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Skulls, Financial Turbulence,
and Risk Management

Mark Kritzman, CFA, and Yuanzhen Li

Based on a methodology introduced in 1927 to analyze human skulls and later applied to turbulence
in financial markets, this study shows how to use a statistically derived measure of financial
turbulence to measure and manage risk and to improve investment performance.

ost investors look to their domestic

equity markets as the main engine of

growth for their portfolios, and they

search for other assets to diversify this
exposure. The typical investor considers only aver-
age correlations, however, when measuring an
asset’s diversification benefits, and average corre-
lations tend to be misleading. For example, when
both U.S. and non-U.S. equities produce returns
greater than one standard deviation above their
means, their correlation equals —17 percent; when
both markets produce returns more than one stan-
dard deviation below their means, their correlation
rises to +76 percent.! These differences explain why
many investors who believed their portfolios were
well diversified suffered catastrophic losses during
the financial crisis of 2007-2008. Rather than rely on
average measures of risk to structure portfolios and
manage risk, investors should use conditional mea-
sures that take into account the behavior of assets
during turbulent subperiods.

Chow, Jacquier, Lowrey, and Kritzman (1999)
introduced a mathematical measure of financial
turbulence, which originally was developed by
Mabhalanobis (1927, 1936) to analyze human skulls.
We extended this research by investigating the
empirical features of financial turbulence and by
demonstrating how this methodology can be used
to stress-test portfolios, to construct turbulence-
resistant portfolios, and to scale exposure to risk to
improve performance.

Measuring Financial Turbulence

We define financial turbulence as a condition in
which asset prices, given their historical patterns of
behavior, behave in an uncharacteristic fashion,
including extreme price moves, decoupling of cor-
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related assets, and convergence of uncorrelated
assets. Financial turbulence often coincides with
excessive risk aversion, illiquidity, and devaluation
of risky assets.

The method we used to measure turbulence
first appeared as the “Mahalanobis distance.”
Mahalanobis (1927) used 7-15 characteristics of the
human skull to analyze distances and resemblances
between various castes and tribes in India. The
skull characteristics used by Mahalanobis included
head length, head breadth, nasal length, nasal
breadth, cephalic index, nasal index, and stature.
The characteristics differed by scale and variability.
That is, Mahalanobis might have considered a half-
inch difference in nasal length between two groups
of skulls a significant difference whereas he consid-
ered the same difference in head length to be insig-
nificant. Mahalanobis normalized differences in
each characteristic by the characteristic’s standard
deviation and then squared and summed the nor-
malized differences, thus generating one compos-
ite distance measure that was invariant to the
variability of each dimension. He later proposed a
more generalized statistical measure of distance,
the Mahalanobis distance, which takes into account
not only the standard deviations of individual
dimensions but also the correlations between
dimensions (see Mahalanobis 1936). In his system,
with 7 characteristics for measurements, each skull
can be represented as an n-dimensional vector. The
Mahalanobis distance of an individual vector y
from a sample of vectors with average p and cova-
riance matrix . is defined as

a’=\/(y—u)3_1 (y-m). @

where
d = Mahalanobis distance from sample aver-
age (scalar)
y = vector of multivariate measurements (1 x
n vector)
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v = sample average vector (1 x 1 vector)

3, = sample covariance matrix (n x n matrix)

The Mahalanobis distance can be used to mea-
sure the similarity of a particular skull to a sample
of skulls belonging to a group of known anthropo-
logical origin. Consider the following hypothetical
example. Suppose we use two features, head length
and head breadth, to measure skulls. Each skull can
then be represented as a point in a two-dimensional
space. Two groups of skulls belonging to distinct
anthropological origins form two clusters in the
two-dimensional space, as shown in Figure 1.

Suppose we compare a skull of unknown ori-
gin, represented by the square in Figure 1, with the
two groups and categorize it. In terms of Euclidean
distance, it lies closer to the center of Group 2 than
to the center of Group 1. The Mahalanobis distance,
however, would consider this skull more similar to
Group 1 because its characteristics are less unusual
in light of the more inclusive scatter plot of Group
1’s characteristics.

This example reveals that the Mahalanobis dis-
tance is scale independent, which is also apparent
from Equation 1. The characteristic deviations are
scaled by the covariance matrix.

Chow et al. (1999) independently derived a
nearly identical formula to detect turbulence in
financial markets.? By substituting asset returns

for skull characteristics, Chow et al. determined
the statistical unusualness of a cross section of
returns on the basis of their historical multivariate
distributions. With # assets, the returns for a par-
ticular period (such as a month or a day) constitute
an n-dimensional vector. Suppose a historical sam-
ple of such return vectors has an average vector p
and covariance matrix X. The statistical measure
of financial turbulence, which we term the “turbu-
lence index,” is formally defined as

’

-1

d,=(ve-n)2 " (v -n), )
where

d; = turbulence for a particular time period ¢

(scalar)

y; = vector of asset returns for period t (1 x n

vector)

b = sample average vector of historical

returns (1 x n vector)

3 = sample covariance matrix of historical

returns (1 x n matrix)

Turbulence, as we have just defined it, can be
calculated for any group of n return series a user
may choose. Figure 2 illustrates this statistical mea-
sure of turbulence for a simple example with two
return series—stocks and bonds. Each point repre-
sents the returns of stocks and bonds for a particular

Figure 1. Scatter Plot of Hypothetical Human Skull Characteristics

=

Group 1

Note: Points on each ellipse have identical Mahalanobis distances from the corresponding group center.
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Figure 2. Scatter Plot of Hypothetical Stock and Bond Returns

Bonds

Stocks

period. The center of the ellipse represents the aver-
age of the joint returns of stocks and bonds. The
ellipse itself represents a tolerance boundary that
encloses a certain percentage—for example, 75
percent—of the bivariate Gaussian distribution of
stock and bond returns. All points on the ellipse
have equal Mahalanobis distances from the center.
This boundary also embodies the threshold that
separates “turbulent” from “quiet” observations.
Points inside the ellipse represent return combina-
tions associated with quiet periods because the
observations are within 75 percent of the distribu-
tion and are thus not particularly unusual. The
observations outside the ellipse are statistically
unusual and are thus likely to characterize turbulent
periods. Notice that some returns just outside the
middle of the ellipse are closer to the ellipse’s center
than some returns within the ellipse at either end.
This pattern illustrates the notion that some periods
qualify as turbulent not because one or more of the
returns were unusually high or low but, instead,
because the returns moved in the opposite direction
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in that period despite the fact that the assets are
positively correlated, as evidenced by the positive
slope of the scatter plot.

Others have addressed the problem of financial
turbulence differently. Correlations conditioned on
upside or downside market moves (Ang and Chen
2002); time-varying volatility models, such as
GARCH (generalized autoregressive conditional
heteroscedasticity) models (Bollerslev 1986);
Markov regime-switching models (Ang and Bekaert
2002); mixture models, such as jump diffusion (Das
and Uppal 2004); and implied volatility (Mayhew
1995) have all been proposed as measures of finan-
cial duress. The statistical measure of turbulence
defined in this article has two particular advantages
over the (perhaps) most commonly used indicator
of financial stress—namely, implied volatility. In
our measure, turbulence can be estimated for any
set of assets rather than only for assets with liquid
option markets. And our measure captures interac-
tions among combinations of assets in addition to
the magnitude of the assets’ returns.
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Analysts may be tempted to think that the
volatility of an index comprising the assets used to
measure turbulence captures the same information
as our measure. After all, such a volatility estimate
incorporates both the volatility of the individual
assets and their correlations with each other. By
summarizing the data in an index, however, one
sacrifices the higher-dimensional information cap-
tured by the turbulence index.

This distinction is illustrated in Figure 3. The
loosely clustered circles in the scatter plot are the
returns of two assets with relatively high volatili-
ties and a negative correlation. The tightly clus-
tered squares are the returns of two assets with
relatively low volatilities and a positive correlation.
It turns out that an index comprising the circle
assets has the same volatility as an index compris-
ing the square assets, yet the turbulence estimates
of each index’s assets are substantially different.

Thus far, we have characterized returns as
belonging to distinct turbulent and nonturbulent

regimes. Depending on the data or particular appli-
cation, this distinction may be somewhat arbi-
trary.> We can just as well characterize returns
along a continuum ranging from quiescence to tur-
bulence. If we follow the latter approach, we find
that our mathematical measure of turbulence coin-
cides closely with well-known turbulent events, as
evidenced by Figure 4.

Figure 4 shows a turbulence index calculated
according to Equation 2, for which we used
monthly returns of six asset-class indices: U.S.
stocks, non-U.S. stocks, U.S. bonds, non-U.S.
bonds, commodities, and U.S. real estate. The aver-
age vector p and covariance matrix 3 in Equation
2 were calculated for the full sample from January
1980 to January 2009. Spikes in this index can
clearly be seen to coincide with events known to
have been associated with financial turbulence.
Also interesting to note, but certainly not surpris-
ing, is that the 2007-08 financial crisis is by far the
most turbulent episode of recent history.

Figure 3. Scatter Plot of Asset Pairs from Indices with Equal Variances
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Figure 4. Historical Turbulence Index Calculated from Monthly Returns of Six Global Indices, 1980-

2009
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Note: Measured as of January each year.

Empirical Features of Turbulence

Two empirical features of turbulence are particu-
larly interesting. First, returns to risk are substan-
tially lower during turbulent periods than during
nonturbulent periods, irrespective of the source of
turbulence. For example, the recent financial crisis
began with a downturn in housing prices, which led
to a sharp devaluation of mortgage derivatives.
What was somewhat surprising to many investors
is that this crisis in the mortgage derivatives market
coincided with substantial losses in carry strategies.
The carry strategy calls for long positions in cur-
rency forward contracts that sell at a discount com-
bined with short positions in currency forward
contracts that sell at a premium. Why should a crisis
in the mortgage market lead to losses in a currency
strategy? As mortgage derivatives fell in value,
many investors, especially hedge funds, were
required to raise capital. But the mortgage deriva-
tives market is relatively illiquid. To meet margin
calls from their prime brokers and redemptions from
their investors, these hedge funds thus turned to the
most liquid components of their portfolios—their
currency positions and investments in publicly
traded securities. Figure 5 provides evidence that
returns to risk are substantially lower during epi-
sodes of financial turbulence, even though the
causes of turbulence may differ over time.
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These differences in return suggest that know-
ing whether the period ahead will be turbulent
would be helpful, which leads to the second empir-
ical feature of turbulence. Financial turbulence is
highly persistent. It is similar to the turbulence
encountered in air travel. Weather turbulence may
arrive unexpectedly, but once it begins, we know
thatit will take time for the airplane to pass through
the weather system or for the pilot to find a
smoother altitude. The same process is true of
financial turbulence. Although we may not be able
to anticipate the initial onset of financial turbu-
lence, once it begins, it usually continues for a
period of weeks as the markets digest it and react
to the events causing the turbulence. Table 1 pro-
vides evidence of the persistence of turbulence.

Table 1 shows the level of average daily turbu-
lence following the initial arrival of a day that is
more turbulent than 10 percent of the most turbu-
lent days in the sample for the next 5 days, 10 days,
and 20 days, not including the initial turbulent day.
The turbulence values are multivariate distances
calculated according to Equation 2 for full-sample
averages and covariance matrices. These turbulence
scores were normalized to 1 to facilitate compari-
sons of the different sets of assets. The rightmost
column shows the normalized turbulence scores
separating the 10 percent most turbulent days from
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Figure 5. Returns to Risk during Turbulent and Nonturbulent Periods
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Notes: Turbulent periods were identified from USD-denominated daily values of the turbulence index
constructed for global asset allocation (World Equities), U.S. sectors based on the small-capitalization
premium (Small - Large) and the growth premium (Growth — Value), and developed country currencies
(Carry Trade) for 4 January 1993-31 December 2008. Monthly turbulence index values for global asset
allocation over the period January 1993-December 2008 were used for Hedge Funds. Raw turbulence
values are multivariate distances based on a full-sample covariance matrix. The market returns are daily
returns of the MSCI World Index (for World Equities), the Russell 2000 Index minus the S&P 500 Index
(Small - Large), the Russell 1000 Growth Index minus the Russell 1000 Value Index (Growth — Value),
and a naive carry strategy over the same time period. The monthly Hedge Fund returns are from the
HEFRI Fund of Funds Composite Index.

Source: State Street Associates.

the rest of the sample. The 10 percent threshold for
each market was identified from the full sample of
returns. The percentile rankings of the average daily
turbulence scores shown next to each score clearly
show that markets tend to remain turbulent for up
to a month or longer once turbulence begins.

Applications

This statistical measure of finance turbulence has
several useful applications. Analysts can use it to
stress-test portfolios more reliably than when
using conventional methods. Analysts can use it to
structure portfolios that are relatively resilient to

Table 1. Persistence of Turbulence

Next 5 Days Next 10 Days Next 20 Days

10th

Percentile Percentile Percentile  Percentile

Market Level Rank Level Rank Level Rank Threshold
Global assets 2.31 7 222 8 2.13 8 1.93
U.S. assets 2.98 5 2.9 5 2.79 6 1.95
U.S. sectors 3.12 5 3.04 6 2.87 6 2.03
Currencies 2.08 8 1.93 9 1.8 11 1.83
U.S. fixed income 4.05 4 3.85 5 3.6 5 2.12
U.S. Treasury notes ~ 3.19 5 3.13 6 2.96 6 2.00
U.S. credit 4.17 4 4.09 4 3.69 4 1.61

Note: Time periods used for the calculations are as follows: January 1993—-April 2009 for “Global assets,”
August 1989-April 2009 for “U.S. assets,” January 1973-April 2009 for “U.S. sectors,” January 1975
April 2009 for “Currencies,” December 2000-April 2009 for “U.S. fixed income,” September 1998-April
2009 for “U.S. Treasury notes,” and August 1998-April 2009 for “U.S. credit.”
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turbulent episodes without significantly compro-
mising their long-term growth prospects. And
finally, analysts can use turbulence as a signal for
scaling a strategy’s exposure to risk.

Stress-Testing Portfolios. Investors often
use value at risk (VaR) to measure a portfolio’s
exposure to loss. VaR provides the largest loss a
portfolio might experience at a certain level of con-
fidence. The conventional approach for measuring
VaR uses the full-sample covariance matrix to com-
pute the portfolio’s standard deviation and consid-
ers the probability distribution only at the end of
the investment horizon. We can measure exposure
to loss more reliably by estimating covariances
from the turbulent subperiods, when losses are
more likely to occur, and by accounting for interim
losses as well as losses that occur only at the con-
clusion of the investment horizon.*

Table 2 shows three portfolios—conservative
to aggressive—together with assumptions for their
expected returns and two estimates of standard
deviation. One estimate of standard deviation,
“Full-sample risk,” is based on the full-sample
covariance matrix of monthly returns beginning in
January 1977 and ending in December 2006. The
other estimate of standard deviation, labeled “Tur-
bulentrisk,” is based on the covariance matrix from
the turbulent subsample. Turbulence was calcu-
lated according to Equation 2, in which each return
vector consisted of returns of the five asset-level
indices for a particular month, and average vector
p and covariance matrix 3, were calculated from
monthly returns during the entire 30-year history.
The threshold for identifying turbulent periods
was set at 75 percent, which means that roughly 25
percent of the months fell within turbulent subpe-
riods.” Note how risk increases for each portfolio
when turbulence risk is used.

Table 3 shows the VaR, given a 1 percent con-
fidence level, for each portfolio as of December
2006. The first column shows VaR estimated as of
the end of a five-year horizon on the basis of stan-

Table 2. Efficient Portfolios, Expected
Returns, and Two Estimates of Risk

Conservative ~ Moderate  Aggressive
Asset Class Portfolio Portfolio Portfolio
U.S. stocks 22.86% 35.23% 48.15%
Non-U-.S. stocks 16.59 2422 32.19
U.S. bonds 49.95 32.81 14.89
Real estate 3.85 2.59 1.28
Commodities 6.75 5.16 349
Expected return 7.60% 8.37% 9.17%
Full-sample risk 7.77 10.12 12.86
Turbulent risk 10.68 13.68 17.33

Note: “Full-sample risk” was estimated from the full-sample
covariance matrix; “Turbulent risk” was estimated according to
the covariance matrix of the turbulent subsample.

dard deviations estimated from the full-sample
covariance matrix. The second column reports VaR
when we used the standard deviations estimated
from the covariances that prevailed during the tur-
bulent subsample and we took into account losses
that could occur throughout the investment hori-
zon. The third column shows the maximum losses
actually experienced by each of these portfolios
from inception during the financial crisis. The
fourth column reports the maximum drawdowns
realized by each of these portfolios.

If we consider the 2007-08 financial crisis as a
once-in-a-century event, Table 3 shows that the
conventional approach to measuring exposure to
loss badly underestimated the riskiness of these
portfolios. The turbulence-based approach, in con-
trast, anticipated the exposure to loss of these port-
folios much more accurately. To be clear, we point
out that the turbulence-based approach does not
offer a more reliable estimate of when an extreme
event will occur; rather, it gives a more reliable
estimate of the consequences of such an event. Also
note that turbulence is a relative measure. If the
world becomes more turbulent, for example, the
threshold for separating turbulent periods from
nonturbulent periods will rise.

Table 3. VaR and Realized Returns, End of 2006

VaR for VaR for Maximum Loss Maximum
Full Sample, Turbulent Sample, from Inception Drawdown
Portfolio End of Horizon within Horizon (Jan/07-Sep/09) (Jan/07-Sep/09)
Conservative 2.10% 26.20% 19.60% 25.80%
Moderate 9.90 35.10 29.42 35.50
Aggressive 18.70 45.00 38.96 45.30

Note: The horizon is five years.

Source: Windham Capital Management, LLC.
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Building Turbulence-Resistant Portfolios.
We have shown how analysts—by focusing on the
behavior of assets during periods of turbulence,
especially how they interact with each other—can
construct portfolios that are conditioned to better
withstand turbulent events and, at the same time,
perform relatively well in all market conditions.
Analysts can also modify two methods of optimiza-
tion, mean—variance optimization and full-scale opti-
mization, to derive turbulence-resistant portfolios.

We modified mean-variance optimization by
blending the differences between the realized tur-
bulent returns and full-sample returns with equi-
librium returns to estimate expected returns. We
also blended the turbulent subsample covariances
with the full-sample covariances in proportion to
their sample sizes.

We applied a modified version of full-scale
optimization. Full-scale optimization uses a search
algorithm to maximize expected utility for a given
sample of returns.® We modified this optimization
method by increasing the representation of the tur-
bulent subsample returns beyond their empirical
frequency. The details of these modified optimiza-
tion methods are described in Appendix A.

To evaluate the two methods, we performed
1,000 random trials of training and out-of-sample
testing. For each trial, we drew a random half from
the historical sample to use as training data. The
other half was used as testing data. From the train-
ing data, we identified a turbulent subsample by
calculating the turbulence index according to Equa-
tion 2 and, subsequently, selecting the periods with
the highest turbulence index values (the highest
quartile). Using the full training sample, we built an
unconditioned optimal portfolio that did not take
turbulence into account. Using the turbulent sub-
sample combined with some information from the
full training sample, we built a conditioned optimal
portfolio that was expected to be more resistant to
turbulence than an unconditioned portfolio. We
then used the testing data to test the unconditioned
and the conditioned optimal portfolios out of sam-
ple. We performed two types of testing: one on the
full testing sample and the other on a turbulent
subsample within the testing sample.

Figure 6 compares the performance of the con-
ditioned, turbulence-resistant, optimal portfolio
with that of the unconditioned optimal portfolio.
The conditioned portfolios substantially outper-
formed the unconditioned portfolios in the out-of-
sample turbulent periods and only marginally
underperformed the unconditioned portfolios, on
average, in all market conditions.

September/October 2010

Figure 6. Differences between Median
Annualized Returns of Conditioned
and Unconditioned Portfolios

Median Annualized Return (%)
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Notes: The median was taken over 1,000 out-of-sample tests.
“Subsample Gain” stands for outperformance (gain in median
return) of the conditioned portfolio during turbulent periods.
“Full-Sample Cost” stands for underperformance (loss in
median return) of the conditioned portfolio across quiet and
turbulent conditions.

The conditioned portfolios also outperformed
the unconditioned portfolios much more fre-
quently in the out-of-sample turbulent periods
and outperformed almost as often in all market
conditions, on average, as shown in Table 4.

This evidence strongly suggests that by
understanding the conditional behavior of assets,
portfolio managers can construct turbulence-
resistant portfolios without substantially compro-
mising average performance.

Table 4. Frequency of Conditioned Portfolio
Outperforming Unconditioned

Portfolio
Modified Modified
Mean-Variance Full-Scale
Out-of-Sample Period Optimization Optimization
Turbulent periods 85% 86%
All market conditions 45 41
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Scaling Exposure to Risk. The differential
performance of risky strategies during turbulent
and nonturbulent periods, together with the persis-
tence of turbulence, raises the tantalizing prospect
that portfolio managers might be able to improve
performance by conditioning exposure to risk on
the degree of turbulence. Indeed, we show here that
a simple scaling rule applied to the carry strategy
does significantly improve performance.” We mea-
sured the 30-day moving average of turbulence
each day from the returns of the G-10 currencies
and recorded whether the level of turbulence that
day fell into the first, second, third, fourth, or fifth
quintile of turbulence on the basis of a trailing
three-year window.® We then weighted exposure to
the carry strategy in inverse proportion to turbu-
lence as shown in Table 5. We assumed a one-day
lag for implementation.

Table 5. Exposureto Carry Strategy Weighted
in Inverse Proportion to Turbulence

Turbulence

Quintile Exposure
1st 20%
2nd 40
3rd 60

4th 80

5th 100

We applied the same scaling rule in using
other signals of market stress, including VIX
(index of volatility on the S&P 500), swap spreads,
and yield spreads. Table 6 shows the performance
of the unfiltered carry strategy as well as its filtered
performance. The evidence shows that reducing
exposure to the carry strategy in proportion to
turbulence substantially improves performance
and by a wider margin than using any other signal
of market stress. Moreover, filtering on turbulence
eliminates most of the negative skewness of the
carry strategy.

Conclusion

We showed that a mathematically derived measure
of financial turbulence, which measures the statis-
tical unusualness of a set of returns given their
historical pattern of behavior, coincides with well-
known episodes of market turbulence.

We also showed that this measure of financial
turbulence is mathematically equivalent to the
Mahalanobis distance, first motivated by the study
of similarity in human skulls. The following
analogy provided intuition of this equivalence.
The Mahalanobis distance captures several dimen-
sions of human skulls that set them apart from a
perfect sphere. If one constructed a scatter plot of
three return series emanating from a single multi-
variate normal distribution, it would form a per-
fect ellipsoid. This measure of financial turbulence
captures deviations from this idealized three-
dimensional scatter plot.

Financial turbulence has two intriguing fea-
tures. First, returns to risk are substantially lower
during turbulent periods than during nonturbulent
periods, and second, turbulence is persistent. It
may arrive unexpectedly, but it does not immedi-
ately subside. It typically continues for weeks as
market participants digest it and react to its cause.

This measure of financial turbulence can be
applied in a variety of useful ways. Portfolio man-
agers can use it to stress-test portfolios by estimat-
ing VaR from the covariances that prevailed during
the turbulent subsample. They can also construct
portfolios that are relatively resistant to turbulence
by conditioning inputs to the portfolio construction
on the performance of assets during periods of
turbulence. Finally, they can enhance the perfor-
mance of certain risky strategies by using turbu-
lence as a filter for scaling exposure to risk.

We thank Erin Abouzaid, Timothy Adler, Jordan
Alexiev, Robin Greenwood, Sébastien Page, and David
Turkington for helpful comments and assistance.

This article qualifies for 1 CE credit.

Table 6. Filtered Carry Trade Performance

Unfiltered  Turbulence Five-Year TED Yield
Measure Carry Index VIX  Swap Spread Spread Spread
Return (%) 2.81 3.02 1.98 2.67 2.21 2.10
Standard deviation (%) 5.55 3.29 3.95 4.04 3.51 3.07
Information ratio 0.51 0.92 0.50 0.66 0.63 0.68
Skewness -0.48 -0.15 -0.26 -0.25 -0.31 -0.56

Notes: The swap spread is based on U.S. dollars and is measured against the comparable U.S. Treasury
security. The bond yield spread represents the difference between 10-year and 2-year Treasury yields.

“TED Spread” stands for Treasury—Eurodollar spread.
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Appendix A. Two Methods
for Building Turbulence-
Resistant Portfolios

The investment universe we used for building tur-
bulence-resistant portfolios is as follows: U.S. equi-
ties, non-U.S. equities (the MSCI EAFE Index), U.S.
T-bonds, U.S. corporate bonds, U.S. Treasury Infla-
tion-Protected Securities (TIPS), commodities,
REITs, and cash. Our historical sample includes
data between 1973 and 2009. (We back-filled TIPS
data for the period between 1973 and 1996 on the
basis of U.S. Consumer Price Index returns and
returns of bond indices with similar durations.)

The conditioned and unconditioned portfolios
were constructed 1,000 times from a randomly
selected half of the training data and tested out of
sample on the remaining unused data. From the
training sample, we identified a turbulent subsam-
ple by comparing each period’s turbulence index
with a threshold. The turbulence index was calcu-
lated according to Equation 2, and the threshold
was the 70th percentile of all the training-sample
turbulence index values.”

Using the full training sample, we derived an
unconditioned optimal portfolio that was expected
to be optimal in all market conditions, quiet or
turbulent. Using the turbulent subsample com-
bined with information from the full training sam-
ple, we derived a conditioned optimal portfolio for
withstanding market turbulence.

To evaluate the performance of the uncondi-
tioned and the conditioned optimal portfolios, we
used both the full testing sample and a turbulent
subsample, which was identified by placing a
threshold on the testing-period turbulence index.
The threshold was set equal to the one used for
dissecting the training sample.

We performed this process 1,000 times. Figure
6 and Table 4 in the body of this article demonstrate
that the conditioned optimal portfolios derived by
incorporating the turbulence index are indeed more
resistant to market turbulence yet perform reason-
ably well, on average, in all market conditions.

Modified Mean—-Variance

Optimization

1. We estimated the unconditioned expected
returns as equilibrium returns on the basis of
the full training sample. To estimate equilib-
rium returns, we used a portfolio consisting of
60 percent U.S. equities, 30 percent T-bonds,
and 10 percent U.S. corporate bonds as the
market portfolio.

September/October 2010

We estimated the conditioned expected
returns as follows:

We computed the average returns of the
turbulent subsample and compressed
them toward the return of the minimum-
variance portfolio. The subsample, condi-
tioned on its turbulence index being high,
was often a relatively small sample. There-
fore, expected returns estimated by taking
the subsample average were subject to
possibly severe estimation errors, leading
to inferior out-of-sample performance.
The small-sample problem can be miti-
gated by compression, also known as
shrinkage, where the sample average is
blended with another estimator that
enforces more structure. Any common
return constant can function as a shrink-
age target and improve out-of-sample
risk-adjusted performance of the resulting
portfolio. In our experiments, we chose to
use the return of the minimum-variance
portfolio, proposed by Jorion (1986), as the
shrinkage target:

_1 ~
_¢X
= -

e e
wheree =[1,1, ..., 1]’ is the unit vector,

3, is the sample covariance matrix, and f
is the sample mean.

Mm (A1)

The shrinkage strength (i.e., the weight
applied to the shrinkage target for linearly
blending it with the sample mean) was
determined by the following formula:

n+2

w =

~ 1A  (A2)

n+2+T(p,—|.Lme)’2 (u—ume)

where 7 is the number of dimensions (i.e.,
number of assets in the portfolio) and T is
the sample size (i.e., number of observa-
tions in the sample). The return estimate
after shrinkage was found by

B = wiy, + (1-w) . (A3)

We computed the average returns of the
full training sample and compressed
them toward the return of the minimum-
variance portfolio. The shrinkage target
and shrinkage strength were calculated in
the same fashion as in the previous step
with the use of Equations Al and A2, but
the calculations were performed on the
full training sample instead of the turbu-
lent subsample.
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* We used ratios proportional to sample
sizes to blend the differences between the
compressed subsample and full-sample
returns with equilibrium returns.

We used the full training sample to estimate
the unconditioned covariances by shrinking
the sample covariance matrix toward a one-
factor market model covariance matrix (Ledoit
and Wolf 2003).

Using ratios proportional to sample sizes, we
estimated the conditioned covariances by
blending the turbulent subsample covariance
matrix (which was also shrunk toward a one-
factor market model covariance matrix) with
the full-sample covariance matrix.

We identified the unconditioned and condi-
tioned optimal portfolios in a mean—variance
framework by using expected returns and
covariances estimated in Steps 1-4. We chose
risk aversions in such a way that the uncondi-
tioned and the conditioned optimal portfolios
would have similar risk profiles in the train-
ing data, both with standard deviations
around 10 percent.

We computed performances of unconditioned
and conditioned optimal portfolios for the full
testing sample and the turbulent subsample.
The results are provided in the first portions of
Table 4 and Figure 6.

Modified Full-Scale Optimization

1.

We estimated the unconditioned expected
returns as equilibrium returns on the basis of
the full training sample. To estimate equilib-
rium returns, we used a portfolio consisting of
60 percent U.S. equities, 30 percent T-bonds,
and 10 percent U.S. corporate bonds as the
market portfolio.

We scaled the training sample by the uncondi-
tioned expected returns estimated in Step 1 so
that the average asset returns would be equal
to equilibrium returns.

We modified the training data by increasing
the representation of the turbulent subsample.
The increased representation was achieved via
boot strapping: The subsample was sampled at
three times the frequency at which the full
training sample was sampled.

We identified the unconditioned optimal port-
folio in a mean-variance framework by using
unconditioned expected returns estimated as
equilibrium returns (Step 1) and uncondi-
tioned covariances estimated for the unmodi-
fied full training sample.

We used the modified training data to identify
the conditioned full-scale optimal portfolio.
Full-scale optimization uses a search algorithm
to identify a set of asset weights that maximize
expected utility given a sample of returns and
a utility function (see Cremers et al. 2005 for a
detailed description). We used a kinked utility
function in which utility changes abruptly at a
threshold return level. Utility was defined as a
log-wealth function above the threshold return
and a linear function with a steep slope below
the threshold return:

Uz{ In(1+x), Jor x>0

Y(x-0)+In(1+6), forx<®’ B

where x stands for return, 0 stands for the
threshold, and y stands for the slope of utility
below the threshold. In our experiments, x
was annually compounded portfolio return, 6
was —15 percent, and y was 2.25. For a partic-
ular set of weights, we calculated a portfolio’s
expected utility as the sum of its utility for
each period. We considered many sets of can-
didate portfolio weights and identified the set
that yielded the highest expected utility as the
set of optimal weights.

We computed performances of unconditioned
and conditioned optimal portfolios on the full
testing sample and its turbulent subsample.
The results are provided in the right-hand por-
tions of Table 4 and Figure 6.

Notes

1.

40

These correlations are based on monthly returns of the S&P
500 Index and MSCI World ex US Index from the period
starting January 1970 and ending February 2008.

The only difference between the two measures is that the
Mahalanobis distance is the square root of the turbulence
measure as defined in Equation 2. In many of the applica-
tions in Chow et al. (1999), the authors used the ordinal
relationships of the turbulence measure, which are not
altered by squaring, to identify turbulent periods.

www.cfapubs.org

One approach for separating turbulent from nonturbulent
regimes is to compute the absolute differences in correla-
tions, cell by cell, between the 5 percent, 10 percent, 15
percent, 20 percent, and so forth, most turbulent regimes
and the nonturbulent remaining observations and then plot
the average of these differences as a function of sample size
and look for obvious correlation shifts. Alternatively, one
can determine the threshold as a function of returns to risk.
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4. VaR that takes into account within-horizon losses is called
“continuous VaR.” It is estimated numerically from first
passage probabilities. See Kritzman and Rich (2002) for a
thorough description of continuous VaR.

5. The results are not particularly sensitive to the 75th per-
centile threshold.

6. See Cremers, Kritzman, and Page (2005) for a detailed
description of full-scale optimization.

7.  Weimplemented the carry strategy by first estimating each
currency forward contract’s expected return as its annual-

ized monthly discount or premium. Then, we constructed
an equally weighted portfolio of long and short exposures
(long discount currencies and short premium currencies).
We rebalanced the portfolio monthly.

The G-10 countries are Belgium, Canada, France, Germany,
Italy, Japan, the Netherlands, Sweden, Switzerland, the
United Kingdom, and the United States.

The results are not particularly sensitive to the 70th per-
centile threshold.
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