

MATHEMATICAL PHYSICS ELECTRONIC JOURNAL

 $\begin{array}{l} {\rm ISSN \ 1086\text{-}6655} \\ {\rm Volume \ 8,\ 2002} \end{array}$

Paper 4 Received: Mar 24, 2002, Revised: Aug 13, 2002, Accepted: Aug 13, 2002 Editor: J. Feldman

The structure of the Haar systems on locally compact groupoids

Madalina Roxana Buneci

ABSTRACT. We shall prove a decomposition property of a Haar system on a locally compact groupoid. Using this decomposition, we shall establish the structure of the C^* -algebra associated to a locally compact groupoid whose associated equivalence relation is a closed set.

Key words and phrases. locally compact groupoid, Haar system, $C^{\ast}\mbox{-algebra}.$

1. Introduction

We shall use the definition of a topological groupoid given by J. Renault in [8]. For a groupoid G, $G^{(0)}$ will denote its unit space and $G^{(2)}$ the set of the composable pairs. Usually, elements of G will be denoted by letters as x, y, or z, and the elements of $G^{(0)}$ by letters as u, v, or w. The inverse map is written $x \to x^{-1}$ [: $G \to G$] and the product map is written $(x, y) \to xy$ [: $G^{(2)} \to G$]. The range and the source maps from G to $G^{(0)}$ will be denoted respectively by r and d. The fibers of the range and the source maps are denoted $G^u = r^{-1}(\{u\})$ and $G_v = d^{-1}(\{v\})$, respectively. More generally, given the subsets $A, B \subset G^{(0)}$, we define $G^{A} = r^{-1}(A)$, $G_{B} = d^{-1}(B)$ and $G_{B}^{A} = r^{-1}(A) \cap d^{-1}(B)$. The reduction of G is $G|A = G_A^A$.

We shall assume that G admits a continuous Haar system $\{\nu^u, u \in G^{(0)}\}$. Consequently, $r, d: G \to G^{(0)}$ are open maps. We shall also assume that (r, d)(G) is a closed subset of $G^{(0)} \times G^{(0)}$.

Let $\pi: G^{(0)} \to G^{(0)}/G$ $(u v \ll z \rtimes \exists x \in G \text{ such that } r(x) = u \text{ and } d(x) = v)$ be the canonical projection. Let $[u] = \{v : v \, \tilde{} \, u\}.$

We shall prove that for each orbit [u], there is a probability $\eta_{\pi(u)}$ supported on [u] such that:

1) $d_*(\nu^v) \tilde{\eta}_{\pi(u)}$ for all $v \in [u]$

2) $\nu^{u} = \int \nu_{u,v} d\eta_{\pi(u)}(v)$

3) If μ is a quasi-invariant probability, then

$$\int \nu^{u} d\mu (u) = \int \int \int \rho_{u,v} d\eta_{\pi(w)} (u) d\eta_{\pi(w)} (v) \mu (w),$$

where $\{\nu_{u,v}, u \sim v\}$ is a system of measures resulted by applying Hahn Structure Theorem on the Haar measure $\left(\int \nu^{u} d\mu(u), \mu\right)$.

As a consequence of this decomposition of the Haar system, we shall establish the structure of the C^{*}-algebra of G with respect to the Haar system $\{\nu^u, u \in$ $G^{(0)}$. If G is transitive it is well known that the C^{*}-algebra of G is isomorphic to $C^{*}(H) \otimes \mathcal{K}(L^{2}(\mu))$, where H is the isotropy group G_{u}^{u} at any unit $u \in G^{(0)}, \mu$ is an essentially unique measure on $G^{(0)}$, $C^*(H)$ denotes the group C^* -algebra of H, and $\mathcal{K}(L^{2}(\mu))$ denotes the compact operators on $L^{2}(\mu)$ (see [6]). In the general case we shall describe the C^* -algebra of G using the C^* -algebras of the transitive components of G, whose structures are known.

Let $C^*(G)$ be the C^* -algebra of G with respect to the Haar system $\{\nu^u, u \in$ $\{G^{(0)}\}\$ and $\|\|\|$ be the C^{*}-norm. For each orbit [u], let $C^*(G|[u])$ be the C^{*}-algebra of the locally compact groupoid transitive G[u] with respect to the Haar system $\{\nu^v, v \in [u]\}$ and $\|\|_{\pi(u)}$ be the C^* -norm of this algebra.

Let $f \in C_c(G)$. We shall prove that $||f|| = \sup_{[u]} ||f|_{G[[u]]}||_{\pi(u)}$. Consequently, $C^{*}(G)$ is isomorphic with the completion of

$$\left\{ \left(f_{\pi(u)} \right)_{\pi(u) \in G^{(0)}/G} : (\exists) \ f \in C_c (G) \text{ such that } f|_{G|[u]} = f_{\pi(u)} \right\}$$

in the norm $\left\| \left(f_{\pi(u)}\right)_{\pi(u)} \right\| = \sup \left\| f_{\pi(u)} \right\|_{\pi(u)}$. In order to prove the equality $\|f\| = \sup_{[u]} \|f|_{G|[u]} \|_{\pi(u)}$, we shall show that every representation of $C_c(G)$ induced by a representation $(\mu, G^{(0)} * \mathcal{H}, L)$ of G

can be written $L = \int L_{\pi(u)} d\mu(u)$, where $L_{\pi(u)}$ is the representation induced by $(\eta_{\pi(u)}, (G^{(0)} * \mathcal{H})|_{[u]}, L|_{G[[u]})$ with $\eta_{\pi(u)}$ a probability measure equivalent to $d_*(\nu^u)$.

2. The decomposition of a Haar system on a locally compact groupoid

Let G be a locally compact second countable groupoid with a continuous Haar system, i.e. a family of positive Radon measures on G, $\{\nu^u, u \in G^{(0)}\}$, such that

1) For all $u \in G^{(0)}$, $supp(\nu^u) = G^u$.

2) For all $f: G \to \mathbf{C}$ continuous with compact support,

$$u \to \int f(x) d\nu^u(x) \left[: G^{(0)} \to \mathbf{C}\right]$$

is continuous.

3) For all $f: G \to \mathbf{C}$ continuous with compact support, and all $x \in G$,

$$\int f(y) d\nu^{r(x)}(y) = \int f(xy) d\nu^{d(x)}(y)$$

Let μ_0 be a quasi-invariant probability for the Haar system (Definition 3.2/p. 23 [4]), and let ν_0 be the measure on G induced by μ_0 . let $\lambda \in [\nu_0]$ be a symmetric probability $(\lambda = \lambda^{-1})$. We set $\tilde{\lambda} = d_*(\lambda) = r_*(\lambda)$. Let $\lambda = \int \lambda^u d\tilde{\lambda}(u)$ be the r-decomposition of λ in the sense of Theorem 2.1/ p. 5 [4]. If we set $\nu = \int \nu^u d\tilde{\lambda}(u)$, then $\nu \tilde{\nu}_0 \tilde{\lambda}$. If P is a positive Borel function such that $P = \frac{d\nu}{d\lambda}$, then $P = \frac{d\nu^u}{d\lambda^u}$ for -a.a. $u \in G^{(0)}$.

 $(G, [\lambda])$ is a measure groupoid in the sense of P. Hahn [4] and $(\nu, \tilde{\lambda})$ is a Haar measure for $(G, [\lambda])$ (Definition 3.11/ p. 39 [4]). Let $\mathcal{E} = (r, d)(G)$ be the associated equivalence relation on $G^{(0)}$ and set $\lambda' = (r, d)_*(\lambda)$. Let $\lambda = \int \lambda_{u,v} d\lambda' (u, v)$ be a decomposition of λ relative to (r, d). Applying Theorem 3.9/ pg.17 [4] to the groupoid $(\mathcal{E}, [\lambda'])$, we obtain

LEMMA 1. There is a conull Borel set $U'_0 \subset G^{(0)}$ and a Borel function $q: G|U'_0 \to \mathbf{R}^*_+$ such that

λ' has the r-decomposition λ' = ∫ λ'^u dλ̃ (u) on E₀ = E|U'₀.
 For all f : E₀ → **R**₊ Borel and all (u, v) ∈ E₀,

$$\int f((u,v)(s,t)) q(s,t) d\lambda'^{v}(s,t) = \int f(s,t) q(s,t) d\lambda'^{u}(s,t)$$
3) $(u,v) \rightarrow \frac{q(u,v)}{q(v,u)}$ is a strict homomorphism of \mathcal{E}_{0} into \mathbf{R}_{+}^{*} .

The following lemma is derived from Theorem 4.4/pg.23[4] converted to left invariance.

LEMMA 2. There exists a conull Borel set $U_0 \subset G^{(0)}$ such that (i) $(u, v) \rightarrow \frac{q(u, v)}{q(v, u)}$ is a strict homomorphism of $\mathcal{E}_0 = \mathcal{E}|U_0$ into \mathbf{R}^*_+ . (ii) $y \rightarrow \frac{P(y)}{P(y^{-1})} = \Delta = \frac{d\nu}{d\nu^{-1}}$ is a strict homomorphism of $G_0 = G|U_0$ into \mathbf{R}^*_+ . If we define $\delta: G_0 \rightarrow \mathbf{R}^*_+$, by

$$\delta(y) = \frac{P(y)}{P(y^{-1})} \frac{q(d(y), r(y))}{q(r(y), d(y))} = \Delta(y) \frac{q(d(y), r(y))}{q(r(y), d(y))}$$

then δ is a strict homomorphism.

On G_0 the integral $f \to \int f(y) P(y) d\lambda(y)$ has a (r, d)-decomposition

$$\int_{\mathcal{E}_{0}}\int_{G_{0}}f\left(y\right)d\nu_{u,v}\left(y\right)q\left(u,v\right)d\lambda'\left(u,v\right)$$

with respect to λ' on \mathcal{E}_0 such that:

1) $\nu_{u,v}$ is σ -finite measure supported on G_v^u , for all $(u,v) \in \mathcal{E}_0$.

2) For all $f \ge 0$ 0 Borel on G,

$$(u,v) \mapsto \int f(y) d\nu_{u.v}(y) \left[: \mathcal{E}_0 \to \overline{\mathbf{R}}\right]$$

is an extended real-valued Borel function.

3) For all $f \geq 0$ Borel on G,

$$\int f(xy) \, d\nu_{d(x),v}(y) = \int f(y) \, d\nu_{r(x),v}(y)$$

for all $x \in G_0$, $v \in G^{(0)}$ such that $(d(x), v), (r(x), v) \in \mathcal{E}_0$. 4) For all $f \ge 0$ Borel on G,

$$\delta(x) \int f(yx) d\nu_{u,r(x)}(y) = \int f(y) d\nu_{u,d(x)}(y)$$

for all $x \in G_0$, $u \in G^{(0)}$ such that $(u, r(x)), (u, d(x)) \in \mathcal{E}_0$.

Thus $\nu_{u,u}$ is a left Haar measure on G_u^u and $\delta|_{G_u^u}$ is its modular function for all $u \in U_0$.

As we have noted in [2], using a similar argument as in Theorem 3.4/p. 329[7], the relations in the preceding lemma can be extended to a saturated conull Z set :

LEMMA 3. On G_0 the integral $f \to \int f(y) P(y) d\lambda(y)$ has a (r,d)-decomposition

$$\int_{\mathcal{E}_{0}}\int_{G_{0}}f\left(y\right)d\nu_{u,v}\left(y\right)q\left(u,v\right)d\lambda'\left(u,v\right)$$

with respect to λ' on \mathcal{E}_0 such that for some saturated conull σ -compact $Z \subset G^{(0)}$ we have:

1) $\nu_{u,v} \neq 0$, for all $u, v \in Z$, with u v.

2) For all $f \geq 0$ Borel on G,

$$\int f(xy) d\nu_{d(x),v}(y) = \int f(y) d\nu_{r(x),v}(y)$$

for all $x \in G | Z$, $v \in Z$ such that $v \tilde{r}(x)$.

3) For all $f \geq 0$ Borel on G,

$$\delta(x) \int f(yx) d\nu_{u,r(x)}(y) = \int f(y) d\nu_{u,d(x)}(y)$$

for all $x \in G | Z$, $u \in Z$ such that $u \tilde{r}(x)$.

4) $\delta, \Delta: G|Z \to \mathbf{R}^*_+$ are strict homomorphisms

5) For all $f \ge 0$ Borel on G,

$$\int f(x^{-1}) \delta(x^{-1}) d\nu_{u,v}(x) = \int f(x) d\nu_{v,u}(x)$$

for all $u, v \in Z$, with u v.

In what follows we shall assume that (r, d) (G) is a closed subset of $G^{(0)} \times G^{(0)}$. Let $\pi : G^{(0)} \to G^{(0)}/G$ $(u^{\tilde{v}} < => \exists x \in G$ such that r(x) = u and d(x) = v) be the canonical projection.

We shall prove that for each orbit [u], there is a probability $\eta_{\pi(u)}$ supported on [u] such that:

1) $d_*(\nu^v) \sim \eta_{\pi(u)}$ for all $v \in [u]$

2) $\nu^{v} = \int \nu_{v,w} d\eta_{\pi(u)}(w)$ for all $v \in [u]$, where $\{\nu_{u,v}, u, v \in G^{(0)}, u \sim v\}$ is a system of measures with the properties in the preceding section.

¿From this will easily follow that every quasi-invariant measure for $\{\nu^u, u \in G^{(0)}\}$ is equivalent with $\int \eta_{\dot{u}} d\tilde{\mu}(\dot{u})$, for some probability measure $\tilde{\mu}$ on $G^{(0)}/G$.

 π is a continuous open map from the second countable, locally compact, Hausdorff space G onto the second countable, locally compact, Hausdorff space $G^{(0)}/G$. From Theorem 3.3[1] it follows that there is a full π -system of Radon measures on $G^{(0)}$, i.e. a family of positive Radon measures on $G^{(0)}, \{\mu_{\dot{u}}^1, \dot{u} \in G^{(0)}/G\}$, such that:

1) For all $\dot{u} \in G^{(0)}/G$, $\operatorname{supp}(\mu_{\dot{u}}^1) = [u]$.

2) For all f in $C_c(G^{(0)})$,

$$\dot{u} \rightarrow \int f(v) d\mu_{\dot{u}}^{1}(v) \left[: G^{(0)}/G \rightarrow \mathbf{R}\right]$$

is continuous with compact support.

Let

$$\nu_{\dot{u}}^{1} = \int \nu^{w} d\mu_{\dot{u}}^{1}\left(w\right).$$

Then for all f in $C_c(G)$,

$$\dot{u} \rightarrow \int f(x) d\nu_{\dot{u}}^{1}(x) \left[: G^{(0)}/G \rightarrow \mathbf{R}\right]$$

is continuous with compact support.

Let $(K_n)_n$ be an increasing sequence of compact sets with $\bigcup_n K_n = G$. For each n, let $f_n : G \to [0,1]$ be a continuous with compact support function such that $f_n(x) = 1$ for all $x \in K_n$. Let $a_n(\dot{u}) = \frac{1}{2^n \nu_u^1(f_n)}$ if $\nu_{\dot{u}}^1(f_n) > 1$, and $a_n(\dot{u}) = \frac{1}{2^n}$ otherwise. It is not hard to see that $\dot{u} \to a_n(\dot{u})$ is continuous. Let

$$P_{\dot{u}}(x) = \sum_{n} a_{n}(\dot{u}) f_{n}(x) \text{ for all } x \in G$$

Since $|a_n(\dot{u}) f_n(x)| \leq \frac{1}{2^n}$, it follows that $(\dot{u}, x) \to \sum_n a_n(\dot{u}) f_n(x)$ is uniformly convergent and therefore $(\dot{u}, x) \to P_{\dot{u}}(x)$ is continuous. Thus, for all f in $C_c(G)$,

$$\dot{u} \rightarrow \int f(x) P_{\dot{u}}(x) d\nu_{\dot{u}}^{1}(x) \left[: G^{(0)}/G \rightarrow \mathbf{R}\right]$$

is continuous with compact support. If we set $M(\dot{u}) = \int P_{\dot{u}}(x) d\nu_{\dot{u}}^{1}(x)$, then $0 < M(\dot{u}) < \infty$ and $\dot{u} \to M(\dot{u})$ is continuous. Let $\lambda_{\dot{u}}^{1}$ define by

$$\lambda_{\dot{u}}^{1}\left(f\right) = \frac{1}{M\left(\dot{u}\right)} \int f\left(x\right) P_{\dot{u}}\left(x\right) d\nu_{\dot{u}}^{1}\left(x\right)$$

for all f continuous with compact support. Then $\dot{u} \to \lambda_{\dot{u}}^1$ is continuous and consequently, $\dot{u} \to d_* \left(\lambda_{\dot{u}}^1\right)$ is continuous. Let $\mu_{\dot{u}}^2 = d_* \left(\lambda_{\dot{u}}^1\right)$ and $\nu_{\dot{u}}^2 = \int \nu^w \ d\mu_{\dot{u}}^2 (w)$. With the same argument, for each \dot{u} we can choose a probability measure $\lambda_{\dot{u}}^2$ in the class of $\nu_{\dot{u}}^2$ such that $\dot{u} \to \lambda_{\dot{u}}^2$ is continuous. For each \dot{u} , let $\left(\lambda_{\dot{u}}^2\right)^{-1}$ the image of $\lambda_{\dot{u}}^2$ by the inverse map, and let $\lambda_{\dot{u}} = \frac{1}{2} \left(\lambda_{\dot{u}}^2 + \left(\lambda_{\dot{u}}^2\right)^{-1}\right)$. Then $\dot{u} \to \lambda_{\dot{u}}$ is continuous and consequently, $\dot{u} \to d_* (\lambda_{\dot{u}})$ is continuous. Let $\eta_{\dot{u}} = d_* (\lambda_{\dot{u}})$. Then for each $\dot{u} \eta_{\dot{u}}$ is a transitive quasi-invariant probability for the Haar system $\{\nu^u, u \in G^{(0)}\}$ and $\dot{u} \to \eta_{\dot{u}}$ is continuous.

Let μ a quasi-invariant measure for the Haar system $\{\nu^u, u \in G^{(0)}\}$ and let $\mu_1 = \int \eta_{\pi(u)} d\mu(u)$.

The quasi-invariance of μ and the quasi-invariance of $\eta_{\dot{u}}$ imply that $\mu_1 \, \mu$. Let $\lambda = \int \lambda_{\pi(u)} d\mu(u)$, and observe that for all f continuous with compact support

$$\int f(x) d\lambda(x) = \int f(x) d\lambda_{\pi(u)}(x) d\mu(u) = \int f(x^{-1}) d\lambda_{\pi(u)}(x) d\mu(u)$$
$$= \int f(x^{-1}) d\lambda(x)$$

and

$$\int f(u) \, d\mu_1(u) = \int f(v) \, d\eta_{\pi(u)}(v) \, d\mu(u) = \int f(d(x)) \, d\lambda_{\pi(u)}(x) \, d\mu(u)$$
$$= \int f(d(x)) \, d\lambda(x)$$

Therefore $\mu_1 = d_*(\lambda)$ with λ a symmetric probability measure on G. Let $\nu = \int \nu^u d\mu_1(u)$ and $\eta = \int \eta_{\pi(w)} \times \eta_{\pi(w)} d\mu(w) = \int \eta_{\pi(w)} d\mu_1(w)$. Let $\lambda = \int \lambda^u d\mu_1(u)$ be a *r*-decomposition of λ and $\lambda' = (r, d)_*(\lambda)$. The quasi-invariance of the transitive measure $\eta_{\dot{u}}$ implies that $d_*(\nu^u) \tilde{\eta}_{\pi(u)}$ and $\delta_u \times d_*(\nu^u) \tilde{\delta}_u \times \eta_{\pi(u)}$. Consequently,

$$\int \delta_{u} \times d_{*} (\lambda^{u}) d\mu_{1} (u) \tilde{\int} \delta_{u} \times d_{*} (\nu^{u}) d\mu_{1} (u) \tilde{\int} \delta_{u} \times \eta_{\pi(u)} d\mu_{1} (u)$$

On the other hand, for all f continuous with compact support, we have

$$\int \int f(s,t) \,\delta_u \times d_* \left(\lambda^u\right)(s,t) \,d\mu_1\left(u\right) = \int \int f\left(u,d\left(x\right)\right) \lambda^u\left(x\right) d\mu_1\left(u\right)$$
$$= \int f\left(r\left(x\right),d\left(x\right)\right) \lambda\left(x\right)$$
$$= \int f\left(s,t\right) \lambda'\left(s,t\right)$$

Therefore $\eta \tilde{\lambda}'$. If $q = \frac{d\eta}{d\lambda'}$, then q is positive Borel function and it easy to verify that for μ_1 -a.a. $u = \frac{d(\delta_u \times \eta_{\pi(u)})}{d\lambda'^u}$, where $\lambda' = \int \lambda'^u d\mu_1(u)$ is a r-decomposition of λ' . So

$$\int f\left(\left(u,v\right)\left(s,t\right)\right)q\left(s,t\right)d\lambda'^{v}\left(s,t\right) = \int f\left(s,t\right)q\left(s,t\right)d\lambda'^{u}\left(s,t\right).$$

Applying Theorem 3.9/p. 17[4] and Corollary 3.14/p. 19[4], it results that

$$\frac{q\left(v,u\right)}{q\left(u,v\right)} = \frac{d\eta^{-1}}{d\eta} \text{ and } (u,v) \to \frac{q\left(u,v\right)}{q\left(v,u\right)} \text{ is an a.e. homomorphism.}$$

Since $\eta^{-1} = \eta$, it follows that $\frac{q(u,v)}{q(v,u)} = 1$ for η -a.a. (u,v). Let $\Delta = \frac{d\nu}{d\nu^{-1}}$ be a modular function associated to the Haar system $\{\nu^u, u \in G^{(0)}\}$ and the quasi-invariant measure μ_1 , and let $\delta(y) = \Delta(y) \frac{q(d(y), r(y))}{q(r(y), d(y))}$. We have $\Delta(y) = \delta(y) \nu$ -a.a. y because $\frac{q(u,v)}{q(v,u)} = 1$ for η -a.a. (u,v).

Applying Lemma 2 and Lemma 3, we obtain that there is a μ_1 -conull saturated subset Z of $G^{(0)}$ such that on $G_0 = G|Z$ the integral $f \to \int f(y) \nu(y)$ has the (r, d)-decomposition

$$\int \int f(y) \, d\nu_{u,v}(y) \, q(u,v) \, d\lambda'(u,v)$$

with respect to λ' . Hence,

LEMMA 4. There exists a μ_1 -conull saturated σ -compact subset Z of $G^{(0)}$ and a system of measures, $\{\nu_{u,v}, u, v \in Z, u^v\}$, with the following properties:

1) $\nu_{u,v}$ is supported on G_v^u , and $\nu_{u,v} \neq 0$, for all $u, v \in Z, u^{\sim}v$.

2) For all $f \ge 0$ Borel on $G_0 = G|Z$,

$$\int f(y) d\nu(y) = \int \int f(y) d\nu_{u,v}(y) d\eta(u,v)$$
$$= \int \int \int \int \int f(y) d\nu_{u,v}(y) d\eta_{\pi(w)}(v) d\eta_{\pi(w)}(u) d\mu(w).$$

3) For all $f \ge 0$ Borel on $G_0 = G|Z$,

$$(u, v) \mapsto \int f(y) d\nu_{u.v}(y) [: (r, d) (G_0) \to \overline{\mathbf{R}}]$$

is an extended real-valued Borel function.

4) For all $f \ge 0$ Borel on $G_0 = G|Z$,

$$\int f(xy) \, d\nu_{d(x),v}(y) = \int f(y) \, d\nu_{r(x),v}(y) \quad \text{for all } x \in G_0, \ v \in [d(x)]$$

5) For all $f \ge 0$ Borel on $G_0 = G|Z$,

$$\Delta(x) \int f(yx) \, d\nu_{u,r(x)}(y) = \int f(y) \, d\nu_{u,d(x)}(y) \quad \text{for all } x \in G_0, \ u \in [d(x)]$$

6) Δ: G₀ → R^{*}₊ is a strict homomorphisms.
7) For all f ≥ 0 Borel on G₀ = G|Z,

$$\int f(y) \, d\nu_{u,v}(y) = \int f(y^{-1}) \, \Delta(y^{-1}) \, d\nu_{v,u}(y) \text{ for all } (u,v) \in (r,d) \, (G_0)$$

8) For μ -a.a. $u \in G^{(0)} = G|Z$,

$$\nu^{u} = \int \nu_{u,v} d\eta_{\pi(u)} \left(v \right)$$

PROOF. Let us apply Lemma 2 and Lemma 3 to the groupoid G, the Haar system $\{\nu^u, u \in G^{(0)}\}$ and the quasi-invariant probability $\mu_1 = \int \eta_{\pi(u)} d\mu(u) = d_*(\lambda)$. Now it is easy to see that the system $\{\nu_{u,v}, u, v \in Z, u^*v\}$ fulfills 1)-7). Let us prove 8). Let $f, g \geq 0$ be two Borel functions on G. Then

$$\int g(u) \left(\int f(x) d\nu^{u}(x) \right) d\mu_{1}(u)$$

$$= \int g(r(x)) f(x) d\nu(x)$$

$$= \int \int \int \int g(r(x)) f(x) d\nu_{u,v}(x) d\eta_{\pi(w)}(v) d\eta_{\pi(w)}(u) d\mu(w)$$

$$= \int \int g(u) \left(\int \int f(x) d\nu_{u,v}(x) d\eta_{\pi(u)}(v) \right) d\eta_{\pi(w)}(u) d\mu(w)$$

$$= \int g(u) \left(\int \int f(x) d\nu_{u,v}(x) d\eta_{\pi(u)}(v) \right) d\mu_{1}(u)$$

$$= \int g(u) \int \int f(x) d\nu_{u,v}(x) d\mu_{\pi(u)}(v) d\mu_{1}(u)$$

Hence $\int f(x) d\nu^{u}(x) = \int \int f(x) d\nu_{u,v}(x) d\eta_{\pi(u)}(v)$ for μ_{1} -a.a. u.

REMARK 1. With the notation in the preceding lemma, $\Delta|_{G|[u]}$ is the modular function associated to the Haar system $\{\nu^u, u \in G^{(0)}\}$ and the quasi-invariant measure $\eta_{\pi(u)}$ for μ -a.a. u. Indeed, let $\nu_{\dot{u}} = \int \nu^u d\eta_{\dot{u}}$, and $g \geq 0$ a Borel function on $G^{(0)}/G$, $f \geq 0$ a Borel function on G. We have

$$\begin{aligned} \int g(\pi(u)) \left(\int f(x) \, d\nu_{\pi(u)}(x) \right) d\mu(u) \\ &= \int g(\pi(u)) \left(\int f(x) \, d\nu^{u}(x) \right) d\mu_{1}(u) \\ &= \int g(\pi(r(x))) f(x) \, d\nu(x) \\ &= \int g(\pi(r(x))) f(x) \Delta(x) \, d\nu^{-1}(x) \\ &= \int g(\pi(d(x))) f(x^{-1}) \Delta(x^{-1}) \, d\nu(x) \\ &= \int g(\pi(u)) \left(\int f(x^{-1}) \Delta(x^{-1}) \, d\nu^{u}(x) \right) d\mu_{1}(u) \\ &= \int \int g(\pi(u)) \left(\int f(x^{-1}) \Delta(x^{-1}) \, d\nu^{u}(x) \right) d\eta_{\pi(w)}(u) \, d\mu(w) \\ &= \int g(\pi(w)) \left(\int f(x^{-1}) \Delta(x^{-1}) \, d\nu_{\pi(w)}(x) \right) d\mu(w) . \end{aligned}$$

Hence $\int f(x) d\nu_{\pi(u)}(x) = \int f(x^{-1}) \Delta(x^{-1}) d\nu_{\pi(u)}(x)$ for μ -a.a. u, and so $\Delta = \frac{d\nu_{\pi(u)}}{d(\nu_{\pi(u)})^{-1}}$.

3. The structure of the C^* -algebra of a locally compact groupoid

REMARK 2. If $(\mu, G^{(0)} * \mathcal{H}, L)$ is a representation of the locally compact groupoid G (Definition 3.20 [5]), then for μ -a.a. u $(\eta_{\pi(u)}, (G^{(0)} * \mathcal{H})|_{[u]}, L|_{G|[u]})$ is a representation of the locally compact groupoid G|[u]. We shall denote the representation induced by $(\eta_{\pi(u)}, (G^{(0)} * \mathcal{H})|_{[u]}, L|_{G|[u]})$ by $L_{\pi(u)}$. Also $L_{\pi(u)}$ can be viewed as a representation of the entire groupoid with respect to the transitive measure $\eta_{\pi(u)}$.

Let L be a representation of the space $C_c(G)$. L is unitarily equivalent to the integrated form of a representation on groupoid also denoted by L:

$$\left(\mu, G^{(0)} * \mathcal{H}, L\right) \ \ \ \left(\mu_1, G^{(0)} * \mathcal{H}, L\right)$$

(where $\mu_1 = \int \eta_{\pi(u)} d\mu(u) \, \tilde{\mu}$).

The relation between the two representation is:

$$\langle L(f)\,\xi_1,\xi_2\rangle = \int f(x)\,\langle L(x)\,\xi_1(d(x))\,,\xi_2(r(x))\rangle\,\Delta^{-\frac{1}{2}}(x)\,d\nu^u(x)\,d\mu_1(u)$$

where $f \in C_c(G)$, $\xi_1, \xi_2 \in \int_{G^{(0)}}^{\oplus} \mathcal{H}(u) d\mu_1(u)$. (Δ is the modular function of the Haar system { $\nu^u, u \in G^{(0)}$ } and the quasi-invariant measure μ_1).

Also we shall denote by $L_{\pi(u)}$ the representation induced by

$$\left(\eta_{\pi(u)},\left(G^{(0)}*\mathcal{H}
ight)|_{[u]},L|_{G|[u]}
ight)$$

on C_c (G|([u])). (on the locally compact groupoid G|[u] we shall consider the Haar system $\{\nu^v, v \in [u]\}$). Then we have

$$\left\langle L_{\pi(u)}(f)\,\xi_{1},\xi_{2}\right\rangle = \int f(x)\,\left\langle L(x)\,\xi_{1}(d(x))\,,\xi_{2}(r(x))\right\rangle \Delta^{-\frac{1}{2}}(x)\,d\nu^{v}(x)\,d\eta_{\pi(u)}(v)$$

where $f \in C_c(G|[u]), \xi_1, \xi_2 \in \int_{G^{(0)}}^{\oplus} \mathcal{H}(v) d\eta_{\pi(u)}(v)$. (because $\Delta|_{G|[u]}$ is the modular function of the Haar system $\{\nu^v, v \in [u]\}$ and the quasi-invariant measure $\eta_{\pi(u)}$ for $\mu_1 = a.a. u$).

For $f \in C_c(G)$, let us denote

 $\|f\| = \sup \{\|L(f)\| : L \text{ representation of } C_c(G)\}$ (the C*-norm of f) $\|f\|_* = \sup \{\|L(f)\| : L \text{ representation of } C_c(G) \text{ with respect to a transitive measure}\}$ Obviously, $\|f\|_* \le \|f\|$ for any $f \in C_c(G)$.

LEMMA 5. With the notation of Remark 2 $||f||_* = ||f||$ for all $f \in C_c(G)$.

PROOF. It is suffices to prove $||f||_* \geq ||f||$. Let L be a representation of $C_c(G)$, which is the integrated form of $(\mu_1, G^{(0)} * \mathcal{H}, L)$. Let us denote $||\xi||_{\pi(u)} = \left(\int ||\xi(v)||^2 d\eta_{\pi(u)}(v)\right)^{\frac{1}{2}}$ for $\xi \in \int_{G^{(0)}}^{\oplus} \mathcal{H}(u) d\mu_1(u)$. Then $||\xi||^2 = \int ||\xi||_{\pi(u)}^2 \mu(u)$.

Let
$$f \in C_{c}(G), \xi_{1}, \xi_{2} \in \int_{G^{(0)}}^{\oplus} \mathcal{H}(u) d\mu_{1}(u)$$
. We have

$$\begin{aligned} |\langle L(f) \xi_{1}, \xi_{2} \rangle| \\ &= \left| \int \int f(x) \langle L(x) \xi_{1}(d(x)), \xi_{2}(r(x)) \rangle \Delta^{-\frac{1}{2}}(x) d\nu^{u}(x) d\mu_{1}(u) \right| \\ &= \left| \int \left(\int \int f(x) \langle L(x) \xi_{1}(d(x)), \xi_{2}(r(x)) \rangle \Delta^{-\frac{1}{2}}(x) d\nu^{u}(x) d\eta_{\pi(w)}(u) \right) d\mu(w) \right| \\ &\leq \int \left| \langle L_{\pi(w)}(f) \xi_{1}, \xi_{2} \rangle \right| d\mu(w) \\ &\leq \int \left\| L_{\pi(w)}(f) \right\| \|\xi_{1}\|_{\pi(w)} \|\xi_{2}\|_{\pi(w)} d\mu(w) \\ &\leq \|f\|_{*} \int \|\xi_{1}\|_{\pi(w)} \|\xi_{2}\|_{\pi(w)} d\mu(w) \\ &\leq \|f\|_{*} \left(\int \|\xi_{1}\|_{\pi(w)}^{2} d\mu(w) \right)^{\frac{1}{2}} \left(\int \|\xi_{2}\|_{\pi(w)}^{2} d\mu(w) \right)^{\frac{1}{2}} \\ &= \|f\|_{*} \|\xi_{1}\| \|\xi_{2}\|. \end{aligned}$$
Thus $\|f\| \leq \|f\|_{*}.$

THEOREM 1. Let G be a locally compact second countable groupoid which admits a continuous Haar system. As a consequence the range map, $r: G \to G^{(0)}$, is an open map. Assume that (r, d) (G) is a closed subset of $G^{(0)} \times G^{(0)}$ (the graph of the equivalence relation induced on $G^{(0)}$ is closed).

Then $C^*(G)$ is isomorphic to the completion of

$$\left\{ \left(f_{\pi(u)} \right)_{\pi(u) \in G^{(0)}/G} : (\exists) \ f \in C_c \ (G) \ such \ that \ f|_{G|[u]} = f_{\pi(u)} \right\}$$

in the norm $\|(f_{\pi(u)})_{\pi(u)}\| = \sup \|f_{\pi(u)}\|_{\pi(u)}.$

PROOF. Let $\{\nu^u, u \in G^{(0)}\}$ be a continuous Haar system on G. Let $C^*(G)$ be the C^{*}-algebra of G with respect to the Haar system $\{\nu^u, u \in G^{(0)}\}$ and |||| be the C^{*}-norm. For each orbit [u], let $C^*(G|[u])$ be the C^{*}-algebra of the locally compact groupoid G|[u] with respect to the Haar system $\{\nu^v, v \in [u]\}$ and $\|\|_{\pi(u)}$ be the C^* -norm of this algebra.

Let
$$f \in C_c(G)$$
. Applying the preceding lemma, $||f|| = ||f||_* = \sup_{[u]} ||f|_{G|[u]}||_{\pi(u)}$

Then it is easy to observe that $C^*(G)$ is isomorphic to the algebra obtained by completing

$$\left\{ \left(f_{\pi(u)} \right)_{\pi(u) \in G^{(0)}/G} : \ (\exists) \ f \in C_c \ (G) \ \text{ such that } f|_{G|[u]} = f_{\pi(u)} \right\}$$

in the norm $\left\| \left(f_{\pi(u)}\right)_{\pi(u)} \right\| = \sup \left\| f_{\pi(u)} \right\|_{\pi(u)}$. Since all the groupoids G|[u] are transitive, the structures of the C^* - algebras $C^*(G|[u])$ are known (see [6]).

References

[1] E. Blanchard, Deformation de C^{*}- algebras de Hopf, Bull. Math. France, 124, 141-215, 1996.

[2] M. Buneci, *Consequences of Hahn structure theorem for the Haar measure*, to appear in Mathematical Reports.

[3] M. Buneci, *Haar systems and homomorphisms on groupoids*, 4th Operator Algebras and Mathematical Physics Conference, Constanta, 2001.

[4] P. Hahn, *Haar measure for measure groupoids*, Trans. Amer. Math. Soc. **242**(1978)1-33

[5] P. Muhly, Coordinates in operator algebra, preprint 1997

[6] P. Muhly, J. Renault and D. Williams, Equivalence and isomorphism for groupoid C^* -algebras, J. Operator Theory **17**(1987), 3-22

[7] A. Ramsay, Topologies on measured groupoids, J. Funct. Anal. 47(1982), 314-343.

[8] J. Renault, A groupoid approach to C^* - algebras, Lecture Notes in Math., Springer-Verlag, **793** (1980).

University Constantin Brancusi of Targu-Jiu Bulevardul Republicii, Nr. 1, 1400 Targu-Jiu , Gorj Romania e-mail: ada@utgjiu.ro