course, all the limit laws
must first be proved based on the definition! To build up to this, here are three general results.

Lemma 2.5. Suppose that sn → s. Then s2
n → s2.

The challenge here is that we want to bound
∣∣s2

n − s2
∣∣ = |sn − s| |sn + s|, which means we need some

control over |sn + s|. There are several ways to do this: for instance by the triangle-inequality,

|sn + s| = |sn − s + 2s| ≤ |sn − s|+ 2 |s|
We can now begin a proof.

Proof. Let ε > 0 be given and let δ = min{1, ε
1+2|s|}. Since sn → s, ∃N such that

n > N =⇒ |sn − s| < δ

But then

n > N =⇒
∣∣s2

n − s2∣∣ = |sn − s| |sn + s| ≤ |sn − s| (|sn − s|+ 2 |s|) (4-inequality)
< δ(1 + 2 |s|) (since |sn − s| < δ ≤ 1)
≤ ε
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Theorem 2.6. Suppose that sn → s where (sn) is bounded below by m. Then s ≥ m.

Proof. Suppose that s < m and let ε = m−s
2 > 0. Then ∃N such that

n > N =⇒ |sn − s| < m− s
2

=⇒ sn − s <
m− s

2
(|x| < y ⇐⇒ −y < x < y. . . )

=⇒ sn −m <
s−m

2
< 0 (add s−m to both sides)

Contradiction.

sn

m
s + ε

s − ε
s

n

If s < m and sn ≥ m, then sn can’t be here. . .

The picture should make clear the contradicton in the proof. There are several simple variations on
the Theorem.

Strict Lower Bounds The same proof (and conclusion!) is valid when (sn) has a strict lower bound.

For example the sequence with sn = 1
n satisfies

∀n ∈N, sn > 0, and lim sn = 0

precisely in accordance with the Theorem. In particular, we cannot conclude that lim sn > 0.

Upper Bounds The corresponding result for sequences bounded above should be clear:

If sn → s and ∀n, sn ≤ M then s ≤ M

Sequence Tails We need only assume that sn ≥ m for all but finitely many sn. In such a situation there
must exist a final sk < m, and the proof can easily be modified:

n > max{N, k} =⇒ |sn − s| < m− s
2

=⇒ · · · etc.

For example, the sequence (sn) with nth term

sn =
10
n2 −

1
n
=

10− n
n2

is bounded above by M = 0 whenever n ≥ 10. Theorem 2.6 confirms our belief that lim sn ≤ 0
(clearly lim sn = 0 in this case!).

The caveats for all large n and for some tail of the sequence are equivalent, and often used. Many
theorems can be modified this way; in the interests of brevity, it is common to avoid explicitly
stating such, and even more common to ignore the caveat in the proof. Here is another famous
example. . .
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Theorem 2.7 (Squeeze Theorem). Suppose that three sequences satisfy an ≤ sn ≤ bn (for all large n) and
that (an) and (bn) both converge to s. Then sn → s.

Proof. Since an ≤ sn ≤ bn, it is immediate that

an − s ≤ sn − s ≤ bn − s =⇒ |sn − s| ≤ max{|an − s| , |bn − s|}
We now bound the RHS by ε: let ε > 0 be given, then there exists Na, Nb such that

n > Na =⇒ |an − s| < ε and n > Nb =⇒ |bn − s| < ε

Let N = max{Na, Nb}. Then

n > N =⇒ |sn − s| ≤ max{|an − s| , |bn − s|} < ε

2.9 Limit Theorems for Sequences

Our immediate goal is to be able to calculate limits naturally, without using ε-N proofs: these results
are often known as the limit laws. We start with a result that allows us to compute the limit of any
rational sequence.

Theorem 2.8. Suppose (sn) and (tn) converge, to s and t respectively, and that k ∈ R is constant. Then

(a) lim ksn = ks

(b) lim(sn + tn) = s + t

(c) lim(sntn) = st (this extends Lemma 2.5: by induction we now have sk
n → sk for any k ∈N)

(d) If t 6= 0 then lim
sn

tn
=

s
t

Before proving this, here is an example of its power.

lim
3n2 + 2n− 1

5n2 − 2
= lim

3 + 2
n − 1

n2

5− 2
n2

=
lim

(
3 + 2

n − 1
n2

)

lim
(
5− 2

n2

) (part (d))

=
lim 3 + lim 2

n − lim 1
n2

lim 5− lim 2
n2

(part (b))

=
3 + 0− 0

5− 0
=

3
5

(part (a) and example 1, page 4)

This involves some (generally accepted) sleight of hand; one shouldn’t really write lim sn until one
knows it exists!

Proving Theorem 2.8 requires a little work. We start by recalling the notion of boundedness.

Lemma 2.9. (sn) convergent =⇒ (sn) bounded (∃M such that ∀n, |sn| ≤ M).

Proof. Suppose sn → s and let ε = 1 in the definition of limit. Then ∃N such that

n > N =⇒ |sn − s| < 1 =⇒ s− 1 < sn < s + 1 =⇒ |sn| < max{|s− 1| , |s + 1|}
The RHS bounds the tail of the sequence where n > N. We may therefore define the bound

M = max
{
|s− 1| , |s + 1| , |sn| : n ≤ N

}

Note that the converse to this is false! For instance, sn = (−1)n is bounded but not convergent!

11



Proof of Theorem 2.8. These arguments will likely be difficult to follow at first read. A crucial obser-
vation, used in all four parts, is that we can replace ε in the limit definition with any positive number:
for instance ε

|k| in part (a). Compare with how we introduced δ in the proof of Lemma 2.5: at the cost
of more symbols, all these arguments could be rephrased similarly.

(a) If k = 0, the result is trivial. Otherwise,4 let ε > 0 be given. Since ε
|k| > 0, ∃N such that

n > N =⇒ |sn − s| < ε

|k| =⇒ |ksn − ks| = |k| |sn − s| < ε

(b) Let ε > 0 be given. Then ∃N such that

n > N =⇒ |sn − s| , |tn − t| < ε

2

Apply the4-inequality to see that

n > N =⇒ |sn + tn − (s + t)| ≤ |sn − s|+ |tn − t| < ε

2
+

ε

2
= ε

(c) Let ε > 0 be given. Since sn → s and tn → t, there exists N such that

n > N =⇒ |sn − s| < ε

2 |t| and |tn − t| < ε

2M

where M is a (positive) bound for (sn) (Lemma 2.9). But now

|sntn − st| = |sntn − snt + snt− st|
4
≤ |sn| |tn − t|+ |t| |sn − s|

≤ M |tn − t|+ |t| |sn − s| < ε

2
+

ε

2
= ε

In the exceptional case of t = 0, instead choose N such that n > N =⇒ |tn| < ε
M .

(d) Since tn → t 6= 0, we see5 that ∃N1 such that

n > N1 =⇒ |tn − t| < |t|
2

=⇒ |tn| >
|t|
2

Now let ε > 0 be given, whence ∃N2 such that

n > N2 =⇒ |tn − t| < |t|
2 ε

2

Let N = max{N1, N2} to see that

n > N =⇒
∣∣∣∣

1
tn
− 1

t

∣∣∣∣ =
|t− tn|
|t| |tn|

<
2 |t− tn|
|t|2

< ε

whence 1
tn
→ 1

t . An appeal to part (c) completes the proof.

4It is tempting to apply the squeeze theorem rather than working with ε: consider

0 ≤ |ksn − ks| = |k| |sn − s|
Unfortunately, showing that |k| |sn − s| → 0 requires the very statement we’re trying to prove! You really need an ε-proof.

5Take ε = |t|
2 in the definition of limit.
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The next result tells us how to take limits of powers.

Theorem 2.10. 1. If k > 0 then 1
nk → 0

2. If |a| < 1 then an → 0

3. If a > 0 then a1/n → 1

4. n1/n → 1

We give only a sketch proof: you should try to formalize these arguments as much as you can.

Sketch Proof. 1. This is covered as an example on page 4: given ε > 0, let N = ε−1/k. . .

2. The a = 0 case is trivial. Otherwise: given ε > 0, let N = log|a| ε. . .

3. WLOG6 suppose a > 1. We want to show that sn := a1/n − 1 → 0. Since sn > 0, the Binomial
Theorem shows that

a = (1 + sn)
n ≥ 1 + nsn =⇒ sn ≤

a− 1
n

The squeeze theorem (or explicitly choosing N = a−1
ε ) completes the argument.

4. We must show that sn = n1/n − 1→ 0. Again apply the Binomial Theorem: since sn > 0,

n = (sn + 1)n =
n

∑
k=0

(
n
k

)
sk

n ≥ 1 + nsn +
1
2

n(n− 1)s2
n >

1
2

n(n− 1)s2
n =⇒ sn <

√
2

n− 1

The squeeze theorem finishes things off (or choose N = 2ε−2 + 1 if you prefer).

We need one last result in order to compute all limits of sequences involving algebraic functions:

Corollary 2.11 (Limits of Roots). Suppose sn → s. If k ∈N then k
√

sn → k
√

s (k even only if sn ≥ 0).

We omit the proof: see if you can complete it yourself, using the following factorization/inequality
(valid when sn, s > 0)

∣∣∣s1/k
n − s1/k

∣∣∣ = |sn − s|∣∣∣∣s
k−1

k
n + s

k−2
k

n s
1
k + · · ·+ s

k−1
k

∣∣∣∣
<
|sn − s|

s
k−1

k

Examples

1. lim(3n)2/n = (lim 31/n)2(lim n1/n)2 = 1.

2. lim
n2/n +

(
3− n−1 sin n

)1/5

4n−3/2 + 7
=

1 + 5
√

3
7

, where
sin n

n
→ 0 follows from the squeeze theorem.

6The a = 1 case is trivial. If a < 1, then b = 1
a > 1 has a1/n = 1

b1/n → 1 courtesy of Theorem 2.8 (d).
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Divergence laws

We now consider unbounded sequences.

Definition 2.12. We say that (sn) diverges to ∞ if,

∀M > 0, ∃N such that n > N =⇒ sn > M

We write sn → ∞ or lim sn = ∞. The definition for sn → −∞ is similar.

If (sn) neither converges nor diverges to ±∞, we say that it diverges by oscillation. In such cases lim sn
is meaningless, though it is common to write lim sn = DNE for ‘does not exist.’

Examples

1. Prove that n2 + 4n→ ∞.

Let M > 0 be given,7 and let N =
√

M. Then

n > N =⇒ n2 + 4n > n2 > N2 = M

2. Prove that sn = n5 − n4 − 2n + 1→ ∞.

This is trickier, and not just because of the fifth power. We cannot simply ignore the lower order
terms and concentrate on the highest power, since the extra terms are not all summed. Instead,
note that8

sn >
1
2

n5 ⇐⇒ n5 > 2(n4 + 2n− 1) ⇐⇒ n > 2 +
4
n3 −

1
n4

Certainly this holds if n > 6: we can now provide a proof.

Let M > 0 be given, and let N = max{6, 5
√

2M}. Then

n > N =⇒ sn >
1
2

n5 >
1
2
(2M) = M

3. Prove that the sequence defined by sn = n2 − n3 diverges to −∞.

For some scratch work here, consider

sn = n2(1− n) < −1
2

n3 ⇐⇒ 1− n < −1
2

n ⇐⇒ n ≥ 2

Now let M > 0 be given9 and define N = max{2, 3
√

2M}. Then

n > N =⇒ n > 2 =⇒ sn < −1
2

n3 < −1
2

N3 ≤ −M

We conclude that sn → −∞
7Try some scratch work first! We want n2 + 4n > M for large n which is certainly true if n >

√
M. . .

8Compare this trick with the second proof of example 3 on page 6.
9The notion that sn → −∞ can be phrased in multiple ways: some people prefer

∀m < 0, ∃N such that n > N =⇒ sn < m

It should be clear that our M is simply −m.
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Several of the limit laws can be adapted to sequences which diverge to ±∞.

Theorem 2.13. Suppose sn → ∞. (Corresponding statements when sn → −∞ should be clear.)

(a) If tn ≥ sn for all n, then tn → ∞

(b) If tn → t (finite), then sn + tn → ∞.

(c) If tn → t > 0 then sntn → ∞.

(d)
1
sn
→ 0

(e) If tn > 0 satisfies tn → 0, then
1
tn
→ ∞

Proof. We prove two of the results: try the rest yourself.

(b) Since (tn) converges, it is bounded, whence ∃A such that ∀n, tn ≥ A. Let M be given: since
sn → ∞, ∃N such that

n > N =⇒ sn > M− A =⇒ sn + tn < M− A + A = M

(d) Let ε > 0 be given, and let M = 1
ε . Then ∃N such that

n > N =⇒ sn > M =
1
ε

=⇒ 1
sn

< ε

Rational Functions We can now find the limit of any rational sequence: pn
qn

where (pn), (qn) are
polynomials in n. For example

3n3 + 4
2n2 − 1

=
3n + 4n−2

2− n−2 = (3n + 4n−2) · 1
2− n−2 → ∞

by applying Theorem 2.13 (c) to

sn := 3n + 4n−2 → ∞ and tn =
1

2− n−2 →
1
2

Indeed, you should be able to confirm the familiar result from elementary calculus:

Corollary 2.14. If pn, qn are polynomials in n with leading coefficients p, q respectively then

lim
pn

qn
=





0 if deg(pn) < deg(qn)
p
q

if deg(pn) = deg(qn)

sgn( p
q )∞ if deg(pn) > deg(qn)

15



2.10 Monotone and Cauchy Sequences

The first goal of this section is to address a difficulty with the definition of convergence: How do we
show that a sequence is convergent without first knowing its limit? Monotone and Cauchy sequences
are two classes of sequences where one has convergence without having to know the limit. The
existence of limits for both types of sequences depends crucially on the completeness axiom. As a
byproduct, we obtain an alternative construction of the real numbers.

Definition 2.15. • (sn) is non-decreasing or monotone-up if sn+1 ≥ sn for all n.

• (sn) is non-increasing or monotone-down if sn+1 ≤ sn for all n.

• (sn) is monotone or monotonic if either of the above is true.

For example sn = 7
n + 4 is monotone-down/non-increasing.

Theorem 2.16 (Monotone Convergence). Bounded
monotone sequences are convergent. Specifically:

(a) If (sn) is bounded above and non-decreasing,
then lim sn = sup{sn}.

(b) If (sn) is bounded below and non-increasing,
then lim sn = inf{sn}. 0

sn

0
n

sup{sn}

Proof. Suppose (sn) is non-decreasing and bounded above. Let s = sup{sn}; this exists by the com-
pleteness axiom and is finite since (sn) is bounded.

Let ε > 0 be given. Since s is the supremum, there exists some element sN > s − ε. The non-
decreasing property means that

n > N =⇒ sn ≥ sN > s− ε =⇒ |s− sn| < ε

The non-increasing case is similar.

Examples

1. Suppose (sn) is defined by sn = 1 and sn+1 = 1
5 (sn + 8). Then:

• (Bounded above) sn < 2 =⇒ sn+1 < 1
5 [2 + 8] = 2. By induction, (sn) is bounded above

by 2.

• (Monotone-up) sn+1 − sn = 4
5 [2− sn] > 0 since sn < 2.

We conclude that (sn) converges. Indeed, if s = lim sn, then the limit laws show that s satisfies

s = lim sn+1 =
1
5
(lim sn + 8) =

1
5
(s + 8) =⇒ s = 2

16



2. Define a sequence (sn) by s0 = 2 and

sn+1 =
1
2

(
sn +

2
sn

)
(∗)

The AM-GM inequality10 says that sn+1 ≥
√

2 for all n, whence the sequence is bounded below.
Moreover,

sn − sn+1 =
1
2

(
sn −

2
sn

)
=

s2
n − 2
2sn

≥ 0

since sn ≥
√

2. We have a monotone-down sequence which is bounded below; it thus converges
to some limit s. Indeed taking limits of (∗) yields

s =
1
2

(
s +

2
s

)
=⇒ s2 = 2 =⇒ s =

√
2

This example shows why we need completeness in the proof: (sn) is a monotone, bounded
sequence of rational numbers, but it doesn’t converge in Q.

3. It can be shown that sn =
(
1 + 1

n

)n
defines a monotone-up sequence which is bounded above

(see the worksheet on the class website). This provides one of the many definitions of e:

e := lim
(

1 +
1
n

)n

Theorem 2.17. If (sn) is unbounded and non-decreasing then sn → ∞. Similarly, if (sn) is unbounded and
non-decreasing then sn → −∞.

Proof. Since (sn) is unbounded, given M, ∃sN > M. Since (sn) is non-decreasing we see that

n > N =⇒ sn ≥ sN > M

It now makes sense to write lim sn = sup{sn} for any non-decreasing sequence even if this is ∞.

Limits Superior and Inferior

When analyzing a sequence, one is primarily interested in its long-term behavior: what can we say
about the values sn when n is very large? We currently have two tools at our disposal:

Limits Unfortulately, most sequences diverge by oscillation, so lim sn is usually meaningless.

Suprema/Infima These are also unhelpful for discussing the long-term behaviour of most sequences.
For example, consider the sequences defined by

sn =
1
n

and tn =

{
1000 if n ≤ 1, 000, 000
1
n if n > 1, 000, 000

when n ≥ 1. These sequences clearly have the same long-term behavior (lim sn = lim tn =
0), but due to the fact that the first million terms are different, they have different suprema:
sup{tn} = 1000 > 1 = sup{sn}.

Combining these concepts, however, turns out to pack a bigger punch. . .

10√xy ≤ x+y
2 for all real x, y, with equality if and only if x = y. To prove this, start by expanding (x− y)2 ≥ 0. . .
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Definition 2.18. Let (sn) be a sequence. We define its limit superior lim sup sn and limit inferior
lim inf sn as follows:

1. (sn) is bounded above, define vN = sup{sn : n > N} and

lim sup sn = lim
N→∞

vN

2. (sn) is unbounded above, define lim sup sn = ∞.

3. (sn) is bounded below, define uN = inf{sn : n > N} and

lim inf sn = lim
N→∞

uN

4. (sn) is unbounded below, define lim inf sn = −∞.

The picture below shows the sequences (sn), (uN) and (vN) when

sn = 6 + 5
(

4
5

)n

+ (−1)n

0

6

0 10 20

lim sup sn = 7

lim inf sn = 5

sn

uN

vN

n

Computing lim sup sn = 7 and lim inf sn = 5 directly is a little messy, so we omit the calculation.
What should be plausible from the picture is the the sequence (sn) consists of two subsequences, one
decreasing towards 7 and the other increasing towards 5: from this observation, the construction of
the sequences (uN) and (vN) should be clear.

It should be clear from the definitions that, whenever they exist,

(uN) is monotone-up, (vN) monotone-down, and uN ≤ vN .

These facts and the Monotone Convergence Theorem combine for a little housekeeping:

Lemma 2.19. 1. lim sup sn and lim inf sn exist for any sequence (they might be infinite).

2. lim inf sn ≤ lim inf sn.

18



Examples

1. Let sn = (−1)n. Then

∀N ∈N, uN = inf{sn : n > N} = −1 and vN = sup{sn : n > N} = 1

Therefore lim sup sn = 1 and lim inf sn = −1.

2. Let sn =
(−1)n

n
. Then

uN = inf{sn : n > N} =
{
− 1

N+2 if N odd
− 1

N+1 if N even
and vN =

{
1

N+1 if N odd
1

N+2 if N even

Clearly lim inf sn = 0 = lim sup sn.

These examples should suggest a result:

Theorem 2.20. Let (sn) be a sequence. Then lim inf sn = lim sup sn if and only if lim sn = s for some
s ∈ [−∞, ∞], in which case all three expressions equal s.

Before proving this, here are two pictures to help visualize the concepts.11

0

sn

0 20 40
n

lim sn

0

tn

0 20 40
n

lim sup tn

lim inf tn

Convergence: lim inf sn = lim sn = lim sup sn Divergence: lim inf tn < lim sup tn

In both pictures, the sequence (uN) is in green and (vN) in blue. It should be clear from the definition
that for all N we have

uN = inf{sn : n > N} ≤ sN+1 ≤ vN = sup{sn : n > N}

so that the original sequence is almost trapped between (uN) and (vN). A minor redefinition could
remove the word ‘almost,’ though the cost of fixing several inequalities in later proofs makes this
counter-productive.

11In case you’re interested, the explicit sequences are sn = 2 + 3e−
n
10 cos n

2 with limit 2, and tn = 4 + sin n
2 + 4e−

n
20 cos n

2
which diverges by oscillation.
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Proof of Theorem. We first prove the⇒ direction: there are three cases.

(a) Suppose lim sup sn = lim inf sn = s is finite. Since un−1 ≤ sn ≤ vn−1 for all n, the squeeze
theorem tells us that sn → s.

(b) Suppose lim sup sn = lim inf sn = ∞. Then un−1 ≤ sn for all n with un−1 → ∞. Theorem 2.13(a)
shows that sn → ∞.

(c) lim sup sn = lim inf sn = −∞ is similar.

Now for the⇐ direction: again there are three cases.

(a) Suppose lim sn = s is finite. Then lim sn = s says that, for all ε > 0, ∃M such that

N > M =⇒ |sN − s| < ε =⇒ sN < s + ε

=⇒ vN = sup{sn : n > N} ≤ s + ε (definition of supremum)
=⇒ lim sup sn = lim

N→∞
vN ≤ s + ε (Theorem 2.6)

Since this holds for every ε > 0 we conclude12 that lim sup sn ≤ s.

Similarly lim inf sn ≥ s. Combining with Lemma 2.19 we obtain

s ≤ lim inf sn ≤ lim sup sn ≤ s

whence all terms are equal.

(b) Suppose lim sn = ∞. Then ∀M > 0, ∃N such that n > N =⇒ sn > M. But then

uN = inf{sn : n > N} ≥ M

whence uN → ∞ and so lim inf sn = ∞. Clearly lim sup sn = ∞ also.

(c) Again, lim sn = −∞ is similar.

Cauchy Sequences

A sequence is Cauchy13 when terms in the tails of the sequence are constrained to stay close to one
another. This will shortly provide an alternative way of describing convergence.

Definition 2.21. (sn) is a Cauchy sequence if

∀ε > 0, ∃N such that m, n > N =⇒ |sn − sm| < ε

Examples

1. Let sn = 1
n . Let ε > 0 be given and let N = 1

ε . Then14

m ≥ n > N =⇒ |sm − sn| =
1
n
− 1

m
≤ 1

n
<

1
N

= ε

Thus (sn) is Cauchy. A similar argument works for any sn = 1
nk for positive k.

12In case this makes you nervous. . . Suppose a ≤ b + ε for all ε > 0. If a > b, let ε = 1
2 (a− b) to get a contradiction. . .

13Augustin-Louis Cauchy (1789–1857) was a French mathematician, responsible (in part) for the ε-definition of limit.
14WLOG we may assume m ≥ n. This assumption is very common!
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2. Let (sn)∞
n=0 be the sequence defined inductively as follows:

s0 = 1, sn+1 =

{
sn + 3−n if n even
sn − 4−n if n odd

that is (sn) =

(
1, 2,

5
3

,
67
36

, . . .
)

Then |sn+1 − sn| ≤ 3−n, whence

m > n =⇒ |sm − sn| ≤
m−1

∑
k=n

3−k =
3−n − 3−m

1− 1
3

<
3
2
· 3−n

where we used the familiar formula for geometric series from calculus. Now let ε > 0 be given
and let N = − log3

2
3 ε, whence

m > n > N =⇒ |sm − sn| ≤
3
2
· 3−n <

3
2
· 3−N = ε

We conclude that (sn) is Cauchy.

Theorem 2.22 (Cauchy Completeness). A sequence of real numbers is convergent if and only if it is Cauchy.

Proof. (⇒) Suppose sn → s. Given ε > 0 we may choose N such that

m, n > N =⇒ |sn − s| < ε

2
and |sm − s| < ε

2
=⇒ |sn − sm| = |sn − s + s− sm| ≤ |sn − s|+ |s− sm| < ε

whence (sn) is Cauchy.

(⇐) To discuss the convergence of (sn) we first need a potential limit! In view of Theorem 2.20, the
obvious candidates are lim sup sn and lim inf sn. We have two goals: show that (sn) is bounded,
whence the limits superior and inferior are finite, and then show that they are equal.

(Boundedness of (sn)) Take ε = 1 in the definition of Cauchy to see that ∃N ∈N such that

m, n > N =⇒ |sn − sm| < 1

It follows that

n > N =⇒ |sn − sN+1| < 1 =⇒ sn < sN+1 + 1

Thus (sn) is bounded above. Similarly (sn) is bounded below.

(lim sup sn = lim inf sn) Given ε > 0, ∃N such that

m, n > N =⇒ |sn − sm| < ε =⇒ sn < sm + ε

But then

m > N =⇒ vN ≤ sm + ε (since vN = sup{sn : n > N})
=⇒ vN ≤ uN + ε (since uN = inf{sn : n > N})

Since (vN) is monotone-down and (uN) monotone-up, we see that

∀ε > 0, lim sup sn ≤ vN ≤ uN + ε ≤ lim inf sn + ε

whence lim sup sn ≤ lim inf sn. By Lemma 2.19 we have equality.

By Theorem 2.20 we conclude that (sn) converges to lim sup sn = lim inf sn.

Now that we have the Theorem, the above examples are seen to converge. Clearly example 1 con-
verges to zero! Example 2 can be shown to converge to 223

120 = 1.8583333 . . . using geometric series.
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The main point of the Cauchy Completeness Theorem is easy to miss. To show that (sn) is convergent
using the original Definition (2.2) one must already know the limit! We are now in the position of
(hopefully) being able to show that a sequence is Cauchy (and thus convergent) without first knowing
its limit. There are many applications of this idea, here is a simple example.

Decimals and the Real Numbers

What should a decimal expression mean? It is clear what a terminating decimal means, since every
such can be written as a rational number; for instance

12.31452 =
1231452
10000

What about a decimal that does not terminate? We can instead view the decimal as representing a
sequence of rational numbers; for example

3.14159 · · · represents the sequence (sn) =

(
3,

31
10

,
314
100

,
3141
1000

, . . .
)

Naturally, we’d like every such sequence to converge!

Generally, it is enough to consider decimals of the form

s = 0.d1d2d3 · · · (∗)

Consider the sequence (sn) where

sn = 0.d1d2 · · · dn =
n

∑
k=1

10−kdk

is the rational number comprising the first n decimal places of s. We prove that (sn) is Cauchy:

Let ε > 0 be given and choose N = − log10 ε. Then

m > n > N =⇒ |sn − sm| =
m

∑
k=n+1

10−kdk (= 0.0 · · · 0dn+1 · · · dm000 · · · )

< 10−n < 10−N = ε

The sequence (sn) is Cauchy and thus converges to some real number s. This limit is precisely what
it meant by the expression (∗). The upshot is that every decimal represents a single real number.

Aside: An alternative definition of R We can moreover use this approach to give another definition
of the real numbers which does not rely on Dedekind cuts.

Consider the set C of all Cauchy sequences of rational numbers and define an equivalence relation
on C:

(sn) ∼ (tn) ⇐⇒ |sn − tn| → 0

We may then define R = C
/
∼. Intuitively, (sn) and (tn) have the same limit, though this notion is

not required in order to make the definition rigorous. Some work is still required to define +, ·,≤,
etc., and to check all the axioms of an ordered field.
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2.11 Subsequences

Most often a sequence does not exhibit any general properties (convergence, etc.). However, if we
delete some of the sequence we may obtain a subsequence with interesting behavior.

Definition 2.23. (snk) is a subsequence of (sn) if it is a subset (snk) ⊆ (sn), and

n1 < n2 < n3 < · · ·

A subsequence is simply an infinite subset, ordered the same as the original sequence.

Example Take sn = (−1)n and snk = 1 (where nk = 2k). Note that (sn) is a non-convergent se-
quence with a convergent subsequence. Indeed our main goal for this section is to prove the famous
Bolzano–Weierstrass Theorem, that all bounded sequences possess a convergent subsequence.

Lemma 2.24. Every subsequence of a convergent sequence converges to the same limit: sn → s =⇒ snk → s.

Proof. Let ε > 0 be given. Then ∃N such that

n > N =⇒ |sn − s| < ε

Now nk ≥ k for all k, whence

k > N =⇒ nk > N =⇒ |snk − s| < ε

Theorem 2.25. Every sequence has a monotonic subsequence.

Proof. Let (sn) be a sequence. We call sn ‘dominant’ if m > n =⇒ sm < sn. There are two cases:

1. There are infinitely many dominant terms. The subsequence of dominant terms is decreasing.
Moreover if sn is dominant, then vn−1 = sup{sk : k > n− 1} = sn, whence the subsequence of
dominant terms converges to lim sup sn (or diverges to lim sup sn = −∞ in the special case).

2. There are finitely many dominant terms. Choose sn1 to come after all dominant terms. Similarly,
since sn1 is not dominant, ∃n2 > n1 such that sn2 ≥ sn1 . Repeat this process to obtain a non-
decreasing subsequence.

0
0 20 40 n

sn

snk

0
0 20 40

All dominant termsAll dominant terms

n

sn

snk

Case 1: dominant subsequence Case 2: Finitely many dominant terms
monotone-down Monotone-up subsequence
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Theorem 2.26. Given a sequence (sn), there exist subsequences (snk) and (snl ) such that

lim snk = lim sup sn and lim snl = lim inf sn

Proof. We prove only the claim regarding lim sup sn, since the other is similar. There are three cases
to consider; visualizing the third is particularly difficult and may take several readings. . .

1. lim sup sn = ∞: Define a subsequence (snk) inductively via

n1 = min{n ∈N : sn1 > 1} nk = min{n ∈N : nk > nk−1, snk > k}
Since lim sup sn = ∞, the sequence (sn) is unbounded above; for any k > 0, there exist infinitely
many terms sn greater than k. At each step in the creation of (snk) we are taking the minimum of
a non-empty set of natural numbers; (snk) is therefore well-defined. Clearly

snk > k whence snk → ∞ = lim sup sn

2. lim sup sn = −∞: Since lim inf sn ≤ lim sup sn = −∞, we conclude (Theorem 2.20) that
lim sn = −∞. It follows that (sn) is itself a suitable subsequence.

3. lim sup sn = v is finite: Let n1 = 1. For each k ≥ 2, perform a dual construction:

• Since (vN) is monotone-down and converges to v,

∃Nk ≥ nk−1 such that v ≤ vNk < v +
1
2k

• Since vNk = sup{sn : n > Nk},

∃nk > Nk such that vNk − snk <
1
2k

But then |v− snk | < 1
k , whence snk is a subsequence convergent to v.

Corollary 2.27. There exists a monotonic subsequence snk → lim sup sn (to lim inf sn similarly).

Proof. By Theorem 2.26, ∃(snl ) such that snl → lim sup sn. This subsequence has a monotonic subse-
quence by Theorem 2.25, which must converge to the same limit lim sup sn by Lemma 2.24.

0

1

2

0 10 20 n

sn

sn =

{
1 + (−1)n

n if n even
1
n if n odd

Example: Monotonic sequences converging to lim sup sn = 1 and lim inf sn = 0
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Theorem 2.28 (Bolzano–Weierstrass). Every bounded sequence has a convergent subsequence.

We give three proofs! The first two are corollaries of the above discussion; the third is the classic
proof and is independent of the discussion of limits superior/inferior.

Proof 1. Theorem 2.25 says there exists a monotone subsequence. This is bounded and thus converges
by the monotone convergence theorem.

Proof 2. By Theorem 2.26, there exists a subsequence converging to the finite value lim sup sn.

Proof 3. Suppose (sn) is bounded by M. One of the intervals [−M, 0] or [0, M] must contain infinitely
many terms of the sequence (perhaps both!). Call this interval E0 and define

n0 = min{n ∈N : sn0 ∈ E0}
Now repeat. Split E0 into left and right half-intervals. One of these intervals must contain infinitely
many terms of the subsequence

(sn ∈ E0 : n > n0)

Call this half-interval E1 and choose n2 = min{n ∈ N : n1 > n0, sn1 ∈ E1}. Repeat this process ad
infinitum, we obtain a family of nested intervals

E0 ⊃ E1 ⊃ E2 ⊃ · · · of width |Ek| =
M
2k

and a subsequence (snk) where each snk ∈ Ek.

Now let ε > 0 be given and let N ∈N satisfy N > log2
M
ε . Then

k, l > N =⇒ snk , snl ∈ EN =⇒ |snk − snl | ≤
M
2N < ε

The subsequence (snk) is Cauchy, and thus converges.

The advantage of the final proof is that it generalizes to higher dimensions: rather than intervals, a
family of shrinking boxes is constructed. . .

Divergence by Oscillation Recall Definition 2.12, where we stated that a sequence (sn) diverges by
oscillation if it neither converges nor diverges to ±∞. We can now give a more positive statement
which gives light to the notion of oscillation.

Corollary 2.29. Let (sn) be a sequence. The following are equivalent:

• (sn) diverges by oscillation

• lim inf sn 6= lim sup sn

• (sn) has at least two subsequences which converges to different limits.

We omit a proof, though it requires nothing more than putting together some of the previous results.
The word oscillation comes from the third interpretation: if s1 6= s2 are the limits of the two subse-
quences, then in any tail of the sequence {sn : n > N} there are infinitely many terms arbitrarily close
to s1 and infinitely many (different!) terms arbitrarily close to s2. In this sense the original sequence
oscillates between the neighborhoods of s1 and s2. Of course the sequence could have many other
subsequential limits.
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Subsequential Limits & Closed Sets - non-examinable

Definition 2.30. We call s ∈ R∪ {±∞} a subsequential limit of a sequence (sn), if there exists a subse-
quence (snk) such that snk → s.

Examples

1. The sequence defined by sn = 1
n has only one subsequential limit, namely zero. Recall Lemma

2.24: sn → 0 implies that every subsequence also converges to 0.

2. If sn = (−1)n, then the subsequential limits of (sn) are ±1.

3. The sequence sn = n2(1 + (−1)n) has subsequential limits 0 and ∞.

4. (sn) = (2, 4, 2, 6, 4, 2, 8, 6, 4, 2, 10, . . .) has all positive even numbers as subsequential limits.

Denseness and the countability of Q The set of subsequential limits of a sequence can be sur-
prisingly large, as we now show. You have seen in a previous class that the rational numbers are a
countable set: otherwise said, ∃ f : N → Q bijective. This means that there exists a sequence (rn)
defined by rn = f (n) which lists every rational number: here is a concrete example

(rn) =
(0

1
,

1
1

,−1
1︸ ︷︷ ︸

|p|+q=2

,
1
2

,−1
2

,
2
1

,−2
1︸ ︷︷ ︸

|p|+q=3

,
1
3

,−1
3

,
3
1

,−3
1︸ ︷︷ ︸

|p|+q=4

,
1
4

,−1
4

,
2
3

,−2
3

,
3
2

,−3
2

,
4
1

,−4
1︸ ︷︷ ︸

|p|+q=5

, . . .
)

where Q = { p
q : p ∈ Z, q ∈ N, gcd(p, q) = 1} and terms are grouped by increasing |p| + q. The

following consequence of this should seem truly bizarre. . .

Theorem 2.31. Let a ∈ R. Then (rn) has a subsequence which converges to a.

Proof. Define a subsequence (rnk) of rational numbers inductively:

n1 := min{n ∈N : |rn − a| < 1} nk := min{n ∈N : n > nk−1 and |rn − a| < 1
k}

• The interval (a− 1, a + 1) contains infinitely many rational numbers (Archimedes), thus rn1 is
well-defined.

• For some fixed k ≥ 2, suppose rn1 , . . . , rnk−1 have been defined, where

n1 < n2 < . . . < nk−1 and ∀j ≤ k− 1,
∣∣∣rnj − a

∣∣∣ < 1
j

The interval (a − 1
k , a + 1

k ) contains infinitely many rational numbers. Since r1, . . . , rnk−1 is a
finite list, there is at least one (indeed infinitely many) rational rnk ∈ (a − 1

k , a + 1
k ) such that

nk > nk−1. Thus rnk is well-defined.

• By induction, the subsequence (rnk) is well-defined. Clearly |rnk − a| < 1
k =⇒ rnk → a.

We already know that every real number is the limit of some sequence of rational numbers. The
Theorem goes further: every real number is the limit of some subsequence of a particular sequence!
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Theorem 2.32. Let (sn) be a sequence in R and let S be its set of subsequential limits. Then

1. S is non-empty (as a subset of R∪ {±∞}).

2. sup S = lim sup sn and inf S = lim inf sn.

3. lim sn exists iff S has only one element: namely lim sn.

Proof. 1. By Theorem 2.26, lim sup sn ∈ S.

2. By 1, lim sup sn ≤ sup S. For any subsequence (snk), we have nk ≥ k, whence

∀N, {snk : k > N} ⊆ {sn : n > N} =⇒ lim snk = lim sup snk ≤ lim sup sn

This holds for every convergent subsequence, whence sup S ≤ lim sup sn, and we have equality.
The result for inf S is similar.

3. Applying Theorem 2.20, we see that lim sn exists if and only if

lim sup sn = lim inf sn ⇐⇒ sup S = inf S
⇐⇒ S has only one element

Closed Sets You’ve used the notion of a closed interval for years. Here is the sequential definition
of a closed set.

Definition 2.33. A subset A ⊆ R is closed if every convergent sequence in A has its limit in A.

Examples

1. The interval [0, 1] is closed. If (sn) ⊆ [0, 1] is a convergent sequence sn → s, then

0 ≤ sn ≤ 1 =⇒ s ∈ [0, 1]

More generally, every closed interval [a, b] is closed, as are finite unions of closed intervals, e.g.
[1, 5] ∪ [7, 11].

2. The interval (0, 1] is not closed. In particular, the sequence sn = 1
n lies entirely in the interval

but has limit lying outside.

Theorem 2.34. If (sn) is a sequence, then its set of (finite) subsequential limits is closed.

We omit the proof: it is not difficult, but involves unpleasantly many subscripts (subsequences of
subsequences. . . ). The theorem essentially says that one can make a set closed by throwing in all its
sequential limits.
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2.12 Lim sup’s and Lim inf’s

In this section we collect a couple of useful results, mostly for later use. Firstly we observe that the
limit laws do not work as tightly for limits superior and inferior.

Theorem 2.35. 1. For any bounded sequences (sn), (tn) we have

lim sup(sn + tn) ≤ lim sup sn + lim sup tn

In general we do not expect equality.

2. If, in addition, sn → s is convergent, then we have equality

lim sup(sn + tn) = s + lim sup tn

Careful modifications can be made for unbounded sequences.

Proof. 1. For any N, observe that {sn + tn : n > N} has upper bound

sup{sn : n > N}+ sup{tn : n > N}

from which

sup{sn + tn : n > N} ≤ sup{sn : n > N}+ sup{tn : n > N}

Now take limits as N → ∞.

To see that equality is unlikely, consider the sequences sn = (−1)n = −tn. Then

lim sup(sn + tn) = 0 < 2 = lim sup sn + lim sup tn

2. By Theorem 2.26 ∃tnk → lim sup tn. Therefore

snk + tnk → s + lim sup tn

By Theorem 2.32, lim sup(sn + tn) is the supremum of the set of subsequential limits of (sn + tn),
whence

s + lim sup tn ≤ lim sup(sn + tn)

Combining with part 1 gives the result.

A similar result is available for products:

Corollary 2.36. 1. For any bounded non-negative sequences (sn), (tn) we have

lim sup(sntn) ≤ (lim sup sn) (lim sup tn)

with no expectation of equality.

2. If, in addition, sn → s > 0 is convergent, then

lim sup(sntn) = s lim sup tn

28



The next result will be critical when we study infinite series.

Theorem 2.37. Let (sn) be a non-zero sequence. Then

lim inf
∣∣∣∣
sn+1

sn

∣∣∣∣ ≤ lim inf |sn|1/n ≤ lim sup |sn|1/n ≤ lim sup
∣∣∣∣
sn+1

sn

∣∣∣∣

Proof. We prove only the first inequality. Suppose lim inf
∣∣∣ sn+1

sn

∣∣∣ > 0, for otherwise the inequality is

trivial, and assume that 0 < L < lim inf
∣∣∣ sn+1

sn

∣∣∣. Then

lim
N→∞

inf
{∣∣∣∣

sn+1

sn

∣∣∣∣ : n > N
}

> L =⇒ ∃N such that inf
{∣∣∣∣

sn+1

sn

∣∣∣∣ : n > N
}

> L

=⇒
∣∣∣∣
sn+1

sn

∣∣∣∣ > L, ∀n > N

If n > N, we then have

|sn| > Ln−N |sN | =⇒ |sn|1/n > L
(

L−N |sN |
)1/n

→ L (Theorem 2.10, (c))

Therefore lim inf |sn|1/n ≥ L for all L < lim inf
∣∣∣ sn+1

sn

∣∣∣, which establishes the first inequality.

Corollary 2.38. lim
∣∣∣∣
sn+1

sn

∣∣∣∣ = L =⇒ lim |sn|1/n = L

Examples

1. Here is a quick proof that lim n1/n = 1 (recall Theorem 2.10, (d)): let sn = n, then

lim
∣∣∣∣
sn+1

sn

∣∣∣∣ = lim
n + 1

n
= 1 =⇒ lim n1/n = lim |sn|1/n = 1

2. lim(n!)1/n = ∞. Simply let sn = n! and apply the corollary:

lim
∣∣∣∣
sn+1

sn

∣∣∣∣ = lim(n + 1) = ∞

3. We compute lim
(
(2n)!
(n!)2

)1/n

= 4. Taking sn =
(2n)!
(n!)2 , we obtain

lim |sn|1/n = lim
∣∣∣∣
sn+1

sn

∣∣∣∣ = lim
(2n + 2)!(n!)2

(2n)!(n + 1)!2
=

(2n + 2)(2n + 1)
(n + 1)2 = 4

4. Note that the converse to the corollary is false! For example, consider

(sn) =

(
1, 1,

1
2

,
1
2

,
1
4

,
1
4

,
1
8

,
1
8

, . . .
)

, where s2n−1 = s2n = 21−n

and check that this satisfies

lim inf
∣∣∣∣
sn+1

sn

∣∣∣∣ =
1
2
< lim |sn|1/n =

1√
2
< lim sup

∣∣∣∣
sn+1

sn

∣∣∣∣ = 1
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