2009 Mathematics

Higher - Paper 1 and Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2009
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Comments

These marking instructions are for use with the 2009 Higher Mathematics Examination.
For each question the marking instructions are split into two sections, namely the Generic Marking Instructions and the Specific Marking Instructions. The Generic Marking Instructions indicate what evidence must be seen for each mark to be awarded. The Specific Marking Instructions cover the most common methods you are likely to see throughout your marking.
Below these two sections there may be comments, less common methods and common errors.
In general you should use the Specific Marking Instructions together with the comments, less common methods and common errors; only use the Generic Marking Instructions where the candidate has used a method not otherwise covered.

All markers should apply the following general marking principles throughout their marking:

5 The total mark for each section of a question should be entered in red in the outer right hand margin, opposite the end of the working concerned.

- Only the mark should be written, not a fraction of the possible marks.
- These marks should correspond to those on the question paper and these instructions.

6 Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer.

7 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking scheme, a correct answer with no working receives no credit.

8 There is no such thing as a transcription error, a trivial error, a casual error or an insignificant error - each one is simply an error. In general, as a consequence of one of these errors, candidates lose the opportunity of gaining the appropriate ic or pd mark.

9 Normally, do not penalise:

- working subsequent to a correct answer
- omission of units
- legitimate variations in numerical answers
- bad form
- correct working in the "wrong" part of a question
unless specifically mentioned in the marking scheme.
10 No piece of work should be ignored without careful checking - even where a fundamental misunderstanding is apparent early in the answer. Reference should always be made to the marking scheme. Answers which are widely off-beam are unlikely to include anything of relevance but in the vast majority of cases candidates still have the opportunity of gaining the odd mark or two provided it satisfies the criteria for the $\operatorname{mark}(\mathrm{s})$.

11 If in doubt between two marks, give an intermediate mark, but without fractions. When in doubt between consecutive numbers, give the higher mark.

12 In cases of difficulty covered neither in detail nor in principle in the Instructions, attention may be directed to the assessment of particular answers by making a referral to the P.A. Please see the general instructions for P.A. referrals.

No marks should be deducted at this stage for careless or badly arranged work. In cases where the writing or arrangement is very bad, a note may be made on the upper left-hand corner of the front cover of the script.

14 It is of great importance that the utmost care should be exercised in adding up the marks. Using the Electronic Marks Capture (EMC) screen to tally marks for you is NOT recommended. A manual check of the total, using the grid issued with this marking scheme, can be confirmed by the EMC system.

15 Provided that it has not been replaced by another attempt at a solution, working that has been crossed out by the candidate should be marked in the normal way. If you feel that a candidate has been disadvantaged by this action, make a P.A. Referral.

16 Do not write any comments, words or acronyms on the scripts.
A revised summary of acceptable notation is given on page 4.

Summary

Throughout the examination procedures many scripts are remarked. It is essential that markers follow common procedures:
1 Tick correct working.
2 Put a mark in the outer right-hand margin to match the marks allocations on the question paper.
3 Do not write marks as fractions.
4 Put each mark at the end of the candidate's response to the question.
5 Follow through errors to see if candidates can score marks subsequent to the error.
6 Do not write any comments on the scripts.

Higher Mathematics : General Marking Instructions

Higher Mathematics: A Guide to Standard Signs and Abbreviations

Remember - No comments on the scripts. Please use the following and nothing else.

Bullets showing where marks are being allocated may be shown on scripts.

Please use the above and nothing else. All of these are to help us be more consistent and accurate.
Page 5 lists the syllabus coding for each topic. This information is given in the legend above the question. The calculator classification is CN (calculator neutral), CR (calculator required) and NC (non-calculator).

Syllabus Coding by Topic

For information only

Paper 1 Section A qu.1-10

Qu.	Key	Item no.	solution 1.01 1.02

Paper 1 Section A qu.11-20

Qu.	Key	Item no.	solution
1.11	B	1145	- $\sin x=\frac{\sqrt{5}}{4}: 2$ solutions - $\sin x=-1: 1$ solution
1.12	C	1313	- $b^{2}-4 a c=73>0$ - roots are real and distinct
1.13	B	1146	- $\tan a^{\circ}=\frac{1}{\sqrt{3}}$ so $a=30$ - $k^{2}=1+3$ so $k=2$
1.14	C	1172	- $f_{\max }=2 \times 1+5=7$ - $f_{\text {min }}=2 \times(-1)+5=3$
1.15	A	1396	- angle at x-axis $=\frac{\pi}{3}$ - $m_{G H}=\tan \frac{\pi}{3}=\sqrt{3}$
1.16	B	1148	- integrate : $x^{4}-3 x^{3}$ - limits : $-[\ldots .]_{0}^{1}$
1.17	A	1133	- $\|\boldsymbol{u}\|=\sqrt{(-3)^{2}+4^{2}}=5$ - a unit vector : $\frac{1}{5}(-3 \boldsymbol{i}+4 \boldsymbol{j})$
1.18	D	394	- $-\frac{1}{2}\left(4-3 x^{2}\right)^{-\frac{3}{2}}$ - multiplied by $-6 x$
1.19	C	1002	- $(2+x)(3-x)<0$ solution is either $-2<x<3 \text { or } x<-2, x>3$ - $\quad x=0$ is FALSE so $x<-2$ and $x>3$
1.20	C	161	$\begin{aligned} \text { - } \frac{d A}{d r} & =4 \pi r+6 \pi \\ \text { - } \frac{d A}{d r} & =8 \pi+6 \pi \\ & =14 \pi \end{aligned}$

Higher Mathematics 2009 v10

qu		Mark	Code	Cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	$1 \cdot 21$
1.21	a	1	G4	cn	09013			1				1			
	b	3	G7	cn		1	1	1	3			3			
	c	4	G8	cn		1	2	1	4			4			

Triangle PQR has vertex P on the x-axis.
Q and R are the points $(4,6)$ and $(8,-2)$ respectively.
The equation of PQ is $6 x-7 y+18=0$.
(a) State the coordinates of P
(b) Find the equation of the altitude of the triangle from P .
(c) The altitude from P meets the line QR at T .

Find the coordinates of T.
1

4

The primary method $\mathrm{m} . \mathrm{s}$ is based on the following generic $\mathrm{m} . \mathrm{s}$.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.

- ${ }^{1} \quad$ ic \quad interpret x-intercept
- 2 pd find gradient (of QR)
-3 ss know and use $m_{1} m_{2}=-1$
- 4 ic state equ. of altitude
$.5 \quad$ ic state equ. of line (QR)
- 6 ss prepare to solve sim. equ.
. 7 pd solve for x
- ${ }^{8}$ pd solve for y

Primary Method: Give 1 mark for each \cdot

$$
\begin{aligned}
& P=(-3,0) \quad \text { see Notes } \mathbf{1 , 2} \\
& m_{Q R}=-2 \quad \text { or equivalent } \\
& m_{\text {alt }}=\frac{1}{2} \quad \mathbf{s} / \mathbf{i} \text { by } \cdot 4 \\
& \text { alt : } y-0=\frac{1}{2}(x+3) \\
& \text { see Note } 4 \\
& \text {. } 5 \quad Q R: y+2=-2(x-8) \text { or } \quad y-6=-2(x-4) \\
& \text { - e.g. } x-2 y=-3 \text { and } 2 x+y=14 \text { see Note } 5 \text { \& Options }
\end{aligned}
$$

. $7 \quad x=5$

- $8 \quad y=4$

Notes

1. Without any working;
accept ($-3,0$)
$\operatorname{accept} x=-3, y=0$
accept $x=-3$ and $y=0$ appearing at \bullet^{4}.
2. $x=-3$ appearing as a consquence of substituting $y=0$ may be awarded \bullet^{1}.
3. At \bullet^{3}, whatever perpendicular gradient is found, it must be in its simplest form either at \bullet^{3} or \bullet^{4}.
4. ${ }^{4}$ is only available as a consequence of attempting to find and use a perpendicular gradient together with whatever coordinates they have for P.

Notes cont

5. \bullet^{6}, \bullet^{7} and \bullet^{8} are only available for attempting to solve equations for PT and QR.
6. ${ }^{6}$ is a strategy mark for juxtaposing two correctly rearranged equations. Equating zeroes does not gain \bullet^{6}.
7. The answers for \bullet^{7} and \bullet^{8} must be of the form of a mixed number or a fraction (vulgar or decimal).

Common Errors

- $\quad X \quad m_{Q R}=\ldots=-1$
- ${ }^{3} X \sqrt{ } \quad m_{\perp}=1$
- ${ }^{4} \quad X \vee \quad y-0=1(x+3)$

Option 1 for \bullet^{5} to \bullet^{8} :

. $5 \quad Q R: y+2=-2(x-8)$
. $6 \quad \frac{1}{2}(x+3)=-2(x-8)-2$

- $7 \quad x=5$
. $8 \quad y=4$

Option 2 for ${ }^{5}$ to \bullet^{8} :
. $5 \quad Q R: y-6=-2(x-4)$

- $6 \quad \frac{1}{2}(x+3)=-2(x-4)+6$
- $7 \quad x=5$
. $8 \quad y=4$

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	$1 \cdot 22$
1.22	a	4	G23,24	cn	09005	1		3	4					4	
	b	4	G27	cn		2	2		4					4	

D, E and F have coordinates $(10,-8,-15),(1,-2,-3)$ and $(-2,0,1)$ respectively.
(a) (i) Show that D, E and F are collinear.
(ii) Find the ratio in which E divides DF .
(b) G has coordinates $(k, 1,0)$.

Given that DE is perpendicular to GE, find the value of k.
4

The primary method m.s is based on the following generic m.s.
This generic marking scheme may be used as an equivalence guide
but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.

In this question expressing vectors as coordinates and vice versa is treated as bad form - do not penalise.

$\bullet \bullet^{1}$	ss	use vector approach
\bullet^{2}	ic	compare two vectors
\bullet^{3}	ic	complete proof
\bullet^{4}	ic	state ratio
$\boldsymbol{\bullet}^{5}$	ss	use vector approach
\bullet^{6}	ss	know scalar product $=0$ for \perp vectors
\bullet^{7}	pd	start to solve
\bullet^{8}	pd	complete

Primary Method: Give 1 mark for each •

- $\overrightarrow{D E}=\left(\begin{array}{c}-9 \\ 6 \\ 12\end{array}\right)$ or $\overrightarrow{E F}=\left(\begin{array}{c}-3 \\ 2 \\ 4\end{array}\right)$
see Note 1
-2 2nd column vector and $\overrightarrow{D E}=3 \overrightarrow{E F}$ (or equiv.)
$\bullet^{3} \quad \overrightarrow{D E}$ and $\overrightarrow{E F}$ have common point and common direction
hence D, E and F collinear
see Note 2
- ${ }^{4}$:1 stated explicitly
. $\quad \overrightarrow{G E}=\left(\begin{array}{c}1-k \\ -3 \\ -3\end{array}\right)$
- ${ }^{6} \quad \overrightarrow{D E} \cdot \overrightarrow{G E}=0$
s/iby ${ }^{7}$
$-9(1-k)+6 \times(-3)+12 \times(-3)$
$k=7$

Notes

1. $\overrightarrow{D E} \& \overrightarrow{D F}$ or $\overrightarrow{E F} \& \overrightarrow{D F}$ are alternatives to $\overrightarrow{D E} \& \overrightarrow{E F}$.
2. \cdot^{3} can only be awarded if a candidate has stated

* "common point",
* "common direction" (or "parallel")
* and "collinear"

3. The " $=0$ " shown at $\cdot{ }^{6}$ must appear somewhere before \bullet^{8}.
4. In (b) "G.E" $=\left(\begin{array}{l}k \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -2 \\ -3\end{array}\right)=0$ leading to $k=2$, award 1 mark.
5. If \boldsymbol{a} and \boldsymbol{b} are not defined, then merely quoting $\boldsymbol{a} \cdot \boldsymbol{b}=0$ does not gain ${ }^{6}$.

Common Error 1 for (b)
$.{ }^{5} \vee \quad \overrightarrow{G E}=\left(\begin{array}{c}1-k \\ -3 \\ -3\end{array}\right)$
. ${ }^{6} X \quad \overrightarrow{D E} \cdot \overrightarrow{G E}=-1$
. $7 \quad X \vee \quad-9(1-k)+6 \times(-3)$
$+12 \times(-3)=-1$
. ${ }^{8} \quad X \vee \quad k=\frac{64}{9}$
CommonError 2 for (b)
. 5 X $\left(\begin{array}{l}k \\ 1 \\ 0\end{array}\right)$
${ }^{6} \quad X \vee\left(\begin{array}{l}k \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}-9 \\ 6 \\ 12\end{array}\right)=0$

- $X \vee \quad \ldots . . . k=\frac{2}{3}$ i.e. 2 marks

CommonError 3 for (b)
${ }^{5} X \quad\left(\begin{array}{c}k \\ 1 \\ 0\end{array}\right)$
${ }^{6} \quad X \quad\left(\begin{array}{l}k \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}-9 \\ 6 \\ 12\end{array}\right)=-1$

- $\quad X \sqrt{ } \quad \ldots . . . k=\frac{7}{9} \quad$ i.e. 1 mark

Options for \bullet^{1} to \bullet^{3} :
1
-1 $\overrightarrow{D E}=\left(\begin{array}{c}-9 \\ 6 \\ 12\end{array}\right) \cdot 2 \overrightarrow{D F}=\left(\begin{array}{c}-12 \\ 8 \\ 16\end{array}\right)=\frac{4}{3} \overrightarrow{D E}$

- ${ }^{3} \quad \overrightarrow{D E}$ and $\overrightarrow{D F}$ have common point and common direction hence D, E and F collinear

2
-1 $\overrightarrow{E F}=\left(\begin{array}{c}-3 \\ 2 \\ 4\end{array}\right) \cdot 2 \overrightarrow{D F}=\left(\begin{array}{c}-12 \\ 8 \\ 16\end{array}\right)=4 \overrightarrow{E F}$

- $\quad \overrightarrow{E F}$ and $\overrightarrow{D F}$ have common point and common direction
hence D, E and F collinear

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	$1 \cdot 23$
1.23	a	2	A3	cn	09016			2		2		2			
	b	3	A3	cn		1		2		3		3			

The diagram shows a sketch of the function $y=f(x)$.
(a) Copy the diagram and on it sketch the graph of $y=f(2 x)$. 2
(b) On a separate diagram sketch the graph of $y=1-f(2 x)$. 3

Primary Method: Give 1 mark for each -

3 points : the origin, $(1,8)$ and $(-2,8)$

- $1 \quad$ sketch and 1 point correct
- 2 other two points correct
- reflect in x-axis, then vertical trans. s/i by ${ }^{4}$
final points : $(0,1),(1,-7)$ and $(-2,-7)$
- ${ }^{4} \quad$ sketch and 1 final point correct
. 5 the other two final points correct

Notes

1. In (a) sketching $y=f\left(\frac{1}{2} x\right)$ loses ${ }^{\boldsymbol{1}}$ but may gain \bullet^{2} with appropriate annotation.
2. In (a) no marks are awarded for any other function.
3. Do not penalise omission of the original function in the candidate's sketch for (a).
4. In (b)

X refl	X refl	$\sqrt{ }$ refl	$\sqrt{ }$ refl
$\sqrt{ }$ trans	X trans	X trans	X trans
		$\binom{0}{-1}$	$\binom{ \pm 1}{0}$
\max	1	0	2

5. In (b): if a candidate does not use their solution for $y=f(2 x)$, a maximum of two marks may be awarded for a "correct" solution.
6. In (b):

No marks are available in (b) unless both a reflection and a translation have been carried out.

Solution to (a)	Solution to (b)

qu		Mk	Code	Cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	1.24
1.24	a	3	T8, T3	nc	09002	1	1	1	3				3		
	b	2	T8	cn				2	2				2		
	c	4	T11	nc		1	1	2	1	3			4		

(a) Using the fact that $\frac{7 \pi}{12} \pm \frac{\pi}{3}=\frac{\pi}{4}$, find the exact value of $\sin \left(\frac{7 \pi}{12}\right)$.
(b) Show that $\sin (\mathrm{A}+\mathrm{B})=\sin (\mathrm{A}-\mathrm{B}) \pm 2 \sin \mathrm{~A} \cos \mathrm{~B}$. 2
(c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.
(ii) Hence or otherwise find the exact value of $\sin \left(\frac{7 \pi}{12}\right)=\sin \left(\frac{\pi}{12}\right)$. 4

Notes

1. Candidates who work throughout in degrees can gain all the marks.
2. In (a)
$\sin \left(\frac{\pi}{3}=\frac{\pi}{4}\right) \pm \sin \left(\frac{\pi}{3}\right)=\sin \left(\frac{\pi}{4}\right)$ etc cannot be awarded any marks. i.e. \bullet^{1}, \bullet^{2} and \bullet^{3} are not available.
3. In (b), candidates who use numerical values for A and B earn no marks.
4. In (c)
$\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right) \pm \sin \left(\frac{\pi}{3}\right)-\sin \left(\frac{\pi}{4}\right)$ etc cannot be awarded any marks. i.e. \bullet^{7}, \bullet^{8} and \bullet^{9} are not available.

Common Errors

1. $\frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$
$\therefore \frac{\pi}{12}=\frac{1}{7}\left(\frac{\pi}{3}+\frac{\pi}{4}\right)$ does not gain ${ }^{6}$.

Alternatives

1. for ${ }^{6}$ to ${ }^{8}$

- $6 \quad \sin \left(\frac{\pi}{12}\right)=\sin \frac{\pi}{3} \cos \frac{\pi}{4}-\cos \frac{\pi}{3} \sin \frac{\pi}{4}$
. $7 \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}-\frac{1}{2} \times \frac{1}{\sqrt{2}}$
. $8 \quad \frac{\sqrt{3}-1}{2 \sqrt{2}}$ or equivalent

