Chem 333
Final Exam
Dec 14, 2001
Professor Fox

Write your name on every page
200 points

Name

Name

\qquad

1. (16 points) Match each structure with the correct spectrum

C

d

$\xrightarrow{\mathrm{a}}$
write the answers on these lines
a

b

d

\qquad
2. Calculate the UV maximum for the following compounds. (20 points)

Base	215
Double bond extension(DBE)	30
δ alkyl	18
homodiene	39
	302 nm

		Base(homodiene)	253
Base	215	2 DBE	60
2 DBE	60	6 alkyls	30
β alkyl	54	3 exocyclic olefins	15
$3>\gamma$ alkyl	39		358 nm
3 exocyclic olefins	15		
	356 nm		

Base 202
α bromo 25
2β alkyls 24
Exocyclic olefin 5
256 nm

358 nm
\qquad
3. Explain how the labeled fragments are formed. Relative intensities are given in parentheses. (20 points)

\qquad
4. The mass spectra of compounds \mathbf{A} and \mathbf{B} are nearly identical, except for the additional peak at 208 in the spectrum of \mathbf{A}. Explain why, and in doing so assign the labeled peaks in the mass spectrum. (20 points)

\qquad
5. McLafferty rearrangements of the molecules depicted below will give rise to fragments that can be detected by mass spectrometry. Circle the fragments that are observed.
You may need to circle more than one answer for each! (24 points)

$120 \quad 121$
(122)

120
121
122

121
122

121
122

120

122

122

121
122

121
122

To receive full credit for question 6, clearly show your rationale for elucidating the structure. In addition, all ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts, as well as ${ }^{1} \mathrm{H}$ coupling constants must be assigned and displayed in the designated blocks. This will involve drawing your final structure at least 3 times. Simply drawing the structure of the product will get you no credit.

To receive full credit for question 7, clearly show your rationale for elucidating the structure. In addition, all ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts, as well as ${ }^{1} \mathrm{H}$ coupling constants must be assigned and displayed in the designated blocks. This will involve drawing your final structure at least 3 times. Furthermore, assign at least 2 peaks associated with the main functional groups in the IR spectrum. Also, assign the bolded numbers in the mass spectrum. Simply drawing the structure of the product will get you no credit.
\qquad
6. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ (50 points)
${ }^{1} \mathrm{H}$ NMR
7.30, m, 2H
$6.95, \mathrm{~m}, 3 \mathrm{H}$
4.22 , dd, 1H, J=3.5, 11.3 Hz
3.97 , dd, 1H, J=5.7, 11.3 Hz
$3.36, \mathrm{~m}, 1 \mathrm{H}$
2.91, dd, 1H, J=4.4, 5.2 Hz
2.76, dd, 1H, J=3.3, 5.2 Hz
${ }^{13} \mathrm{C}$ NMR
158.5, s
129.5 , d (2)
121.3, d
114.7, d,(2)
68.7, t
50.2, d
44.7, t

Question 6 continued
\qquad
${ }^{13} \mathrm{C}$ chemical shift assignments

${ }^{1} \mathrm{H}$ Chemical shift assignments

7. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ (50 points)
${ }^{1} \mathrm{H}$ NMR
6.86. bs, 1H
6.83-6.72, m, 5H
6.5. bs. 1H
2.88, dd, 1H, J=5.7, 8.6 Hz
2.45 , dd, 1H, J=5.7, 13.3 Hz
2.14, dd, 1H, J=8.6, 13.3 Hz
1.1, bs, 2H

Name \qquad
${ }^{13} \mathrm{C}$ NMR
176.7, s
138.9, s
129.3, d (2)
128.0, d (2)
126.0, d
56.2, d
41.2, t

MS:
164(15), 147(4),
146(4), 120(100),
103(12), 91(13),
73(19), 65(5),
51(2), 28(4), 18(6)

IR

${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$

Question 7 continued
Name

Question 7 continued

 Name $\qquad$${ }^{13} \mathrm{C}$ chemical shift assignments

${ }^{1} \mathrm{H}$ Chemical shift assignments

${ }^{1} \mathrm{H}$ coupling constant assignments

IR assignments

Question 7 continued
Name \qquad

Mass Spec assignments

$\mathrm{m} / \mathrm{z}=91$

need to have a
$m / z=120$
$\mathrm{m} / \mathrm{z}=73$

