

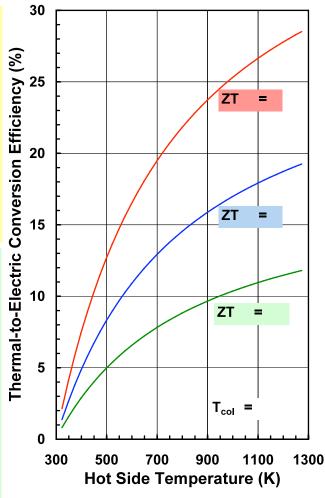
Waste Heat Recovery Opportunities for Thermoelectric Generators

presented at the

2009 Thermoelectric Applications Workshop

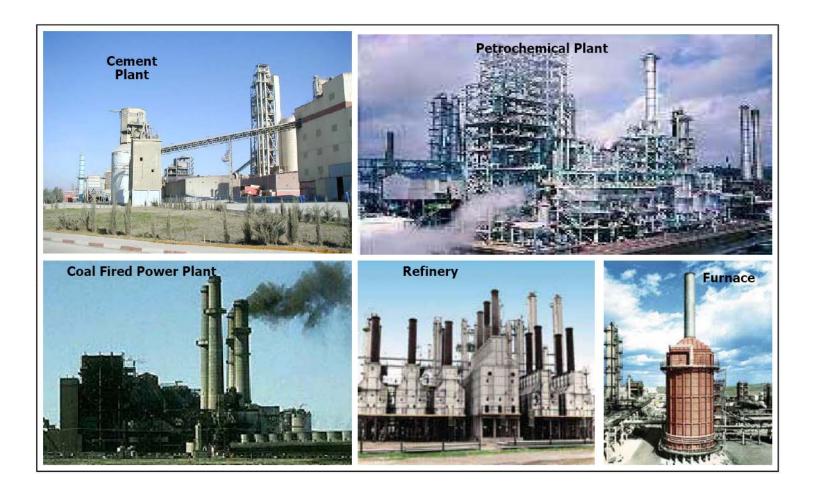
J.-P. Fleurial¹, P. Gogna¹, B.C-Y. Li¹, S. Firdosy¹, B.J. Chen¹, C.-K. Huang¹, V. Ravi^{1,2}, T. Caillat¹, K. Star^{1,3}

¹Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA ²California State Polytechnic University, Pomona, California, USA ³University of California at Los Angeles, California, USA

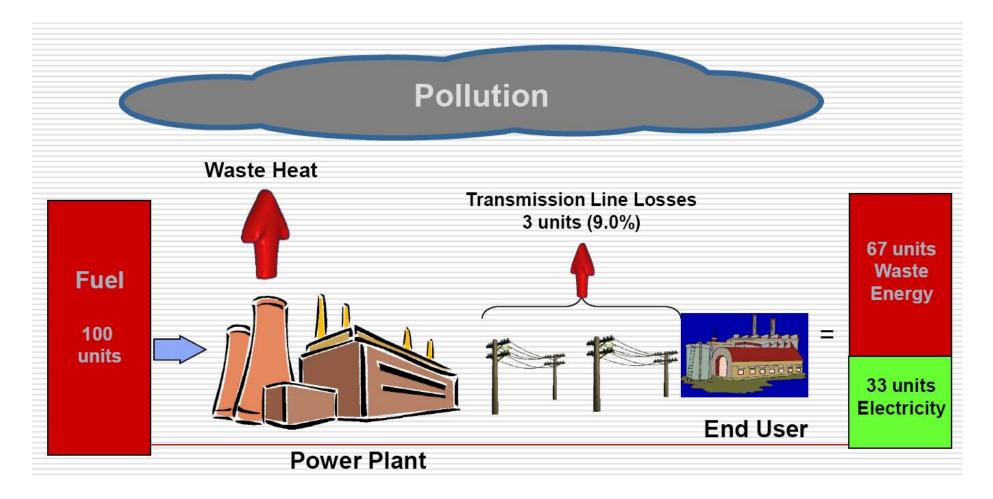

September 30, 2009

The Case For Thermoelectrics (TE)

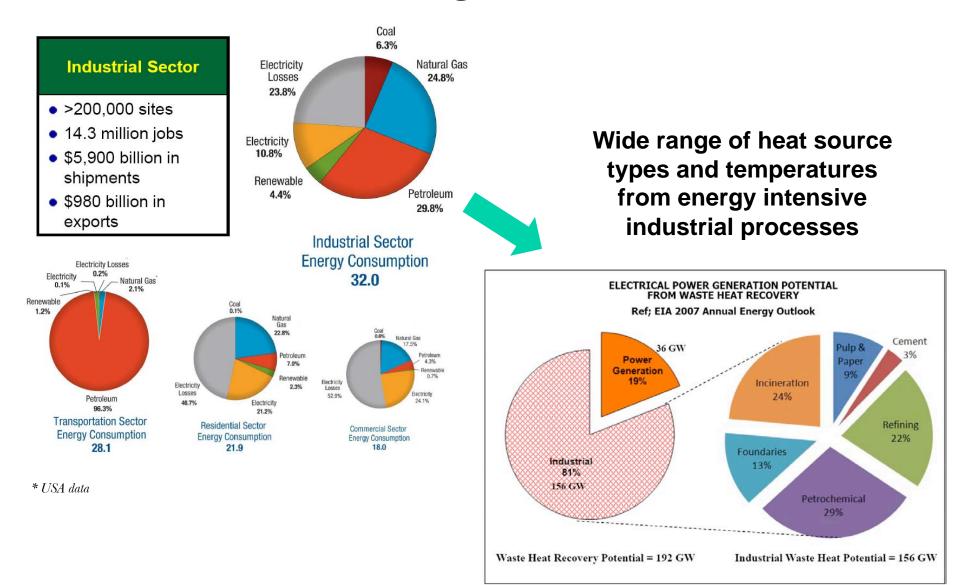
- Current TE conversion efficiency usually too low to compete with dynamic technologies for <u>stand-alone</u> systems
 - Current TE materials:
 - Power: 8 to 15% against 25 to 45%
 - Cooling: COP is 3x lower than typical compressor
 - Advanced TE materials goals in the next 3-5 years:
 - Power: 20-30% efficiency (average ZT of 2.0)
 - Cooling: 2x to 5x increase in COP, 100x power density
- But TE technology has highly valuable attributes
 - Solid-state, highly scalable and modular
 - No moving parts, no vibrations, silent operation
 - Can outperform competition for small scale applications
 - High level of reliability and redundancy
 - Proven record of long life space and terrestrial applications
- Waste Heat Recovery is attractive application for TE
 - Thermal energy source is "free"
 - TE generator as a "bottoming/topping cycle retrofit"
 - Scalability and mass production lead to low cost \$/kWh


<u>Power generation</u>

State-Of-Practice materials: $ZT_{average} \sim 0.5$ State-Of-the-Art materials: $ZT_{average} \sim 0.9$ Best SOA materials: $ZT_{peak} \sim 1.5$ to 2.0


Waste Heat Sources

Average Power Plant Generation Efficiency JPL

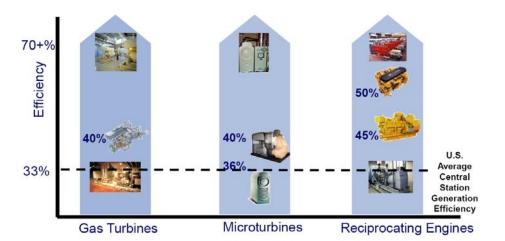


• Efficiency has not improved significantly in last 40 years for large scale power plants

Opportunities for Power Generation by Recovering Waste Heat

Technologies for Waste Heat Recovery Power Generation

- Commercial Technologies
 - Single Fluid Rankine Cycle
 - Steam cycle
 - Hydrocarbons
 - Ammonia
 - Binary/Mixed Fluid Cycle
 - Ammonia/water absorption cycle
 - Mixed-hydrocarbon cycle
- Emerging Technologies
 - Supercritical CO₂ Brayton Cycle
 - Thermoelectric energy conversion
- Combined Cycles


- Conversion efficiency and effective utilization of waste heat
- Heat transfer equipment
- System integration and interfacing with industrial processes
- System reliability
- Economic values
- Ability to integrate into combined cycles

Dynamic Power Systems Are Efficient

• Thermoelectrics cannot compete "head-on" with dynamic technologies

N	letal and Non-metal Heating	Steel Smelting		
Disti llati on	Smelti ng			
Columns & Boilers	Melti ng& Smelti ng Non-n	metal Melting		
Fluid Heating	Metal Heat Treating			
Thermal Oxidize	Agglomerati on/			
Drying	Calcining	Sintering		
	Curing & Forming			
Automobile Ext	aust			
400 K	1200 K	1900 K		

- Some industrial processes are potentially attractive for TE systems
 - Medium to high grade heat Medium to high grade heat for aluminum, glass, metal casting, non-metal melting, ceramic sintering and steel manufacturing
 - Limited opportunity to reuse the waste heat
 - Difficulties in effectively transporting that heat to separate energy conversion systems

Adapted from: Hendricks, T., Choate, W. T., Industrial Technologies Program, "Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery" (U.S. Department of Energy, 1-76, 2006).

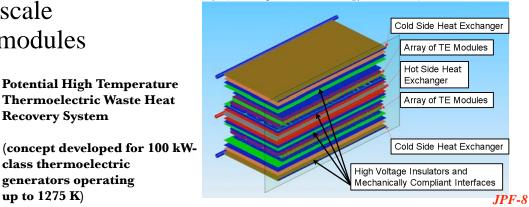
Major Opportunities in Manufacturing & Energy Industries

Thermoelectric Waste Heat

Recovery System

up to 1275 K)

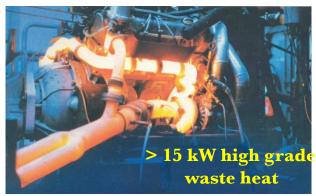
class thermoelectric

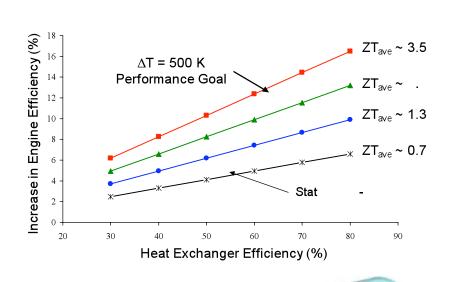

generators operating

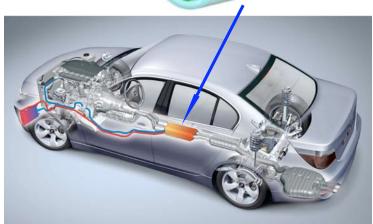
- Large scale waste heat recovery of industrial and power generation processes
 - Benefit from higher energy costs and reduction of fossil fuel pollution to retrofit existing facilities
 - High grade waste heat sources from a variety of industrial manufacturing processes
 - For near term applications in the US alone, between 0.9 and 2.8 TWh of electricity might be produced each year for materials with average ZT values ranging from 1 to 2
 - Efficient heat exchangers, large scale production of TE materials and modules are required **Potential High Temperature**
 - Also need to focus on economical, low toxicity materials

		T _{source} (K)	Waste Heat	Waste Heat GWh/year		eat
A			GWh/year	ZT=1	ZT=2	ZT=4
Applications	Set A: low hot-side to	-			nue gas	i
Commercial	Water/Steam Boilers	425	164,010	n/a	n/a	n/a
Industrial	Water/Steam Boilers	425	178,654	n/a	n/a	n/a
	Ethylene Furnace	425	8,786	n/a	n/a	n/a
Applications	Set B: medium hot si	ide temp	erature, mix	ed flue g	gas qua	lity
	Aluminum Smelting	1230	1,230	59	176	293
	Aluminum Melting	1025	8,376	410	1,259	2,109
	Metal Casting Iron Cupola	650				
	Steel Blast Furnace					
	Lime Kiln					
	Cement Kiln (with pre-heater)	475	2,050	88	293	498
Applications	Set A: High hot-side	tempera	ture, mixed f	lue gas	quality	
	Cement Kiln (no pre- heater)	1000	2,460	117	381	615
	Glass Oxy-fuel Furnace	1700	1,406	59	205	351
	Glass Regenerative	750	3,456	176	527	879
		Total	370,428	908	2,841	4,745

Adapted from: Hendricks, T., Choate, W. T., Industrial Technologies Program, "Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery" (U.S. Department of Energy, 1-76, 2006).




TE for Vehicle Waste Heat Recovery

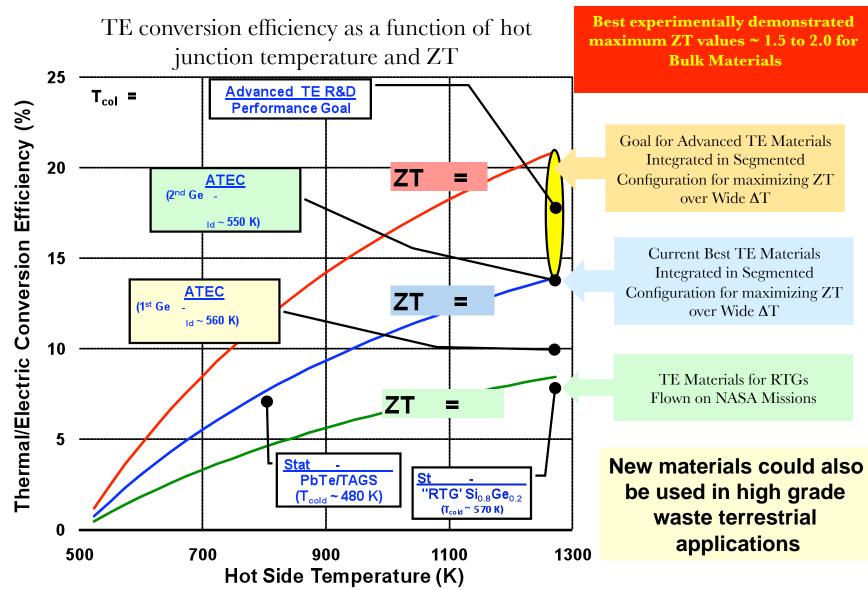

- Thermoelectrics in Vehicles
 - TE has unique advantages for integration
- What has been done?
 - Low efficiency Bi₂Te₃-based TE generators (TEG) demonstrations
- What is needed?
 - Increase TEG operating temperatures, ΔT
 - Integrate higher ZT materials (ZT_{ave} ~ 1.5 to 2)
 - Develop and scale up HT TE module technology
 - Integrate with efficient heat exchangers

> 10% Fuel Efficiency improvement with exhaust waste heat recovery

Exhaust Pipe TE Electrical power generator

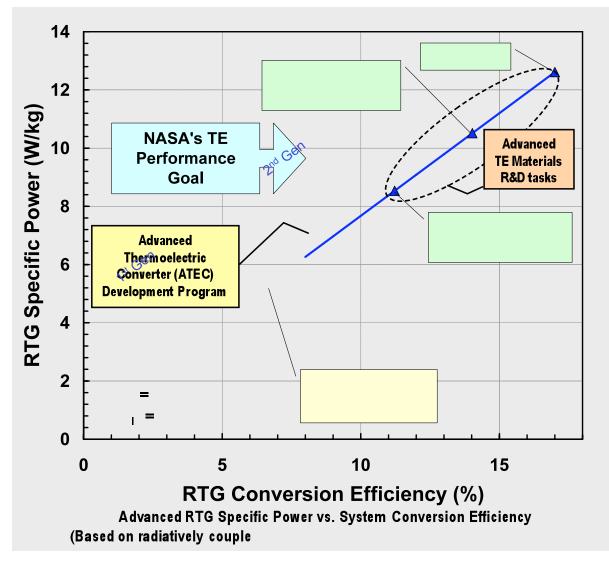
DOE Workshop 09/30/2009

TE Materials Considerations for Large Scale Waste Heat Recovery Applications


- Cost of pure elements (see table for preliminary assessment)
 - Must take into account volume of material required for practical, efficient device design
- Future availability of pure elements
 - Te, Ge...
- Toxicity of elements
 - PbTe....
- Materials and device processing costs
 - Also, how energy intensive these processes are ("energy payback time") is important

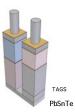
• Mate	erial	\$ per kg ¹	Max T _{hot} (K) ²	Temperature Gradient (K/cm) ³	Materials Efficiency	W/kg⁴	\$/W	
Si ₈₀ C	Ge ₂₀	630	1275	183	9.8	60	10.4	
Si ₉₈	Ge ₂	83	1275	162	7.1	47	1.8	
Yb ₁₄ Mı La ₃₋ ,		163	1275	744	11.6	104	1.6	
Mg ₂ Si _{0.6}	Sn _{0.4} (n)	11	750	133		56	0.2	
Skutter	udites	12	875	239	10.2	58	0.2	¹ Used 2008 USGS data (mostly) ² For long term operation ³ Based on 300 K cold side temperature, (except for
TAG	S (p)	631	673			153	4.1	TAGS) ⁴ Assumed 10 W/cm ² heat flux to size up amount
Pb	Те	83	825	421	8.8	77	1.1	of TE material required ⁵ Used Zintl/SKD/(Bi,Sb) ₂ Te ₃ and La _{3-x} Te ₄ /
Bi ₂	Te ₃	170	525	592	7.1	221	0.8	$SKD/Bi_2(Te,Se)_3$; similar efficiency results can be achieved with PbTe-based materials
Segme	ented ⁵	117	1275	519	19.5	114	1.0	

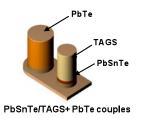
NASA's Advanced TE Research & Technology Program TE Materials Performance Objective



Impact of Advanced high temperature materials on RTG Performance

<u>Ultimate goal: > 15% efficient, 10 W_e/kg Advanced RTGs</u>

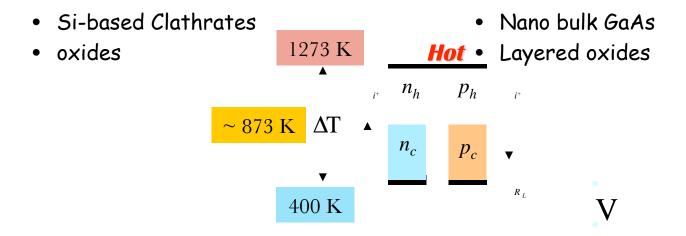

Advanced TE R&D - 12



TE Converter Configurations

P-leg	N-leg	Configuration	Program	
Bi ₂ Te ₃ /TAGS/PbSnTe	Bi ₂ Te ₃ /PbTe	Segmented Unicouple	Terrestrial RTG	
TAGS/PbSnTe	PbTe	Segmented Unicouple	SNAP-19, MMRTG	
Si _{0.63} Ge _{0.37} /Si _{0.8} Ge _{0.2}	Si _{0.63} Ge _{0.37} /Si _{0.8} Ge _{0.2}	Segmented Unicouple	MHW-, GPHS-RTG	
Bi2Te3/Filled Skutterudite	Bi ₂ Te ₃ /Skutterudite	Segmented Unicouple	Segmented TE Unicouple	
Zintl Nano Si _{0.63} Ge _{0.37} /Si _{0.8} Ge _{0.2}		2 Segmented Unicouple	ATEC-1	
Filled Skutterudite/Zintl	Nanocomposite Filled Skutterudite/La _{3-x} Te ₄	Segmented Unicouple	ATEC-2	
Filled Skutterudite	Skutterudite	Multicouple	STMC (2005)	
Si _{0.8} Ge _{0.2}	Si _{0.8} Ge _{0.2}	Multicouple	SP-100, MOD-RTG	
Terrestrial RTG MM-RT	G STE	MHW-RTG STMC	SP-100 MOD-RTG	

CeFe3.5Co0.5Sb1 CoSb Bi_{0.4}Sb_{1.6}Te Bi2Te2.95Se0. Skutterudite/Bi₂Te₃ segmented unicouple

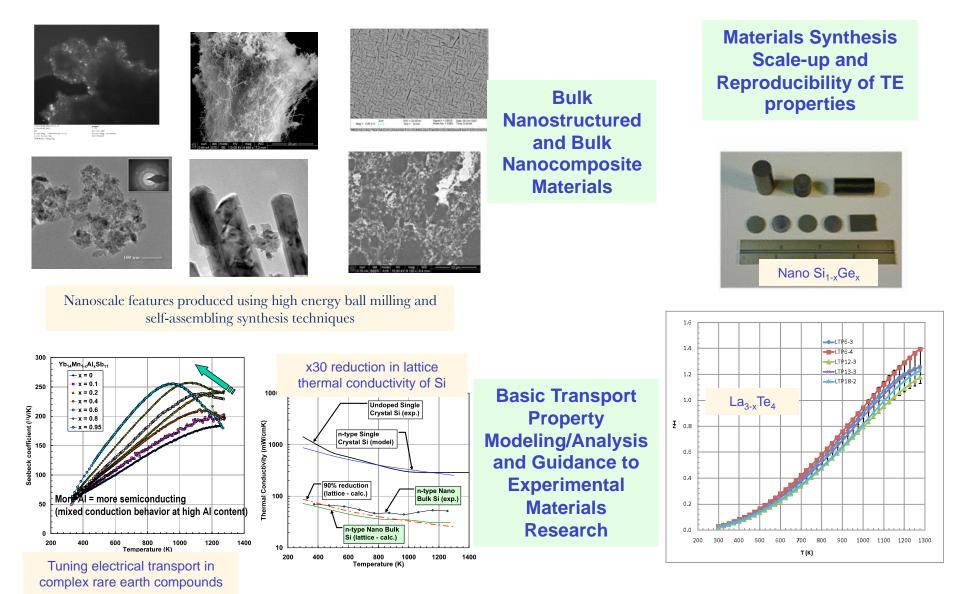

STMC

- Multicouples best suited to higher power systems ۲
- Unicouples are simpler, lower risk devices suitable for lower power systems ٠
- Segmenting has been preferred method to maximize ZT across large ΔT due to simpler system integration ۲

Candidate TE Materials for HT Power Applications Complex Low λ_L Materials and Nanostructured High PF Compounds

low Temperature *n*-type

• Nano bulk III-V compounds

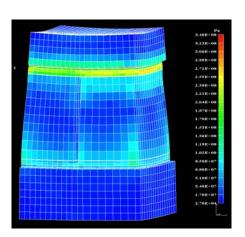

low Temperature *p*-type

- Nano bulk III-V compounds
- Self-assembling nanostructured Chalcogenides

Developing Efficient High Temperature TE Materials

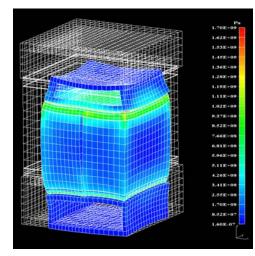
DOE Workshop 09/30/2009

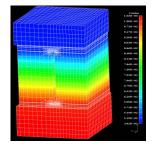
Maturity of Advanced Materials for High Temperature Converter Development

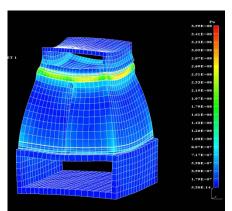

Initial Selection for 1st generation ATEC RTG

Alternate for 1st generation ATEC RTG

	Nano Bulk Si-Ge (p&n)	14-1-11 Zintl (p)	La _{3-x} Te ₄ (n)	Skutterudites (p&n)	Other Materials (Clathrates, TI-doped PbTe)
Reproducible TE properties	\checkmark				\square
Scale-up of synthesis	\checkmark		\checkmark	\checkmark	
Thermally stable TE properties	V	V	☑ (up to 1500h)		
Sublimation suppression possible	\checkmark	V			
Stable low resistance metallizations	\checkmark		☑ (up to 1000h)	☑ (up to 1500h)	
Temperature dependence of basic mechanical properties			(partial set of data)	Ø	


Thermal/Mechanical Considerations for PL **Development of High Temperature TE Converters**


Stresses during high temperature fabrication steps


• Critical Structural Integrity Issues

- -Coefficient of thermal expansion mismatches within TE device stack, and between stack and large heat exchangers
- -"Bowing" of TE legs due to large DT
- -Surviving fabrication and assembly steps and operation

Stresses back at room temperature after fabrication

Stresses when operating across large ΔT Bonded to hot and cold side heat exchangers

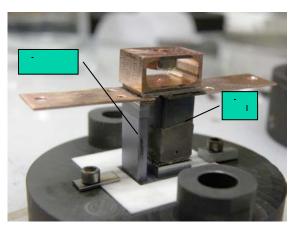
- 17

TE Materials Selection for Segmented Device

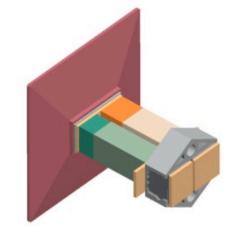
- Si-Ge alloys have much lower coefficient of thermal expansion (CTE) and their TE properties are not compatible with those of other candidate materials
 - Would require cascading, not practical for RTG applications
- Zintl and $La_{3-x}Te_4$ best high temperature materials for segmented devices
 - Excellent CTE match for both refractory rare earth compounds

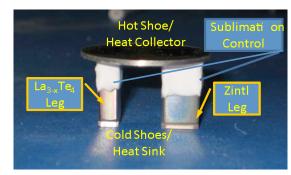
_	Good TE compatibility with	1					
	skutterudites, PbTe, TAGS		Mass Density (g/cm ³)	CTE (10 ⁻⁶ K ⁻¹)	Maximum T _{hot} (K)	ZT _{peak}	
—	Characterization of basic high temperature mechanical properties conducted in FY09		- 101 (
	With U. Mississipi collaboration	Nanostructured Si ₈₀ Ge ₂₀	2.9	4.1*	1275	1.05	
Seg	mentation with skutterudites	La _{3-x} Te ₄	6.7	18.0	1275	1.25	
—	Would result in couple efficiency increase from ~ 10% to more than 13%	CoSb ₃	7.6	12.2*	875	1.1	
dL/Lo *10-3		PbTe	8.3	~ 20	815	0.85	
20	P-Zintl	P-type materials					
15	Near identical CTE of Zintl	* Nanostructured Si ₈₀ Ge ₂₀	2.9	4.4*	1275	0.8	
		Yb ₁₄ MnSb ₁₁	8.4	17.5*	1275	1.45	
10	and $La_{3-x}Te_4$ LaTe	CeFe ₄ Sb ₁₂	7.9	14.5*	875	0.85	
5 -	n-SiGe	PbTe	8.3	~ 20	815	0.9	
		TAGS	6.5	~ 16	675	1.2	
0	200 400 600 800 1000 Temperature /°C	* Ravi et al., J. Ele	ectronic Materials,	published o	nline 28 Marc	h 2009	

DOE Workshop 09/30/2009


.

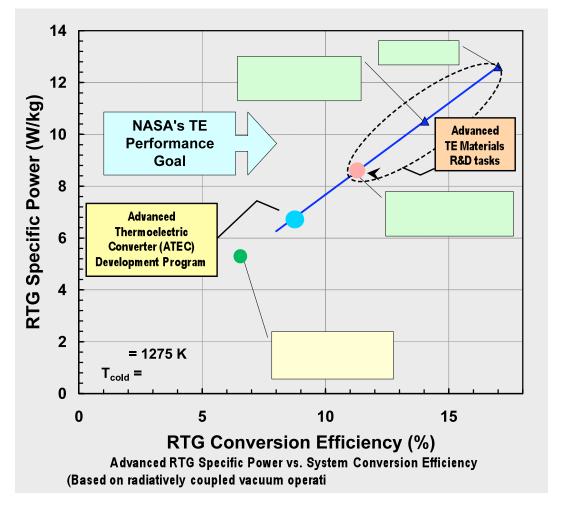
ц


Couple Configurations in Development



Zintl / NanoSiGe Couple

Zintl/SKD // La_{3-x}Te₄/SKD Segmented Couple



Zintl / La_{3-x}Te₄ Couple

Advanced TE Research & Technology Program How far are we?

(Based on radiatively coupled vacuum operation unicouple based RTG concept)

Current (FY09) System Performance Projection when using best TE materials in segmented couple configuration: n-type La_{3-x}Te₄/double filled SKD with p-type Yb₁₄MnSb₁₁/nanoPbTe $ZT_{ave} \sim 1.15$ (~ 15% couple efficiency) ~ 12.5% System efficiency

ZT_{ave} ~ 1.5 needed between 1273 K and 500 K to achieve 15% RTG system efficiency

Computational models based on experimental data on bulk nanostructured materials predict $ZT_{ave} > 2$

Summary and Conclusions

- Thermoelectrics have unique advantages for integration into selected waste heat recovery applications
 - Long, proven track record of high temperature TEGs
 - Well understood technology development roadmap
- Significant opportunities available in waste heat recovery
 - Vehicle exhaust heat recovery could provide "proving grounds" as best combination of small scale TEG system with large scale application
- TE materials efficiency is critical to TEG performance:
 - x 2 to 3 increase in ZT_{ave} needed, especially for low to medium grade waste heat
 - But cost, environmental friendliness and availability are also key parameters (potential issues with elements such as Ge, Te, Pb, Tl)
- Most of the technology risk lies in TE couple/module development and is a must to enable new applications
- Converter & heat exchanger designs are critical to efficient system implementation
- Demonstrated new high temperature couple based on new materials
 - Now focusing on development of segmented devices

Acknowlegments

- The work presented here benefited from contributions from a number of collaborators in the past year
 - California Institute of Technology
 - University of California at Los Angeles
 - University of California at Davis
 - Boston College
 - Massachusetts Institute of Technology
- Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration