

1,000 kilometers (106 m) m)

$\longmapsto \quad 1,000$ kilometers (106 m)

10 kilometers (104 m) m)

100 meters (102 m)
 m)

How old is the Universe?

The Cosmic Calendar

- if the entire age of the Universe were one calendar year
- one month would be approximately 1 billion real years

Feb.
$\begin{array}{cc}\text { Jan. } 1 & \text { Feb. } \\ \text { The } & \text { The } \\ \text { Milky Way } \\ \text { Big Bang } & \text { forms. }\end{array}$
$\begin{array}{cc}\text { Jan. } 1 & \text { Feb. } \\ \text { The } & \text { The } \\ \text { Milky Way } \\ \text { Big Bang } & \text { forms. }\end{array}$
$\begin{array}{cc}\text { Jan. } 1 & \text { Feb. } \\ \text { The } & \text { The } \\ \text { Milky Way } \\ \text { Big Bang } & \text { forms. }\end{array}$

Sept. 3 Earth forms.

Big Bang forms.

Copyright © 2004 Pearson Edicetion, publishing as Addison Wesloy

The Celestial Sphere

The sky above looks like a dome... a hemisphere..
If we imagine the sky around the entire Earth, we have the celestial sphere.
This a 2-dimensional representation of the sky
Because it represents our view from Earth, we place the Earth in the center of this sphere.

The Celestial Sphere

North \& South cal moles

the points in the sky directly above the Earth's North and South poles
celestial equa
the extension of the Earth's equator onto the celestial sphere
the annual path of the Sun through the celestial sphere, which is a projection of ecliptic plane

A spinning imaginary Celestial Sphere surrounding Earth aids in navigating the sky

Measuring the Sky

We measure the sky in angles, not distances.

- Full circle $=360^{\circ}$
- $1^{\circ}=60 \operatorname{arcmin}$
- $1 \operatorname{arcmin}=60 \operatorname{arcsec}$

Angular Measurements and Notation:

- Full circle $=360^{\circ}$
- $1^{\circ}=60 \quad$ (arcminutes)
$\cdot 1=60$ (arcseconds)

What is 55.435 degrees in degrees-minutes-seconds notation?

55 deg
$0.435(60) \quad 26.1$ arcmin 26 arcmin
0.1(60) 6arcsec
so, $55^{\circ} 26^{\prime} 06^{\prime \prime}$
What is $73^{\circ} 4533.56$ in decimal degrees?
73 deg
45/60 . 75
$33.56 / 3600 \quad 0.009322$
73.759322

Problem

45.635 degrees is how many degrees, arcminutes, and arcseconds?

- How many degrees, arcminutes, and arcseconds does the moon move across the sky in one hour? (the lunar day is 24 hours and 48 minutes long)
- The moons diameter is about 30 arcminutes, so find out how long it takes for the moon to travel its diameter.

Answer

45.635 degrees is how many degrees, arcminutes, and arcseconds?

45 deg
$0.635(60) \quad 38.1$ arcmin 38 arcmin
$0.1(60) \quad 6 \operatorname{arcsec}$

- How many degrees, arcminutes, and arcseconds does the moon
 48 minutes 180 ght

$$
\frac{360 \mathrm{deg}}{24.8 \mathrm{hours}} \quad 14.516129 \mathrm{deg} / \text { hour } \quad 14^{\circ} 3058.06^{\prime \prime}
$$

- The moons diameter is about 30 arcminutes, so find out how long it takes,fordthe moon to travel itseg tiameter0.034 hour $14.516129 \mathrm{deg} /$ hour
(0.034hour) (60minutes/hour) 2.1 minutes 26

Review: Coordinates on the Earth

- Latitude: position north or south of equator
- Longitude: position east or west of prime meridian (runs through Greenwich,
England)

Review: Coordinates on the Earth

- Latitude: position north or south of equator
- Longitude: position east or west of prime meridian (runs through Greenwich,
England)

Review: Coordinates on the Earth

- Latitude: position north or south of equator
- Longitude: position east or west of prime meridian (runs through Greenwich,
England)

A spinning imaginary Celestial Sphere surrounding Earth aids in navigating the sky

North celestial pole
Celestial sphere

Measuring Angles in the Sky

The Local Sky

zenith

the point directly above you

horizon

all points 90° from the zenith

altitude

the angle above the horizon

To pinpoint a spot in the local sky:

Specify altitude and direction along the horizon

Elements of the equatorial coordinate system on the celestial sphere

- Vernal Equinox: The position of the Sun on the first day of spring
Right Ascension: How far east of the Vernal Equinox an object is located (longitude)
Celestial Equator: The line separating the celestial sphere into northern and southern halves.
Declination: How far above or
 below the celestial equator an object is located.(latitude)

The Daily Motion

- As the Earth rotates, the sky appears to us to rotate in the opposite direction.
- The sky appears to rotate around the N (or S) celestial poles.
- If you are standing at the poles, nothing rises or sets.
- If you are standing at the equator, everything rises \& sets 90 to the horizon.

The Daily Motion

- As the Earth rotates, the sky appears to us to rotate in the opposite direction.
- The sky appears to rotate around the N (or S) celestial poles.
- If you are standing at the poles, nothing rises or sets.
- If you are standing at the equator, everything rises \& sets 90 to the horizon.

The Daily Motion

- As the Earth rotates, the sky appears to us to rotate in the opposite direction.
- The sky appears to rotate around the N (or S) celestial poles.
- If you are standing at the poles, nothing rises or sets.
- If you are standing at the equator, everything rises \& sets 90 to the horizon.

Time Exposure Photograph:

- Estimate the exposure time
- Which direction did stars move?

Annual Motion

- As the Earth orbits the Sun, the Sun appears to move eastward with respect to the stars.
- The Sun circles the celestial sphere once every year.

Annual Motion

- As the Earth orbits the Sun, the Sun appears to move eastward with respect to the stars.
- The Sun circles the celestial sphere once every year.

Annual Motion

- As the Earth orbits the Sun, the Sun appears to move eastward with respect to the stars.
- The Sun circles the celestial sphere once every year.

