

NIMS PROCEDURAL REQUIREMENTS

1. SUBMIT THIS PRINT AND WORKPIECE ALONG WITH THE PERFORMANCE AFFIDAVIT FOR EVALUATION

NIMS Step Block General Procedure

- 1) Cut a piece of 1.5" X 2" mild steel stock to a length of 2.625" on the bandsaw. <u>Tools used</u>: Combination square
- 2) Tram the milling machine head within .0005" per 6". <u>Tools used</u>: Tramming plate, .0005"-reading test indicator, Indicol holder
- 3) Square the stock and rough the overall dimensions to .030" oversize (*ie* 1.405" X 1.905" X 2.530").

Tools used: SECO Octomill, HSS end mill, dial caliper, parallels, brass pin

4) Rough the steps and slot to .030" oversize on all linear dimensions.

- a. bottom step: 1.530" from Datum C and .780" from Datum A
- b. top step: 1.030" from Datum C and 1.155" from Datum A
- c. slot: .75" wide and 1.030" from Datum A

<u>Tools used</u>: Weldon-style end mill holder, HSS roughing end mill, dial caliper, drill chuck, edgefinder (to find part center to cut slot), parallels

5) Pre-drill the large hole.

Tools used: Drill chuck, edgefinder, #4 center drill, 11/16" drill, parallels (max 1/8" thick)

- 6) Finish all outside surfaces in the proper sequence to establish final sizes and GD&T controls.
 - a. Datum feature A
 - b. Datum feature C
 - c. Datum feature D
 - d. Side opposite datum feature C
 - e. Side opposite datum feature D

<u>Tools used</u>: R8 collet, flycutter with brazed carbide tool, .0005"-reading test indicator, Indicol holder, outside micrometers, parallels

7) Finish steps and top surface (side opposite datum feature A) to establish final sizes. <u>Tools used</u>: R8 collet, 1/2" solid carbide end mill, outside micrometers, parallels

8) Finish slot to establish final sizes and position.

<u>Tools used</u>: R8 collet, 1/2" solid carbide end mill, outside micrometers, adjustable parallel (to measure slot width), parallels

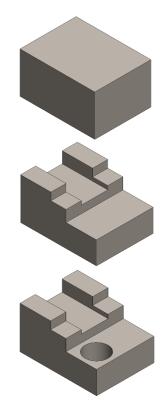
9) Bore large hole to establish final size and position.

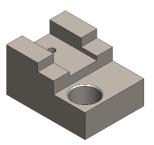
<u>Tools used</u>: Drill chuck, edgefinder, offset boring head, indexable carbide boring bar, outside micrometers, telescoping gage, R8 collet, 7/8" X 90° countersink, parallels (max 1/32" thick)

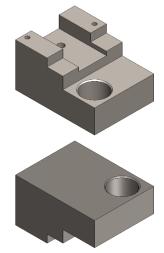
10) Drill and tap ¼-20 threaded hole.

- Drill .75"-.875" deep
- Tap .50" deep minimum

Tools used: Albrecht-brand precision drill chuck, edgefinder, #4 center drill, #8 stub drill, ½" X 90° countersink, ¼-20 plug tap, ¼-20 bottoming tap, tap wrench, spring-loaded tap guide, ¼-20 UNC 2B Go/NoGo gage, parallels


11) Drill and ream 2X small holes.


- Drill .625" deep minimum
- Ream .50" deep


<u>Tools used</u>: Albrecht-brand precision drill chuck, edgefinder, #1 or #2 center drill, #32 stub drill, ½" X 90° countersink, .1250" reamer, pin gages, parallels

12) Countersink backside of large hole.

<u>Tools used</u>: .0005"-reading test indicator, Indicol holder, R8 collet, 7/8" X 90° countersink, parallels

PROJECT PLANNING WORKSHEET

TOOLS	CS/RPM

Points Earned		NIMS STEP BLOCK						
Total Points Possible	30	INSPECTION REPORT	Student Name					
Linear Dimensions								
1) Overall Length	า: 2.50 +	/015						
2) Overall Width								
3) Overall Height								
4) Step 1 Length								
5) Step 1 Height:	-							
6) Step 2 Length	-							
7) Step 2 Height:	1.125 +	-/005						
8) Slot Width: .8	75 +/0	005						
9) Slot Height: 1.	000 +/-	.005						
Holes								
1) Bore: Ø.750 +/	/005							
2) Bore: .03 X 45	° Chamf	ers (2X)						
3) Pin Hole 1: Ø.1	L25 +/	001						
4) Pin Hole 1: \downarrow .5	50 +/0	15						
5) Pin Hole 2: Ø.1	L25 +/	001						
6) Pin Hole 2: ↓.5	50 +/0	15						
7) Threaded Hole	e: Verifi	ed w/ Go/No Go Gage						
8) Threaded Hole	e: I.50 N	/linimum (*Ten Turns)						
Geometric Dimensi	oning a	nd Tolerancing						
•		hin .005 with respect						
to Datums A, I		a α						
with respect t		ithin Ø.008 (at MMC)						
3) Pin Hole 1: Tru		· · ·						
•		t to Datums A, C, D						
4) Pin Hole 1: Pe	rpendic	ular within Ø.001						
to Datum A								

5) Pin Hole 2: True Position within Ø.008 (at MMC) with respect to Datums A, C, D	
6) Pin Hole 2: Perpendicular within Ø.001 to Datum A	
 Threaded Hole: True Position within Ø.008 (at MMC) with respect to Datums A, C, D *Based on minor diameter of threads. 	
 Batum Feature C: Perpendicular within .003 to Datums A, B 	
9) Datum Feature D: Perpendicular within .002 to Datum A	
10) Surfaces Opposite Datum Feature A: Parallel within .002 to Datum A	
 Surface Opposite Datum Feature C: Parallel within .003 to Datum C 	
12) Surface Opposite Datum Feature D: Parallel within .002 to Datum D	
Overall Appearance	
Clean, Edges Broken .015 Max, Finish 125 μIN Max	

ROUGHING END MILLS Speed and Feed Data

		Chip Load per Tooth			
Material	SFM	1/8" 1/4"		1/2"	1"
Aluminum Alloys	125-250	.0010	.0020	.0025	.0030
Magnesium	125-250	.0010	.0020	.0025	.0030
Copper	75-100	.0008	.0015	.0030	.0060
Brass	85-110	.0008	.0015	.0030	.0060
Bronze	75-100	.0008	.0015	.0030	.0060
Cast Iron	100-125	.0008	.0015	.0025	.0050
Cast Steel	75-100	.0008	.0015	.0025	.0050
Malleable Iron	80-120	.0008	.0015	.0025	.0050
Stainless Steel					
Free Machining	75-90	.0005	.0007	.0012	.0020
Other	50-75	.0005	.0007	.0012	.0020
Steel					
Annealed	100-125	.0010	.0020	.0040	.0060
Rc 18-24	75-100	.0070	.0012	.0030	.0050
Rc 25-37	40-75	.0005	.0010	.0020	.0040
Titanium					
Up to Rc 30	40-75	.0005	.0012	.0025	.0050
Rc 30+	20-25	.0005	.0010	.0020	.0035
High Temp Alloys					
Austenitic	12-20	*	.0007	.0015	.0030
Ferritic	50-75	.0004	.0007	.0020	.0050
Nickel Base	20-25	.0004	.0007	.0015	.0030
Cobalt Base	8-15	*	.0007	.0015	.0030

LIST OF SYMBOLS	
-----------------	--

F	=	NUMBER OF FLUTES
D	=	DIAMETER OF CUTTER
R.P.M.	=	REVOLUTIONS PER MINUTE
S.F.M.	=	SURFACE FEET PER MINUTE
I.P.M.	=	FEED RATE: INCHES PER MINUTE
I.P.R.	=	FEED RATE: INCHES PER REVOLUTION

MACHINING FORMULAS

S.F.M. =	0.262	хDх	R.P.M.
----------	-------	-----	--------

I.P.R. = <u>I.P.M.</u> or CHIP LOAD x F R.P.M.

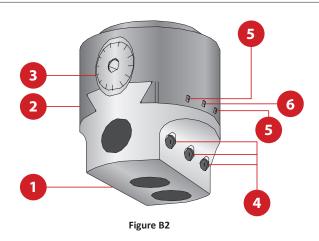
 $I.P.M. = R.P.M. \times I.P.R.$

CHIP LOAD = <u>I.P.M.</u> or <u>I.P.R.</u> R.P.M. x F F

CARBIDE END MILLS Speed and Feed Data - Applications in Various Materials

		Chip Load per Tooth			
Material	SFM	1/8"	1/4"	1/2"	1"
Aluminum Alloys	600-1200	.0010	.0020	.0040	.0080
Brass	200-350	.0010	.0020	.0030	.0050
Bronze	200-350	.0010	.0020	.0030	.0050
Carbon Steel	100-600	.0010	.0015	.0030	.0060
Cast Iron	80-350	.0010	.0015	.0030	.0060
Cast Steel	200-350	.0005	.0010	.0020	.0040
Cobalt Base Alloys	20-80	.0005	.0008	.0010	.0020
Copper	350-900	.0010	.0020	.0030	.0060
Die Steel	50-300	.0005	.0010	.0020	.0040
Graphite	600-1000	.0020	.0050	.0080	.0100
Inconel/Monel	30-50	.0005	.0010	.0015	.0030
Magnesium	900-1300	.0010	.0020	.0040	.0080
Malleable Iron	200-500	.0005	.0010	.0030	.0070
Nickel Base Alloys	50-100	.0002	.0008	.0010	.0020
Plastic	600-1200	.0010	.0030	.0060	.0100
Stainless Steel - Free Machining	100-300	.0005	.0010	.0020	.0030
Stainless Steel - Other	50-250	.0005	.0010	.0020	.0030
Steel - Annealed	100-350	.0010	.0020	.0030	.0050
Steel - Rc 18-24	100-500	.0004	.0008	.0015	.0045
Steel - Rc 25-37	25-120	.0003	.0005	.0010	.0030
Titanium	100-200	.0005	.0008	.0015	.0030

С


Adjusting Standard Adjusting Boring Heads (see figure B2)

- 1. Loosen the locking screw (6).
- 2. Turn the dial screw (3) clockwise to increase the diameter, and turn it counterclockwise to decrease the diameter.
- 3. Tighten the locking screw (6).

IMPORTANT: Do not loosen the gib screws (5). It can cause poor performance when making diameter adjustments.

NOTE: To machine a smaller bore diameter, turn the dial screw (3) counterclockwise one full turn minimum to remove any backlash, and then adjust to small size.

No.	Part
1	Bar holder
2 Boring head body	
3	Dial screw
4	Bar holder set screws
5	Gib screws
6	Locking screw

Adjusting Micro Adjusting Setting Boring Heads (see figure B3)

Before setting the micro adjusting boring head to the bore diameter, you need to set the micro adjusting dial (7) to the minimum bore diameter.

- 1. Turn the micro adjusting dial (7) clockwise until the dial screw bottoms out on the bottom of the dial screw bore.
- 2. Note the graduation line on the dial face closest to the reference line, then turn the micro adjusting dial (7) counterclockwise 3-1/4 turns.
- 3. Reverse direction and line the graduation line noted in Step 2 with the reference line.
- 4. The micro adjusting dial is now set so you have 0.006" on diameter of adjustment.

Adjusting micro adjusting setting boring heads is just as easy as adjusting standard boring heads. First, you adjust the boring head using the 0.001" adjustment (3), and then you make your final adjustment with the 0.00005" adjustment (7).

- 1. Loosen the locking screw (6).
- 2. Turn the dial screw (3) clockwise to increase the diameter and counterclockwise to decrease the diameter.
- 3. Tighten the locking screw (6).
- 4. Turn the 0.00005" dial screw (7) clockwise to increase the diameter and counterclockwise to decrease the diameter. Locking of the 0.00005" dial screw (7) is **not** required.

NOTE: The micro adjusting dial screws only have a total range of 0.006" (0.15mm) on diameter.

No.	Part	
1	Insert holder	
2	Boring head body	
3	Dial screw	
4	Gib screws	
5	5 Locking screw	
6	Micro adjusting dial screw	

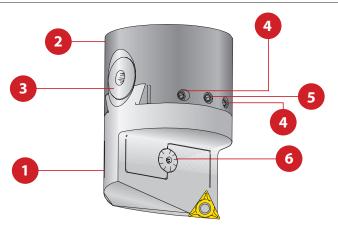


Figure B3

Recommended Cutting Data | Imperial (inch)

Finish Boring

			Cri-Bore [®] CBER [®] CB Style		
			SI		
ISO	Material	Hardness (BHN)	Uncoated Inserts	Coated Inserts	Feed (IPR)
	Free Machining Steel 1118, 1215, 12L14, etc.	100 - 250	350 - 700	450 - 800	0.003 - 0.005
	Low Carbon Steel 1010, 1020, 1025, 1522, 1144, etc.	85 -275	350 - 700	450 - 800	0.002 - 0.004
	Medium Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc.	125 - 325	400 - 700	500 - 800	0.002 - 0.004
Р	Alloy Steel 4140, 5140, 8640, etc.	125 - 375	300 - 600	400 - 700	0.002 - 0.004
	High Strength Alloy 4340, 4330V, 300M, etc.	225 - 400	300 - 600	350 - 650	0.002 - 0.004
	Tool Steel H-13, H-21, A-4, O-2, 5-3, etc.	150 - 250	300 - 600	300 - 700	0.002 - 0.004
s	High Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	100 - 250	150 - 300	0.002 - 0.004
	Stainless Steel 400 Series 1010, 1020, 1025, 1522, 1144, etc.	185 - 350	350 - 600	400 - 650	0.002 - 0.004
м	Stainless Steel 300 Series 1010, 1020, 1025, 1522, 1144, etc.	135 - 275	350 - 600	400 - 650	0.002 - 0.004
	Super Duplex Stainless Steel 1010, 1020, 1025, 1522, 1144, etc.	135 - 275	350 - 600	400 - 650	0.002 - 0.004
к	Nodular, Grey, Ductile Cast Iron	120 - 320	400 - 600	500 - 700	0.002 - 0.004
	Cast Aluminum	30 - 180	750 - 1000	800 - 1100	0.002 - 0.004
N	Wrought Aluminum	30 - 180	750 - 1000	750 - 1000	0.002 - 0.004
	Brass	100	700 - 950	750 - 1000	0.002 - 0.004

DRILLING

В

X SPECIALS

NOTICE: The modular boring system's configuration, including the length of boring bar, boring head off set, and amount of extensions and/or reducers, may all affect performance of boring systems. All of these factors may increase imbalance of the modular boring system. Imbalance at excessive RPM will cause vibration in the machine tool, which can cause damage to the machine tool; in particular the spindle. This vibration may occur at spindle speeds above 1000 RPM. If vibration is present, reduce spindle speed.