

Principles of Management Accounting

Study guide one of two for MAC2601

Compilers
Mr W.J. Coetzee
Mr A.H. Jordaan
Mr S.K.M. Sithole
Mrs J.M. Verster
Coordinator Study guide Project
Ms L. Esterhuyse
Curriculum and learning development
Ms M. Madiope
Ms G.N.W. Moleko
© 2012 Universiteit van Suid-Afrika

All rights reserved
Printed and published by the University of South Africa
Muckleneuk, Pretoria

MAC2601/1/2013-2019
98824228

3B2

CONTENTS

INTRODUCTION AND OVERVIEW ix
PART 1: VALUING INVENTORIES USING BASIC TECHNIQUES 1
Topic 1 - Nature and behaviour of costs 3
Study unit 1: Cost objects, classification and behaviour 5
1 Introduction 5
2 Cost objects and traceability 5
3 Classification of costs according to their nature or origin 7
4 Further classification of manufacturing costs according to its components 8
5 Classification of costs according to cost behaviour 10
6 A closer look at relevant range and specific time frame 15
7 Classification of cost as product or period cost 16
8 Summary 17
Self-assessment Activity 17
Study unit 2: Estimation techniques and the linear equation 20
1 Introduction 20
2 The linear equation 20
3 The high-low method 21
4 The scatter diagram 22
5 Simple regression analysis (least squares method) 23
6 Summary 27
Self-assessment Activity 28
Study unit 3: Cost-volume-profit analysis 32
1 Introduction 32
2 What is the cost-volume-profit analysis? 32
3 Assumptions of the cost-volume-profit analysis 33
4 Contribution 33
5 Breakeven analysis 37
6 The effects of price and cost changes on the breakeven point 39
7 Margin of safety 42
8 Target profit analysis 43
9 Breakeven graph 45
10 Summary 46
Self-assessment Activity 46
Topic 2 - Accounting for material, labour and overheads 59
Study unit 4: Material 61
1 Introduction 61
2 Material recording procedures 62
3 Accounting entries 63
4 Inventory planning and control 65
5 Summary 72
Self-assessment Activity 72
Study unit 5: Labour 76
1 Introduction 76
2 Labour cost control 76
3 Payroll accounting 79
4 Accounting entries in respect of labour remuneration 87
5 Labour recovery rate 90
6 Summary 94
Self-assessment Activity 94
Study unit 6: Overheads 98
1 Introduction 98
2 Why do manufacturing overheads present a problem? 98
3 Budgeted, applied and actual manufacturing overheads 101
4 Accounting entries in respect of manufacturing overheads 103
5 Multiple range of products: expanding on the overhead concepts to date 105
6 Multiple range of products: departmentalisation/allocation of overheads 115
7 Summary 125
Self-assessment Activity 125
Comprehensive Self-assessment Activity 131
Topic 3 - Methods of inventory valuation 135
Study unit 7: First-in-first-out (FIFO) method 137
1 Introduction 137
2 Categories of inventory 138
3 The FIFO method 139
4 Summary 140
Self-assessment Activity 141
Study unit 8: Weighted average method 144
1 Introduction 144
2 Weighted average method 144
3 Summary 146
Self-assessment Activity 146
Topic 4 - Valuing completed inventories: the variable/direct costing method versus the traditional absorption costing method 151
Study unit 9: The direct costing method versus the absorption costing method 153
1 Introduction 153
2 Allocating manufacturing cost 153
3 Different costing concepts 154
4 Presentation formats of the different statements of comprehensive income 155
5 Impact of the weighted average method and the FIFO method on both costing methods 159
6 Summary 164
Study unit 10: Reconciling differences between net profits 165
1 Introduction 165
2 Reconciling profits that were determined using different bases 166
3 Advantages, disadvantages and uses of the direct costing method 168
4 Advantages, disadvantages and uses of the absorption costing method 169
5 Summary 171
Comprehensive Self-assessment Activity 172
Part 2: VALUING INVENTORIES USING MORE ADVANCED TECHNIQUES
Topic 5 - The activity-based costing (ABC) system 183
Study unit 11: Comparing ABC and the traditional costing method 185
1 Introduction 185
2 The emergence of a more complex business environment 185
3 Optimal environment for the ABC method 186
4 Comparison of the two-stage allocation process (between traditional and ABC) 187
5 Differences between ABC and traditional costing 189
6 Advantages of the ABC method 189
7 Disadvantages of the ABC method 189
8 Summary 189
Self-assessment Activity 189
Study unit 12: ABC system design and application 191
1 Introduction 191
2 Designing an ABC system 191
3 Product costing with ABC 197
4 Summary 200
Comprehensive Self-assessment Activity 201
Topic 6 - The job costing system 207
Study unit 13: The job costing system 208
1 Introduction 208
2 Costing systems 208
3 Description of job costing 209
4 The flow of documents in a job costing system 209
5 Manufacturing cost flow through ledger accounts using the job costing system 209
6 Summary 213
Self-assessment Activity 213
Topic 7 - The process costing system 219
Study unit 14: The process costing system - all units completed 221
1 Introduction 221
2 Uses of process costing 223
3 Production by means of a single process 224
4 Production by means of consecutive processes 226
5 Recording process cost flows in the general ledger 230
6 Reporting process cost flows 232
7 Summary 232
Self-assessment Activity 233
Study unit 15: Work-in-process, equivalent units and the quantity statement 236
1 Introduction 236
2 Work-in-process (WIP) 236
3 Calculation of equivalent units for WIP 238
4 Inventory valuation methods 240
5 Quantity statement 241
6 Guidelines for equivalent unit columns in the quantity statement 243
7 Quantity statement - weighted average and FIFO methods of inventory valuation 249
8 Summary 250
Self-assessment Activity 251
Study unit 16: Losses 253
1 Introduction 253
2 Normal versus abnormal losses 253
3 Inputs versus outputs 254
4 Place and size of normal wastage (normal losses) 254
5 Determining the number of units subject to normal loss 255
6 Calculation of normal loss in units, depending on the wastage point 256
7 Normal losses and the FIFO quantity statement 262
8 Calculation of abnormal loss in units, depending on the wastage point 264
9 Determining equivalent units of normal and abnormal loss - general guidelines 264
10 Summary 272
Self-assessment Activity 273
Study unit 17: Production cost statements 279
1 Introduction 279
2 Production cost statement preparation - FIFO method of inventory valuation 280
3 Production cost statement preparation - weighted average method of inventory valuation 281
4 Differences between FIFO and weighted average production cost statements 283
5 Consistencies of FIFO and weighted average production cost statements 285
6 Summary 285
Self-assessment Activity 285
Study unit 18: Allocation statements 288
1 Introduction 288
2 Treatment of losses 289
3 Calculation of the rand value of normal loss 291
4 Allocation of the rand value of normal loss 293
5 Allocation statement preparation - FIFO method of inventory valuation 299
6 Allocation statement preparation - weighted average method of inventory valuation 301
7 Summary 317
Comprehensive Self-assessment Activity 317
Topic 8 - Joint and by-product costing system 323
Study unit 19: Costing joint products 325
1 Introduction 325
2 What is a joint process? 325
3 Classification of joint output into joint products and by-products 327
4 Joint costs 328
5 Additional (further) processing costs incurred after the split-off point 328
6 Methods for allocating joint costs (assuming no by-product sales) 329
7 Summary 339
Self-assessment Activity 339
Study unit 20: Accounting for by-products 343
1 Introduction 343
2 Costing methods for by-products 343
3 Costing of by-products: where a regular market exists 344
4 Costing of by-products: where no regular market exists (waste/scrap) 347
5 Summary 354
Self-assessment Activity 354
WORD LIST 358

Your separate Study Guide 2 will contain the following:
PART 3: PLANNING, BUDGETING AND CONTROLLING PERFORMANCE
Topic 9 - Budgeting techniques
Study unit 21: The budgeting process
Study unit 22: Flexing the budget
Topic 10 - Standard costing
Study unit 23: The standard costing system
Study unit 24: Calculating selected variances
Study unit 25: Reconciliation and analysis of variances
PART 4: RELEVANT INFORMATION FOR SHORT-TERM DECISIONS
Topic 11 - Relevant costing
Study unit 26: Relevant versus irrelevant costs
Study unit 27: Short-term decision-making (special orders)
Study unit 28: Limiting factors and the allocation of resources
Topic 12 - Sensitivity analysis
Study unit 29: Cost-volume-profit analysis (CVP)
Study unit 30: Probabilities
Study unit 31: Decision trees

INTRODUCTION AND OVERVIEW

WELCOME

We would sincerely like to welcome you as a registered student for the module
MAC2601.
Nelson Mandela said:
"Education is the most powerful weapon which you can use to change the world."

We trust you will use this powerful weapon to gain new knowledge, insight and practical skills to advance your future studies and career.

The management accounting environment is changing and so are the skills and competencies required of chartered accountants and management accountants. After successfully completing this module, it is your responsibility to ensure that you keep up-to-date with the latest developments in this field of study.
"Watch, listen, and learn. You can't know it all yourself ... anyone who thinks they do is destined for mediocrity."

Donald Trump

Before starting your studies, it is important that you take note of what follows below.

GENERAL OBJECTIVES OF THIS MODULE

In this module, the student is introduced to the principles of management accounting.
This module is mainly intended for the student who is interested in registering as a chartered accountant (SAICA) or a chartered management accountant (CIMA). The module will enable students to develop competencies that these two organisations require.

The purpose of this module is:

- to give students a basic knowledge of cost classification, cost behaviour, cost analysis, cost estimation, cost objects and cost management accounting systems;
- to enable students to understand and apply planning, budgeting and control techniques; and
- to enable students to understand how financial and other data are analysed in order to provide information for decision-making.

PREREQUISITES

It is assumed that students possess the following:

- Reading and comprehension skills to enable them to read questions and case studies,
comprehend the content of both, and follow a logical thought process. Furthermore, students must be capable of applying the basic principles of the tutorial matter to questions or elementary case studies; they must also be capable of formulating their own opinions, putting forward recommendations, and drawing conclusions based on their mastery of the tutorial matter.
- Knowledge of basic accounting concepts, principles and procedures, as indicated by successful completion of the module that is a prerequisite and that forms part of the admission requirements. (Financial Accounting Principles, Concepts and Procedures - FAC1502.)

STRUCTURE OF THIS STUDY GUIDE AND THE MODULE

This module is structured into four distinct parts, each containing one or more topics. Topics, in turn, are study areas, and each topic is divided into study units. You will find the outcomes, which you are required to achieve for each topic in this guide, at the beginning of each topic. Self-assessment activities are provided at the end of each study unit so that you can assess whether you have mastered the learning outcomes.

The parts of the module are briefly described below:

PART 1 - VALUING INVENTORIES USING BASIC TECHNIQUES

(Topics 1-4)

Part 1 forms the foundation for further studies in cost accounting. It introduces you to the nature and behaviour of costs and to material, labour and overheads in the general ledger. It also explains the difference between the first-in-first-out method (FIFO method) and the weighted average method for acquired inventories. This part concludes with a comparison between the traditional absorption costing method and the variable costing method for the valuation of completed inventories.

PART 2 - VALUING INVENTORIES USING MORE ADVANCED TECHNIQUES

(Topics 5-8)
Part 2 equips you with skills needed to understand the activity-based costing (ABC) system, the job costing system, the process costing system and the joint and by-product costing system.

PART 3 - PLANNING, BUDGETING AND CONTROLLING PERFORMANCE

(Topics 9-10)
Topic 9 concentrates on planning and budgeting, and topic 10 explains a standard costing system and how to apply it.

PART 4 - RELEVANT INFORMATION FOR SHORT-TERM DECISONS

(Topics 11-12)
In part 4, you are introduced to relevant and irrelevant information, special order scenarios, limiting factors and the allocation of resources. Topic 12 concludes with a discussion of sensitivity analysis techniques.

CONTENT MAC2601 (Diagram 1)

Diagram 1 below contains a schematic representation of the content of the MAC2601 module.

MAC2601
 Principles of management accounting

STUDY MATERIAL AND RESOURCES

Prescribed study material

The prescribed study material for this module is:

- Study Guide 1 and Study Guide 2 for MAC2601
- Various tutorial letters issued during the semester

myUnisa resources

Please make use of myUnisa (https://my.unisa.ac.za), because it contains further resources that will help you to master this module. The following resources are available on myUnisa:

- Study Guide 1 and Study Guide 2 for MAC2601
- Various tutorial letters issued during the semester
- Previous examination papers
- Discussion forum
- Announcements
- Other resources

Supplementary literature/Additional reading

You can use the bibliography at the end of certain topics for additional resources if you want to read more about specific topics for the purpose of self-enrichment.

ASSIGNMENTS

Assignments, including the necessary instructions, are set out in Tutorial Letter 101. Please note that your assignment answers must be received for marking by the due dates.

It is in your own interest to answer and submit as many assignments as possible for the following reasons:

- Assignments form an integral and major part of your studies.
- There are three compulsory assignments for this module - numbered 01, 02 and 03 that contribute to your year mark. (Although we call it a year mark, it applies to the semester you are registered for, as MAC2601 is a semester and not a year module).
- You will not be allowed admission to the examination if the first compulsory assignment (number 01) is not received on or before the due date.
- Assignments help you to prepare for the examination.
- As indicated in Tutorial Letter 101, certain assignments are taken into account when calculating your year mark; the higher your year mark, the better chance you have of passing this module.

CRITICAL SUCCESS FACTORS

Our aim in designing the study guide was to give you the best possible opportunity to master the knowledge, skills and values required by the discipline and the demands of professional practice. To discover what other support we offer you, please read Tutorial Letter 101, which you should probably have received by now.

To ensure that you are successful in your studies, we strongly advise you to do the following:

- Start studying as soon as possible. We have found that students who start early have time to reflect on their studies and formulate their own opinions.
- Use your time sensibly.
- Work systematically through the contents of the study guide and tutorial letters.
- Set realistic goals.
- Believe in yourself.

We have designed this module using the guidelines of the South African Qualifications Authority (SAQA) regarding the notional hours you will need to work through the course material successfully. You will need at least 120 hours to read, study the tutorial matter, do the assignments and prepare for the examination. We have prepared a suggested timetable guideline for you on the next page.

Research has shown that students who complete their assignments conscientiously are more likely to pass their examinations than those who do the minimum.

Please note that you will not pass this module if you simply try to memorise the study material. We suggest that you allow yourself enough time to read through the study material, use different techniques to summarise the content, spend time reflecting on the issues and principles involved, and practise by doing lots of questions.

USING THE STUDY GUIDE

Before you start studying, we recommend that you prepare a study schedule that allocates time to each study unit, leaving sufficient time for revision closer to the examination (see schedule below).

When studying a new topic, we recommend that you do the following:

- Read the introductory paragraph of the topic in the study guide to familiarise yourself with the aim of the topic.
- Study the topic in detail using the study guide as the primary reference.
- Prepare summaries of key concepts, definitions and important information from your study material.
- Evaluate yourself continuously by working through the self-assessment activities provided in the study guide.

STUDY PROGRAMME GUIDELINE

Part	Topic No	Topic	Hours
1	1	Nature and behaviour of costs	11
	2	Accounting for material, labour and overheads	15
	3	Methods of inventory valuation	3
	4	Valuing completed inventories: The variable/direct costing method versus the traditional absorption costing method	6
2	5	The activity-based costing (ABC) system	5
	6	The job costing system	2
	7	The process costing system	19
	8	Joint and by-product costing system	6
3	9	Budgeting techniques	5
	10	Standard costing	11
4	11	Relevant costing	9
	12	Sensitivity analysis	6
Assignments			20
Examination			2
Total hours			120

TEACHING STRATEGY

The focus of our teaching role is to facilitate your learning experiences, thus enabling you to achieve the specific assessment criteria. Furthermore, these learning experiences are designed to enable you to master the learning content at a predetermined competence level.

Meaning of words

Throughout this module we communicate learning outcomes and self-assessment criteria phrased in terms of what you should be able to do. This process involves the use of action words, which are usually verbs or phrases containing verbs; in other words, in
the learning activity, we describe what you are expected to do. It is our objective to ensure that the words we use clearly state what you have to do. For your part, you need to make sure that you clearly understand our instructions and that you are familiar with the range of words that we use in the study material for this module.

We list below (in alphabetical order) examples of some of the action words that you will come across in this module, together with their meanings.

ACTION WORD	DESCRIPTION
Apply	Demonstrate knowledge and understanding by using information in a practical sense; use where relevant or appropriate. Use in a practical way.
Calculate	Ascertain by mathematical procedure/exact reckoning.
Compare	Examine in order to observe resemblances, relationships and differences.
Complete	Finish/add what is required.
Define	State precisely the meaning/scope/total character; make clear (especially the outline); give a concise description of the distinguishing features.
Describe	Give clearly the distinguishing details or essential characteristics of.
Determine	Decide; come to a conclusion/make a decision by means of reasoning.
Discuss	Examine/consider the opposing arguments (for or against a view).
Draft	Prepare a preliminary version of.
Evaluate	Make judgements on the basis of given criteria.
Examine	Investigate carefully/in detail.
Explain	Set out the meaning; clarify the meaning, provide supporting evidence; argue the truth.
Identify	Establish by consideration, select, recognise.
List	Record/document/itemise names or things belonging to a class.
Mention/name/state	Specify by name; cite names, characteristics, items, elements or facts.
Motivate	Cite facts/reasons as support for a viewpoint or argument and draw a conclusion.
Organise	Arrange in an orderly structure/sequence; place into classes/ groups according to certain criteria.
Prepare	Make ready/complete; make something ready on the basis of previous study.
Record	Put in writing; set down for reference and retention.
Summarise	Give a condensed version of; state the key aspects of.

IN CONCLUSION

We trust that the remarks we have made in the sections above will help you to approach your MAC2601 studies methodically and with a greater degree of understanding.

MAC2601 is not just one of those modules you pass, tick off as part of your degree requirements, and then continue as you did before - these skills are for life!

Enjoy your studies and remember the words of Vince Lombardi:
"The price of success is hard work, dedication to the job at hand, and the determination that whether we win or lose, we have applied the best of ourselves to the task at hand."

We trust that you will enjoy the MAC2601 journey with us, and we wish you the best in the weeks and months that lie ahead of you!

Regards,
Your MAC2601 lecturers

VERY IMPORTANT NOTE

After you have passed this module, you should not get rid of your study guides and other study material (like tutorial letters). You may have to refer back to these in your future studies. The principles that are dealt with in this module will not be repeated in subsequent modules! In subsequent modules it is assumed that you completely got the hang of the learning outcomes of prior modules.

PURPOSE OF THE MODULE

This module is mainly intended for the student who is interested in registering as a chartered accountant at the South African Institute of Chartered Accountants (SAICA) or a chartered management accountant at the Chartered Institute of Management Accountants (CIMA). This module will enable students to develop competencies required by both organisations.

The purpose of the module is to provide students with knowledge and skills in the following principles of management accounting:

- basic knowledge of cost classification, cost behaviour, cost analysis, cost estimation, cost objects and cost management accounting systems
- planning, budgeting and application of standard costing as a control technique
- analysis of financial and other data to provide information that can be used in decision-making

Valuing inventories using basic techniques

PURPOSE

The purpose of part 1 is to:

- Estimate costs according to their nature and behaviour
- Estimate profits using cost-volume-profit analysis
- Identify and assign material, labour and overheads
- Explain and apply the first-in-first-out (FIFO) method versus the weighted average method in order to value acquired inventories
- Apply the traditional absorption costing method versus the variable/direct costing method in valuing completed inventories

Nature and behaviour of costs

Learning outcomes

After studying this topic, you should be able to

- define the different cost objects
- classify costs and explain the behaviour of costs
- estimate costs using different techniques
- use cost-volume-profit analysis to estimate profits

STUDY UNIT

Study unit 1
Study unit 2
Study unit 3

TITLE

Cost objects, classification and behaviour
Estimation techniques and the linear equation
Cost-volume-profit analysis

Introduction

Every organisation's business or other activities determine the costing system that is most suitable for that particular entity. Before deciding on the costing system, it is necessary to understand the basic nature and behaviour of cost. This behaviour is modelled on the basis of estimation techniques and is used to forecast the profitability of the enterprise.

Cost objects, classification and behaviour

1 Introduction

Different cost systems require different cost classification with different cost terms. To communicate useful information to users (managers), it is necessary to understand the different cost types and terms and how a cost accounting information system calculates cost, depending on the cost object. Study unit 1 will explain these basic concepts to you.

Accountants need to know the cost of certain objects (including products) for the following reasons:
a. to value inventory for reporting purposes
b. to plan and control activities in the organisation
c. to make decisions that will improve the organisation's profitability

2 Cost objects and traceability

The first step in determining the cost of any product or activity is to define the specific cost object.

COST OBJECT

A cost object is any activity, unit or phenomenon for which cost can be accumulated and measured.

The unit or activity may consist of a product unit, a batch of units, a job order, a contract or a project. It can also be a customer, geographical region, etcetera. In manufacturing organisations, the cost object will often be a product or products. To determine whether something is a cost object you need to ask the most fundamental question about cost: "The cost of what?" This will provide you with the answer.

When cost is assigned to cost objects, the costs are classified as either direct costs or indirect costs.

Example: A particular type of an item manufactured, say "product A".
NOTE

In IAS2, you can read about the costs that have to be included in/excluded from the cots of inventory for purposes of International Financial Reporting Standards (IFRS). For decision-making purposes, non-manufacturing costs may sometimes have to be include in the costing of SOME cost objects.

DIRECT COST

Direct costs can be traced easily or physically to a particular cost object.

Example: The specific material used to manufacture product " A ".
Assigning direct costs to a cost object is referred to as cost tracing.

INDIRECT COST

Indirect costs cannot be traced easily or physically to a particular cost object.

Example: The depreciation cost of the machine used to manufacture product A.
Indirect cost can include low value items as well, such as nails and screws. In the case of these items, the cost of trying to trace costs to objects exceeds the benefit of doing so. These items may be referred to as general supplies.

Assigning indirect costs to a cost object is referred to as cost allocation.
You will learn more about the different methods used to allocate indirect cost in later topics.

The allocation process, by its very nature, leads to inaccuracies in the costs of objects. It is therefore important to attempt to identify direct costs, which are traceable, as far as possible, taking into account the cost/benefit of doing so.

Activity 1.1

COST ASSIGNMENT

A manufacturer manufactures wooden furniture. Indicate for each of the following items whether it is a cost object, a direct cost, or an indirect cost:
a. A particular type of desk manufactured
b. The wood used to make a desk
c. The wages of the employees assembling desks
d. A particular type of cupboard manufactured
e. The nails used in assembling a cupboard
f. The rent for the factory building
g. The wages of the cleaning staff in the factory

Solution to Activity 1.1

a. Cost object
b. Direct cost
c. Direct cost
d. Cost object
e. Indirect cost (It is not cost effective to trace the cost of small items, such as nails, to each product.)
f. Indirect cost
g. Indirect cost

NOTE

Regarding all indirect cost answers:
If the cost object is at a higher level (eg a specific factory or geographical area), each of these answers will change to direct cost.

3 Classification of costs according to their nature or origin

The process of classifying costs may begin by relating costs to different phases in the operation of a business.

In a manufacturing enterprise, total operating cost consists of:

- Manufacturing, factory, or production cost
- Non-manufacturing or commercial cost

MANUFACTURING COST

Manufacturing costs, also called factory costs or production costs, are the total of the costs incurred in the manufacturing or production process: direct material, direct labour, direct expenses and manufacturing overheads.

A more detailed explanation of these cost components will follow later in the topic.
In a service organisation, the manufacturing cost is replaced by service costs, such as salaries and other costs related to the employees and equipment used to render the income-generating services.

NON-MANUFACTURING COST

Non-manufacturing costs fall into two categories:

- Marketing costs (selling and distribution costs) include all the costs related to the sale and delivery of products.

These costs start once the manufacturing of the products is completed. Examples of marketing costs are advertising, sales commission, sales salaries and shipping (distribution).

- Administrative costs are the costs incurred in directing and controlling the organisation.

Administrative costs include compensation of executives, general accounting costs, secretarial costs and similar costs relating to the general management of an organisation.
Note that products can be produced without incurring these costs.

4 Further classification of manufacturing costs according to its components

As was mentioned in the previous section, manufacturing costs consist of the total costs of the following components:

- direct materials
- direct labour
- other direct manufacturing expenses
- manufacturing overheads

DIRECT MATERIALS

Direct materials are all materials that can be identified as forming part of the individual, finished product and can be included directly in calculating the cost of the product.

As an example, the wood required to manufacture a pencil is a direct material.

DIRECT LABOUR

Direct labour is the work needed to convert direct materials into an individual finished product.

It includes wages paid to employees to assemble products or the manufacturing machine operators (ie where the operator spends time, individually, on each item).

MANUFACTURING OVERHEADS

Manufacturing overheads are the total costs of indirect materials, indirect labour and all other indirect manufacturing costs that cannot be traced directly to specific individual products.

- Indirect materials are materials that cannot be linked to a specific individual product, because it is used for all products (eg the machine oil), rather than for a specific individual product.

It may also include smaller items of material where it is not cost-effective to trace the costs to individual products. Examples of these are nails, glue, screws and staples.

- Indirect labour costs include the wages/salaries of all employees who do not work on the product itself, but who assist in the manufacturing process.
As an example, the salaries of the factory supervisors or production scheduling staff are indirect labour costs.
- Other manufacturing costs include costs such as rent for the factory, depreciation of machinery, electricity used in the production process, maintenance and repairs on factory equipment and insurance on the factory building and equipment.

The abovementioned costs can be grouped into prime and conversion costs.

PRIME AND CONVERSION COST

- Prime cost (also called primary cost) is the total of all the direct costs. It is the costs for direct materials and direct labour (and other direct manufacturing costs when these exist).
- Conversion cost is the total cost incurred when converting raw material into finished products. It is the total of the direct labour costs and manufacturing overheads.

The next figure sets out the relationship between the various cost components.

FIGURE 1.1: The relationship between the components of manufacturing cost

NOTE

Did you notice that direct labour falls into both the conversion cost and prime cost groupings?

Activity 1.2

COST CLASSIFICATION BY NATURE

Tebogo Manufacturers incurred the following costs:

	R
Direct materials	250000
Direct labour	150000
Manufacturing overheads	400000

REQUIRED

Calculate the following:
a. Prime costs
b. Conversion costs
c. Total manufacturing costs

Solution to Activity 1.2

a.

R
Direct materials 250000
Direct labour 150000
Prime costs 400000
d.

	R
Direct labour	150000
Manufacturing overheads	400000
Conversion costs	550000
b.	
	R
Direct material	250000
Direct labour	150000
Manufacturing overheads	400000
Total manufacturing costs	800000

5 Classification of costs according to cost behaviour

It is important to know how the total cost of a product "behaves" over a period. Cost reacts or responds to changes in the level of activity. Activity or volume can be measured in different ways, such as kilometres travelled or the number of products produced or sold. Knowledge of cost behaviour is essential for decision-making.

Based on the reaction to changes in activity level, costs fall into one of the following classifications:

- Fixed cost
- Variable cost
- Semi-variable cost
- Semi-fixed, also called stepped fixed cost

Two further factors, namely relevant range and time frame, will always define the changes in activity level. We shall now discuss each of these very important concepts.

5.1 Fixed cost

FIXED COST

Fixed cost is a cost that remains constant, in total, regardless of changes in the level of activity or volume within the relevant range and in a specific time frame.

These costs are incurred to sustain a certain level of production (eg between 8000 and 10000 units). This means that the fixed cost per unit will decrease when the level of activity increases from, say, 8000 to 9000 units; the reverse is also true.

The allocation of fixed cost to products is based on managerial decisions or by making use of cost allocation methods (see topics later on in this study guide). The control of fixed costs is the responsibility of higher-level management rather than the operating supervisors.

Examples of fixed costs are supervisor salaries, rent, insurance, depreciation. The annual insurance premium of an organisation will, for instance, be negotiated by the administrative or financial manager.

NOTE

Fixed costs can be incurred for manufacturing and non-manufacturing purposes. For example, in the case of insurance, all the assets of the business are insured, whether it is the manufacturing machines or the computers used by the administrative staff.

Activity 1.3

FIXED COST

The total fixed cost of Tebogo Manufacturers amounts to R15 000 per month.

REQUIRED
Calculate the fixed cost per unit if Tebogo Manufacturers produces 100, 200, or 300 units per month.

Solution to Activity 1.3

R15 000/100 units $=$ R150 per unit
R15 000/200 units $=$ R75 per unit
R15 000/300 units = R50 per unit

NOTE

Can you see that it becomes more beneficial (cheaper) for Tebogo to increase its production output? Optimal capacity utilisation is very important when it comes to fixed cost, BUT this is always subject to market demand.

5.2 Variable cost

Key term: VARIABLE COST

Variable cost is a cost that varies, in total, in direct proportion to changes in the level of activity or volume. The variable cost per unit is constant within a relevant range.

This means that, if the volume doubles, the total variable cost will double. The tracing of variable costs to products can be done with reasonable ease and accuracy.

A variable cost consists of two variables: one for the quantity used and another for the price/ cost per unit of supply, for example rand per unit, rand per kg, rand per hour. The quantity used is controlled by a specific operating level supervisor (eg the cubic metres of wood requisitioned from the stores to manufacture a batch of pencils).

Employees outside the production environment/department (eg the purchasing staff) usually control or determine the price per unit of a variable source for example, the cost of the wood per cubic metre or kilogramme.

Direct materials and direct labour are examples of variable cost.

NOTE

(1) Labour costs associated with employees permanently employed in the manufacturing environment will only be considered as a variable cost if management is able to adjust the supply (ie retrench workers) in the short term (within the budget period, usually one year). For this module, you may assume that direct labour cost is variable, unless specifically stated otherwise.
(2) Cost controllability (who controls which aspect of a cost) is an important issue in cost management. You will learn more about this issue in later topics.

Activity 1.4

VARIABLE COST

For Tebogo Manufacturers, the variable cost per unit is R200.

REQUIRED

Calculate the total variable cost if Tebogo Manufacturers produces 100, 200, or 300 units per month.

Solution to Activity 1.4

$$
\begin{aligned}
& R 200 \times 100 \text { units }=R 20000 \text { per month } \\
& R 200 \times 200 \text { units }=R 40000 \text { per month } \\
& R 200 \times 300 \text { units }=R 60000 \text { per month }
\end{aligned}
$$

Figure 1.2 is a graphical representation of variable and fixed cost behaviour.

Variable cost behaviour

Fixed cost behaviour

FIGURE 1.2: Variable and fixed cost behaviour

NOTE

Fixed cost remains constant in total and variable cost remains constant per unit.

5.3 Semi-variable cost

SEMI-VARIABLE COST

Semi-variable or mixed cost contains both fixed and variable cost. The mixture of cost includes a fixed amount within a relevant range of output and an amount that varies proportionately with output changes.

Telephone cost, for example, is usually semi-variable because the line rental is fixed, while call charges vary, depending on the number of calls made. Another example is equipment maintenance costs. In any given period the total maintenance expense can consist of routine, preventative maintenance that takes place irrespective of units manufactured, and maintenance that occurs after, say, every 1000 hours of production or units produced. The latter is dependent on the volume manufactured and varies with hours worked/units produced.

Activity 1.5

FIXED, VARIABLE AND SEMI-VARIABLE COST

Classify each of the following costs as fixed (F),variable (V), or semi-variable (SV), according to the number of units produced during the month:
a. A factory supervisor's salary
b. The paper used in textbook production
c. Factory insurance
d. The screws used in furniture production
e. The rent on a factory building
f. The piecemeal wages paid to workers assembling a product
g. The routine, monthly maintenance of machinery and three call-outs for breakdowns
h. The wood used in furniture production

Solution to Activity 1.5

a. F
b. V
c. F
d. V
e. F
f. V
g. SV
h. V

5.4 Semi-fixed (stepped) cost

SEMI-FIXED (STEPPED) COST

Certain kinds of fixed costs increase or decrease only in fixed increments or in steps.

For example, a manufacturer's current production capacity (at a cost of R15 000 per month) is 10000 units of a product and the forecast demand is 12000 units. The organisation needs to increase its production capacity by 2000 units by buying an additional machine. However, the new machine's capacity is 5000 units (but only 2000 extra units are required!). The monthly operating cost of the new machine is R3000. The cost to produce the first 10000 units is therefore R15 000 per month, and units 10001 to 15000 will be produced at a cost of R3000, irrespective whether 50, 2000 or 5000 are produced. (Producing anywhere between 10001 and 15000 units per month will cost R18 000 in total.) The cost, therefore, jumps up a step, and does not increase gradually.

Semi-fixed cost is intertwined with the concepts "relevant range" and "time frame".
Figure 1.3 is a graphical representation of semi-variable and semi-fixed cost behaviour.

FIGURE 1.3: Semi-variable and semi-fixed costs

6 A closer look at relevant range and specific time frame

6.1 Relevant range

RELEVANT RANGE

The relevant range is normally defined by the production capacity (number of units) within which the organisation normally operates.

For example, normal production lies between 8000 and 10000 units per month. Within this range, cost estimation models (discussed in study unit 2) will be reasonably accurate.

6.2 Specific time frame

Time has a significant impact on the behaviour of cost, especially fixed cost.

- In the very short term (eg in the next month), almost all cost (excluding direct material) is fixed, because its supply has already been contracted and committed.
- In the short term (eg the next year), most of the fixed cost will remain fixed in monetary terms, because the price or amount was already negotiated.
- In the medium term (two to three years), significant changes in the level of fixed cost can be implemented. For example, some machines can be taken out of production if a decline in demand for the product is forecast.
- In the long term, all cost becomes variable, because management can adjust the level of support and infrastructure provided to meet the demand level for the product required at that specific stage. This results in changes, even to fixed costs. For example, if forecast market demand for one of the products indicates a decline in three years' time (due to the launch of newer models), management can plan to eventually close that part of the manufacturing process, resulting in savings in infrastructure and support costs (usually fixed) for that product.

NOTE

The time frame is very important in all decisions regarding cost behaviour in the future.

7 Classification of cost as product or period cost

7.1 Product cost

PRODUCT (MANUFACTURING) COST

Product cost is the cost incurred in the manufacturing of a product.

NOTE

You will see in Topic 4 that there could be a variation in this definition, based on the costing method.

Costs incurred in the manufacturing of inventory that remain unsold at the end of the period are called the unexpired costs. These costs are shown as an asset in the inventory account in the statement of financial position. When the completed goods/ products are sold, the costs are called expired costs. They are then transferred to the cost of goods sold account in the statement of comprehensive income. Product costs are therefore treated as expenses only when the product is sold.

7.2 Period costs

PERIOD COSTS (EXPENSES)

Period costs are costs that are not included in product costs.

These costs are treated as expenses in the statement of comprehensive income in the period in which they are incurred. For example, rent for an office building, marketing costs and administrative costs are not included as part of the cost of a manufactured product, but will appear on the statement of comprehensive income in the period they are incurred. (NOTE: the rent of a factory building will be part of manufacturing costs.)

NOTE

Cost relating to inefficient use of production resources will also be treated as period cost and not as part of the cost of inventory. You will learn more about this in the topic on standard costing.

Activity 1.6

Classify the following items as product costs or period costs:
a. Material
b. Marketing cost
c. Salary of the secretary of the Human Resources Department
d. Salary of the machine operator

Solution to Activity 1.6

a. Product costs
b. Period costs
c. Period costs
d. Product costs

8 Summary

In this study unit, you have learnt the basis of classifying cost, which is as follows:

- The types of cost objects.
- The nature of costs - total operating cost consists of manufacturing and nonmanufacturing costs. Non-manufacturing costs fall into two categories: marketing costs and administrative costs.
- The elements of manufacturing costs - direct material, direct labour and manufacturing overheads. The total cost of direct material and direct labour are known as the prime costs and the total cost for direct labour, and manufacturing overheads is the conversion cost.
- Cost behaviour - cost can be fixed, variable, semi-variable or semi-fixed.
- Product or period costs - costs linked to the efficient manufacturing process are product costs. All other costs are period costs.

In the next study unit, we will discuss techniques used to separate fixed and variable costs and to project or forecast cost at different levels of activity.

Self-assessment Activity

Answer the following questions.

QUESTION 1

a. Are the wages paid to the operator of a manufacturing machine an example of period cost or direct labour or both?
b. Is the salary paid to the factory supervisor an example of product cost or manufacturing overhead cost or both?
c. Are property taxes on a manufacturing plant an component of conversion cost or period cost or both?
d. When the volume or level of activity increases, will variable costs increase or decrease in total?
e. The following costs were incurred in April:

R

Direct materials	15000
Direct labour	20000
Manufacturing overheads	30000
Administration costs	10000
Selling costs	12000

i What is the total amount for conversion costs?
ii What is the total amount for prime costs?
f. Mangora Ltd's manufacturing overheads are 40% of its total conversion costs of R60 000. Calculate the direct labour and manufacturing overheads.

QUESTION 2

Listed below are a number of costs incurred by organisations.

1. the piecemeal wages of the workers assembling computers
2. magazine subscriptions for the factory canteen
3. the boxes used to ship the detergent produced by a company to its customers
4. the factory supervisor's salary
5. executive directors' life insurance

REQUIRED

a. Which of the abovementioned costs are variable to production levels and which are fixed to production levels?
b. Which of the abovementioned costs are direct, indirect manufacturing, or nonmanufacturing costs?

QUESTION 3

Ntombeni Limited has a financial year starts on 1 March and ends on 28 February. The management accountant of the company has just prepared the budget for the forthcoming year, based on the following cost structure:

- Number of units to be produced
- Direct material
- Direct labour
- Indirect labour (all variable)
- Other manufacturing overheads (60\% variable)
- Selling and administrative expenses (all fixed)

REQUIRED

Calculate the following:
a. Prime costs per unit
b. Total conversion costs
c. Total manufacturing costs
d. Total period costs
e. Total variable manufacturing costs
f. If the company produces fewer than 7000 units in the forthcoming year, would you expect the total variable costs to increase, decrease or remain constant? (Explain only - no calculations necessary.)

Solution to Self-assessment Activity

QUESTION 1

a. Direct labour; not a period cost, but a product cost.
b. It is both.
c. Element of conversion cost, not a period cost, but a product cost.
d. Increases in total.
e. Variable manufacturing cost:
i R50 000 for conversion costs (R20 $000+\mathrm{R} 30$ 000)
ii R35 000 for prime costs (R15 $000+$ R20 000)
f. Direct labour: $60 \% \times$ R60 $000=$ R36 000

Manufacturing overheads: $40 \% \times$ R60 $000=$ R24 000

QUESTION 2

a. The wages of the workers assembling computers variable \& direct
b. Magazine subscriptions for the factory canteen fixed and indirect
c. The boxes used for shipping the detergent variable and selling cost (nonmanufacturing)
d. The factory supervisor's salary fixed and indirect
e. Executive directors' life insurance fixed, but admin cost (non-manufacturing)

QUESTION 3

a.

	R
Direct material costs per unit	49
Direct labour costs per unit	21
Prime cost per unit	$\overline{70}$
b.	
	R
Direct labour costs (R21 x 7 000)	147000
Indirect labour costs	28000
Other manufacturing overheads	21000
Total conversion costs	196000
c.	
	R
Prime costs (R70 x 7 000)	490000
Indirect labour costs	28000
Other manufacturing overheads	21000
Total manufacturing costs	$\underline{\underline{539000}}$
d.	
	R
Selling and admin expenses	28000
e.	
	R
Prime costs	490000
Indirect labour costs (R28 $000 \times 30 \%$)	28000
Other manufacturing overheads	12600
(R21 $000 \times 60 \%$)	
Total variable manufacturing costs	530600

f. Variable costs vary, in total, in direct proportion to changes in the level of activity. The total variable costs would therefore decrease.

Estimation techniques and the linear equation

In this study unit

1

Introduction

In the previous study unit, we introduced you to the various cost terms and explained how different costs behave under different circumstances. One of the more difficult costs to calculate and forecast is semi-variable costs, because these are a combination of fixed and variable costs. In this study unit, we will explore the methods that can be used to identify the components of a semi-variable cost. We will use the components in the linear cost equation to forecast or project costs at different levels.

The three most common methods are:

1. the high-low method
2. the scatter diagram
3. simple regression analysis

2 The linear equation

Estimation techniques or models can be used to project cost at different levels of operation by employing the following linear equation:

$$
y=a+b x
$$

Key formula: COST EQUATION BASED ON LINEAR EQUATION

The cost equation $y=a+b x$ represents a straight line, where:
$y=$ total cost; the dependent variable
$\mathrm{a}=$ total fixed costs; the intercept on the y -axis
$\mathrm{b}=$ variable cost per unit of activity; the slope of the straight line
$\boldsymbol{x}=$ activity level (eg volume of unit manufactured, machine hours, inspection hours, etc); the independent variable

The linear equation can also be represented on a graph such as the following:

Figure 2.1: Total cost graph

3 The high-low method

This method involves comparing the change in costs between two activity levels. Here we apply a simple technique that identifies the highest and lowest activity levels and their respective costs from a set of data. The difference between the two total costs is then divided by the difference between the two activity levels. The result is the variable cost per unit of activity, on the assumption that the fixed cost, by definition, is the same at both activity levels, that is, high and low.

Key formula: VARIABLE COST PER UNIT (HIGH-LOW METHOD)

$=\frac{\text { the difference between costs at the highest and lowest activity }}{\text { the difference between highest and lowest activity }}$
The fixed costs are then determined as follows:
fixed costs $=$ total mixed costs for related activity level - (variable cost per unit x related activity level)

NOTE

Use either the cost and unit information at the highest activity level, or the cost and unit information at the lowest activity level, to substitute into the equation.

A linear equation is then formulated to represent the cost function. Note that this is a rough model. Each historical data point (cost) might not be perfectly explained by the linear equation. A more accurate model can be developed by simple regression analysis, which we will cover later.

Activity 2.1

Doublet Limited incurred the costs as indicate below. During the six months ended 30 June, these costs changed, but not in direct relation to the volume.

MONTH	NUMBER OF UNITS PRODUCED	HISTORICAL COST (R)
January	98	1980
February	100	2000
March	105	2050
April	95	1950
May	104	2040
June	106	2060

REQUIRED

a. Use the high-low method to determine the variable cost per unit and the total fixed costs.
b. Formulate a linear equation that explains and predicts cost behaviour.
c. Forecast the total costs if an estimated 110 units are to be manufactured in July.

Solution to Activity 2.1

$$
\begin{aligned}
\text { a. Variable cost per unit } & =\frac{\mathrm{R} 2060-\mathrm{R} 1950}{106-95 \text { units }} \\
& =\underline{\underline{R 10 \text { per unit }}} \\
\text { Total fixed costs }(@ \text { highest observation }) & =\mathrm{R} 2060-(106 \times \mathrm{R} 10) \\
& =\underline{\underline{R 1000}}
\end{aligned}
$$

OR
Total fixed costs (@ lowest observation) = R1 950-(95 x R10)

$$
=\underline{\underline{R 1000}}
$$

b. $\mathbf{y}=\mathrm{R} 1 \mathbf{0 0 0}+\mathrm{R10x}$
c. Forecast for $\mathbf{1 1 0}$ units

$$
\begin{aligned}
y & =R 1000+(R 10 \times X \text { units })=R 1000+(R 10 \times 110 \text { units }) \\
& =R 2100
\end{aligned}
$$

NOTE

- It is important to note that the identification of the high and low points is based on ACTIVITY level and not on cost.
- This applies only if ALL activity levels fall inside the RELEVANT RANGE.

4 The scatter diagram

This method involves graphically plotting the total cost on the y-axis for each activity level on the upper axis. A straight line is then drawn simply by sight between the observation points so that the distances between the points above the line are
approximately equal to the distances of the points below the line. Unlike the high-low method, the scatter diagram can include more than two activity levels. However, this method does not claim to be accurate, because each person will draw the line slightly differently.

The scatter diagram on the next page shows past volume and cost data, with individual observations represented by dots. The diagram enables one to identify representative high and low volumes. It is also useful in determining whether costs can be reasonably approximated by means of a straight line.

To plot the straight line:

1. Draw a straight line $(A B)$ through the various points of the total semi-variable overheads for the period and connect this line to the y-axis (A). Line $A B$ is a straight line that best fits all the different points (by sight).
2. Draw a horizontal line through point A to C. (Line $A C$ represents the fixed portion of the semi-variable overheads.)

Do the following to find the total mixed (semi-variable) overheads for any production volume within the relevant range:

1. The budgeted semi-variable costs for any volume on the x-axis is obtained by drawing a vertical line ST from point S (the volume for which the cost is needed) on the x-axis until it intersects with line $A B$.
2. A horizontal line is then drawn to the left, which cuts the y-axis at point R.
3. Read off the costs from the y-axis, which seem to be approximately R206 in semivariable overheads.

If you use graph paper, you should be able to get a more accurate reading.
Once the straight line is drawn, the components of the mixed costs in the cost equation $y=a+b x$ can be found as follows:

1. The fixed cost (a) is equal to the intercept on the y-axis.
2. The variable cost (b) is computed by taking two points, \mathbf{F} and \mathbf{R}, on the y-axis and \mathbf{S} and \mathbf{D} on the x-axis and calculating the difference per unit of activity in the same way as the high-low method.

5 Simple regression analysis (least squares method)

The linear equation $y=a+b x$ can once again be used to determine the fixed and variable portions of manufacturing overheads. Simple regression analysis (also referred to as the least squares method) can be used to determine the relationship between the dependent (total cost) and independent variable (number of units manufactured).

NOTE

It is important to note that, in order to use the results of the simple regression analysis, the correlation between the dependant and independent variables needs to be strong. In later MAC modules, you will learn more about linear regression correlation statistics $\left(r^{2}\right)$. For the purposes of MAC2601, you can assume that the correlation is good enough to predict behaviour.

Key formula: FIXED AND VARIABLE OVERHEAD PORTION (SIMPLE REGRESSION ANALYSIS OR LEAST SQUARES METHOD)

The values for \mathbf{a} and \mathbf{b} can be found by simultaneously solving the following equations:

```
xy = a x + b x...............(1)
y = an +b x
is the Greek capital letter sigma meaning the "sum of" (ie xy means the sum of the result of \(x\) multiplied with \(y\) ).
nis the number of observations (data points).
\(x^{2}\) is " \(x\) " to the power of two, meaning " \(x\) " multiplied by itself.

NOTE
(1) The formulae for the simple regression analysis method (or least squares method), was statistically determined. For this course, you do not need to know how it was derived. Note that, in the examination paper, the formulae will be given to you.
(2) Statisticians determined that reliable linear modelling using a simple regression analysis needs at least 100 observation points for \(y\) and \(x\) EACH. (An observation point can be the total number of pencils manufactured per day on the \(x\)-axis and the total cost for those pencils on the \(y\)-axis.) In this module, it is not practical to supply you with data sets of 100 or more, and so we will use less than 100 observation points (or data items per unit) to teach you the techniques. However, in the workplace, you should use the correct minimum observation points, which should be more than 100.

Activity 2.2
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
OBSERVATION \\
(data point)
\end{tabular} & \begin{tabular}{c} 
VOLUME \\
(units, etc)
\end{tabular} & \begin{tabular}{c} 
TOTAL OVERHEAD \\
COSTS (R)
\end{tabular} \\
\hline 1 & 4000 & 23000 \\
\hline 2 & 3000 & 18000 \\
\hline 3 & 2400 & 16000 \\
\hline 4 & 4400 & 24000 \\
\hline 5 & 2000 & 11000 \\
\hline 6 & 3600 & 23000 \\
\hline 7 & 2200 & 15000 \\
\hline
\end{tabular}

\section*{REQUIRED}

Use the simple regression analysis method to determine the variable overhead cost per unit and the total fixed overhead costs and define a linear equation for the cost behaviour.

Use the following equations:
a. \(\quad x y=a x+b x \ldots \ldots \ldots \ldots \ldots . .\). (1)
b. \(y=a n+b x\).

\section*{Solution to Activity 2.2}

The required calculations are shown below.
\begin{tabular}{|l|r|r|r|r|}
\hline \begin{tabular}{c} 
OBSERVATION \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{c} 
VOLUME \\
\(\mathbf{X}\) (Independent)
\end{tabular} & \begin{tabular}{c} 
TOTAL COSTS \\
\(\mathbf{Y}\) (Dependent)
\end{tabular} & \multicolumn{1}{c|}{ XY } & \multicolumn{1}{c|}{\(\mathbf{X}^{\mathbf{2}}\)} \\
\hline 1 & 4000 & 23000 & 92000000 & 16000000 \\
2 & 3000 & 18000 & 54000000 & 9000000 \\
3 & 2400 & 16000 & 38400000 & 5760000 \\
4 & 4400 & 24000 & 105600000 & 19360000 \\
5 & 2000 & 11000 & 22000000 & 4000000 \\
6 & 3600 & 23000 & 82800000 & 12960000 \\
7 & 2200 & 15000 & 33000000 & 4840000 \\
\hline
\end{tabular}

Substituting these values into the normal equation, we obtain:
```

427800 000 = a 21600 + b 71920 000(3)

$$
130000=\mathrm{a} 7+\mathrm{b} 21 \text { 600..44 }
$$

```

We solve \(\mathbf{b}\) by eliminating \(\mathbf{a}\). To do this, we need to have the same coefficient for a in each equation. This is done by multiplying equation (3) by 7 and equation (4) by 21 600. By obtaining the difference between the two new equations, ais eliminated, and \(\mathbf{b}\) can be solved.

We then obtain the following:
```

2994600 000 = 151200 a + 503 440 000 b...........5) (3)x 7)
2808000000 = 151200a + 466560000 b...........(6) (4)x 21 600)
186600000 = 36 880 000 b...........(7)(5) - (6))

```

NB: Equation (7) is the difference between equations (5) and (6).
Solving equation for \(\mathbf{b}\), we obtain
\[
\begin{aligned}
b & =\frac{186600000}{36880000} \\
& =5,06
\end{aligned}
\]

We can solve \(\mathbf{a}\) by substituting the value of \(\mathbf{b}\) in any of the equations containing \(\mathbf{a}\). In doing this in equation, we obtain
\[
\begin{aligned}
7 a & =130000-21600(5,06) \\
7 a & =20704 \\
a & =\frac{20704}{7} \\
& =2958
\end{aligned}
\]

The resulting cost estimation equation is: total costs \((\mathbf{y})=\mathbf{R} \mathbf{2 9 5 8} \boldsymbol{+} \mathbf{R} \mathbf{5}, \mathbf{0 6} x\)

\section*{Activity 2.3}

The quarterly production and cost data as recorded in five expense accounts of Valkop Ltd. are provided below.
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ QUARTERS } & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline & \multicolumn{4}{|c|}{ UNITS PRODUCED } \\
\hline & 8000 & 10000 & 11000 & 9000 \\
\hline & \multicolumn{4}{|c|}{ Total cost per expense item } \\
\hline ACCOUNTS & R'000 & R'000 & R'000 & R'000 \\
\hline Maintenance & 46 & 54 & 58 & 50 \\
\hline Indirect labour & 24 & 30 & 33 & 27 \\
\hline Direct labour & 80 & 100 & 110 & 90 \\
\hline Production plant insurance & 36 & 36 & 36 & 36 \\
\hline Utilities & 18 & 22 & 24 & 20 \\
\hline
\end{tabular}

\section*{REQUIRED}
a. Indicate whether each cost is fixed (f), variable (v), or mixed (m).
b. Write down the cost equation for the following accounts only, by using the high-low method (if applicable):
i. Maintenance
ii. Indirect labour

\section*{Solution to Activity 2.3}

\section*{a. Behaviour of cost}

A total cost that varies as the volume changes obviously consists of variable or mixed costs. We therefore calculate the cost per unit to identify the variable cost items. Variable cost per unit would remain constant across all the production volumes.

The fixed cost remains constant in total across all production levels.
\begin{tabular}{|l|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ QUARTERS } & \multicolumn{1}{|c|}{\(\mathbf{1}\)} & \multicolumn{1}{c|}{\(\mathbf{2}\)} & \multicolumn{1}{c|}{\(\mathbf{3}\)} & \multicolumn{1}{c|}{\(\mathbf{4}\)} \\
\hline & \multicolumn{4}{|c|}{ UNITS PRODUCED } \\
\hline & 8000 & 10000 & 11000 & 9000 \\
\hline ACCOUNTS & R per unit & R per unit & R per unit & R per unit \\
\hline Maintenance & 5,75 & 5,40 & 5,27 & 5,56 \\
\hline Indirect labour & 300 & 300 & 300 & 300 \\
\hline Direct labour & 1000 & 1000 & 1000 & 1000 \\
\hline Utilities & 2,25 & 2,20 & 2,18 & 2,22 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Maintenance & \(=\) Mixed \\
Indirect labour & \(=\) Variable \\
Direct labour & \(=\) Variable \\
Plant depreciation & \(=\) Fixed \\
Utilities & \(=\) Mixed
\end{tabular}
b. Cost equations
i. Maintenance:
\[
\begin{aligned}
b \text { (variable cost per unit) } & =\frac{R 58000-R 46000}{11000-8000} \\
& =R 4,00
\end{aligned}
\]
\(a(\) fixed cost \()=R 58000-R 4(11000)=R 14000\)
Cost equation \(y=R 14000+\mathrm{R} 4 x\)
where, in each quarter, \(y\) represents the total costs and xrepresents volume.
ii. Indirect labour:

For example
Quarter \(1=\) R24 0008000 units \(\quad=\) R3 variable cost
This is variable cost, therefore fixed cost \(=0\) (nil)
Therefore
\(y=3 x+0\)

\section*{6 Summary}

In this study unit, we looked at three methods that cost accountants can apply in order to forecast or predict semi-variable cost behaviour. All three are based on the basic linear equation for the cost function.

In the next study unit, we are going to explore the concept of cost-volume-profit analysis for predicting profits in various scenarios.

Self-assessment Activity

\section*{QUESTION 1}

The following information was obtained from the books of Plastic Manufacturers Ltd. for the year:
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Month } & \begin{tabular}{c} 
Number of bags \\
manufactured
\end{tabular} & \begin{tabular}{c} 
Semi-variable \\
manufacturing overheads \\
R
\end{tabular} \\
\hline March & 120 & 2000 \\
\hline April & 130 & 2100 \\
\hline May & 125 & 2020 \\
\hline June & 115 & 1900 \\
\hline July & 132 & 2100 \\
\hline August & 124 & 2040 \\
\hline September & 130 & 2060 \\
\hline October & 140 & 2150 \\
\hline November & 135 & 2120 \\
\hline December & 134 & 2110 \\
\hline January & 130 & 2100 \\
\hline February & 126 & 2080 \\
\hline
\end{tabular}

\section*{REQUIRED}
a. Use the high-low method to calculate the budgeted semi-variable manufacturing overheads if 120 bags are manufactured.
b. Use the least squares method to calculate the budgeted semi-variable manufacturing overheads if 120 bags are manufactured. Use the following formulae:
\[
\begin{align*}
x y & =a x+b x^{2} \ldots \ldots \ldots \ldots \ldots(1) \\
y & =a n+b x \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{align*}
\]

\section*{QUESTION 2}

The following information was obtained from the books of Dolls Unlimited Manufacturers Ltd. for the year:
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Month } & \begin{tabular}{c} 
Number of bags \\
manufactured
\end{tabular} & \begin{tabular}{c} 
Semi-variable \\
manufacturing overheads \\
R
\end{tabular} \\
\hline March & 360 & 200 \\
\hline April & 390 & 210 \\
\hline May & 375 & 202 \\
\hline June & 345 & 190 \\
\hline July & 396 & 210 \\
\hline August & 372 & 204 \\
\hline September & 390 & 206 \\
\hline October & 420 & 215 \\
\hline November & 405 & 212 \\
\hline December & 402 & 211 \\
\hline January & 390 & 210 \\
\hline February & 378 & 208 \\
\hline
\end{tabular}

\section*{REQUIRED}

Use the scatter diagram to calculate the budgeted semi-variable manufacturing overheads if 385 dolls are manufactured.

Solution to Self-assessment Activity

\section*{QUESTION 1}
a. High-low method


Total budgeted semi-variable manufacturing overheads for 120 bags per month:

\section*{R}

Variable portion of semi-variable overheads
\begin{tabular}{lr} 
(120 bags \(\times\) R10) & 1200 \\
Fixed portion of semi-variable overheads & \(\underline{750}\) \\
\hline
\end{tabular}

\section*{b. Least squares method}
\begin{tabular}{lrcrc} 
Month & \begin{tabular}{r} 
Volumes \\
\(\mathbf{x}\)
\end{tabular} & \begin{tabular}{c} 
Overheads \\
\(\mathbf{y}\)
\end{tabular} & \(\mathbf{x y}\) & \(\mathbf{x}^{\mathbf{2}}\) \\
March & 120 & 2000 & 240000 & 14400 \\
April & 130 & 2100 & 273000 & 16900 \\
May & 125 & 2020 & 252500 & 15625 \\
June & 115 & 1900 & 218500 & 13225 \\
July & 132 & 2100 & 277200 & 17424 \\
August & 124 & 2040 & 252960 & 15376 \\
September & 130 & 2060 & 267800 & 16900 \\
October & 140 & 2150 & 301000 & 19600 \\
November & 135 & 2120 & 286200 & 18225 \\
December & 134 & 2110 & 282740 & 17956 \\
January & 130 & 2100 & 273000 & 16900 \\
February & 126 & 2080 & 262080 & 15876 \\
& \(x=1541\) & \(y=24780\) & \(x y=3186980\) & \(b \quad x=198407\) \\
\hline \hline
\end{tabular}

\section*{Equations:}
\[
\begin{aligned}
& \mathrm{xy}=\mathrm{a} x+b \mathrm{x}^{2} \\
& \mathrm{y}=\mathrm{an}+\mathrm{b} \ldots \ldots
\end{aligned}
\]
\(\qquad\)
\(\qquad\)
where \(x=\) number of bags
\(y \quad=\quad\) semi-variable manufacturing overheads for the particular volume
\(\mathrm{n} \quad=\) number of observations
a \(\quad=\quad\) fixed overheads for the period
b \(\quad=\quad\) variable overheads per unit

Substitute the values for x and y into equations (1) and (2):
\begin{tabular}{|c|c|c|c|c|}
\hline R3 186980 & 1541 a & + & 198407 & \\
\hline R \(24780=\) & 12a & + & 1541 b & \\
\hline R38 \(243760=\) & \multicolumn{4}{|l|}{18 492a + 2380 884b........................3} \\
\hline \(\underline{\text { R38 } 185980}=\) & \multicolumn{4}{|l|}{\(\underline{18492 \mathrm{a}}+2374\) 681b......................(4)} \\
\hline \(57780=\) & \multicolumn{4}{|c|}{6 203b} \\
\hline \(\therefore \mathrm{b}\) & R9,3148 & & & \\
\hline
\end{tabular}

Then: Replace b with R9,3148 in equation (2)
R24 \(780=12 \mathrm{a}+(1541 \times \mathrm{R} 9,3148)\)
R24 \(780=12 \mathrm{a}+14354,11\)
R10 425,89 = 12a
\(\therefore \quad a \quad=\quad\) R868,824
\(\therefore\) Variable portion : R 9,3148 per bag
Fixed portion : 868,824 per month

Total budgeted semi-variable manufacturing overheads for 120 bags per month:

\section*{R}

Variable portion of semi-variable overheads
\begin{tabular}{lr}
\((120 \times R 9,3148)\) & 1117,78 \\
Fixed portion of semi-variable overheads & \(\underline{868,82}\) \\
Total budgeted semi-variable overheads & \(\underline{\underline{1986,60}}\)
\end{tabular}
(Note: Allow up to R1,00 difference owing to rounding off.)
Summary:
High-low
R1 950
Regression least squares method
R1 987

NOTE

We used two methods, each of which has a different level of accuracy. This resulted in different answers which, nevertheless, are fairly close to each other!

\section*{QUESTION 2}

Scatter diagram method


The total semi-variable overheads are obtained as follows:
1. Draw a straight line (AB) through the various points of total semi-variable overheads for the year and connect it to the \(y\)-axis (A).
2. Draw a horizontal line through point \(A\) to \(C\). (Line \(A C\) represents the fixed portion of the semi-variable overheads.)
3. The budgeted semi-variable costs for 385 dolls is obtained by drawing a vertical line SR from point \(S\) on the \(x\)-axis until it intersects with line \(A B\).
4. Then draw a horizontal line to the left, which cuts the \(y\)-axis at point \(T\).
5. Read off the costs from the y-axis, which seems to be approximately R206 semivariable overheads.
6. If you use graph paper, you should be able to get a more accurate reading.

\section*{Cost-volume-profit analysis}

In this study unit
\begin{tabular}{|cc|}
\hline Assumptions & \begin{tabular}{|c|c|}
\hline Break-even \\
analysis
\end{tabular} \\
\begin{tabular}{|cc|}
\hline \begin{tabular}{c} 
Target profit \\
analysis
\end{tabular} \\
change and cost \\
change effects \\
on break-even
\end{tabular} \\
\hline Margin of safety
\end{tabular}

\section*{1 Introduction}

In the previous study unit, we explored three techniques for predicting or modelling cost behaviour using a linear equation. In this study unit, we incorporate revenue into the equation to predict the impact of management decisions on the organisation's profitability.

\section*{2 What is the cost-volume-profit analysis?}

\section*{COST-VOLUME-PROFIT ANALYSIS}

The cost-volume-profit analysis investigates the change in profit that results from changes in
- activity levels (units produced and sold);
- per unit selling prices;
- per unit variable costs; and
- total fixed costs.

The CVP analysis is a powerful tool that management uses for short-term decisionmaking and planning to investigate the impact of decisions on profit.

The primary goal of a business is to make a sustainable profit.

\section*{PROFIT}

Profit is the amount left after all costs are covered.

The amount of profit made will largely be the result of decisions made by management at all levels of the organisation. Profit is based on the relationship between cost, volume of production, selling price and expected profit.

Cost-volume-profit analysis is applicable to service, merchandising and manufacturing activities, as well as to profit and non-profit organisations. In non-profit organisations, the emphasis is on planning for service levels, fund-raising activities and determining funding requirements.

\section*{3 Assumptions of the cost-volume-profit analysis}

The cost-volume-profit analysis is based on a number of underlying assumptions:
- The selling price per unit is constant, irrespective of the sales volume.
- All costs are linear and can be accurately divided into variable and fixed elements.
- Variable costs are constant per unit, whereas fixed costs are constant in total over the relevant range.
- The sales mix is constant in multiproduct organisations.
- Inventory levels do not change - the number of units produced equals the number of units sold.
- Cost-volume-profit analysis applies to the relevant range only. (This is crucial!) Outside the upper and lower level of the relevant range for activity (volume), costs and revenue WILL behave differently.

\section*{RELEVANT RANGE}

The relevant range is the upper and lower levels of production (= sales) activity levels within which the organisation normally operates and for which cost and revenue behaviour are known and can be predicted.

Despite these limitations of the cost-volume-profit analysis, the technique is a valuable tool for management when it comes to short-term decision-making and profit forecasting.

\section*{4 Contribution}

In the previous study unit, we emphasised the need to separate the fixed and variable elements of cost. This distinction between fixed and variable costs is also important in the application of cost-volume-profit analysis. One of the key elements in the cost-volume-profit analysis is the concept of contribution.

\section*{CONTRIBUTION}

Contribution is the amount remaining after the deduction of all variable cost from sales. This amount contributes towards covering the organisation's fixed cost.

\section*{Key formula: CONTRIBUTION}

\section*{Contribution \(=\) sales \(\boldsymbol{-}\) total variable costs}

Contribution indicates the excess of sales over all variable costs (ie variable production costs AS WELL AS variable selling and distribution costs).

\section*{CONTRIBUTION RATIO}

The ratio of the contribution to total sales is known as the contribution ratio (this can expressed as a precentage and also referred to as the profit-volume ratio or contribution margin ratio).

\section*{Key formula: CONTRIBUTION RATIO}
```

Contribution ratio $=$ contribution $\times 100 \%$
sales

```

The contribution ratio indicates the percentage of sales available to cover fixed costs. Once ALL fixed costs are covered, each additional unit sold increases net profit by the amount of the contribution per unit.

In today's complex manufacturing environment, an organisation's fixed cost constitutes a major proportion of all costs, making it crucial that the organisation cover its fixed cost.

The use of contribution is specific to management accounting and differs from the concepts "gross profit" and "net profit". We can also compile profit statements on the contribution basis, which differs from that prescribed by financial accounting and IFRS (International Financial Reporting Standards). In the format of the statement of comprehensive income used by financial accounting, no distinction is made between fixed and variable costs.

\section*{NOTE}

You will see that, in MAC2601, we sometimes refer to the statement of profit or loss and other comprehensive income as one of the following:
- statement of profit and loss and other comprehensive income
- income statement
- profit statement
- statement of comprehensive income (SCI)

All of the above terms refer to the same statement for purposes of MAC2601, as this statement is used for internal reporting purposes in Management Accounting, and does not have to meet the requirements of IFRS (International Financial Reporting Standards), which relates to external reporting.

For the same reason, the format of the "income statement" for purposes of MAC2601, as well as the terminology used therein, may differ from the formats and terms used in financial accounting.

The following is an example of a financial accountingstatement of comprehensive income for a period (simplified for illustrative purposes and easier comparison):

\section*{R}

Sales
Less: Expenses
Net profit for the period
\begin{tabular}{r}
8000 \\
\hline 2000 \\
\hline
\end{tabular}

Management, however, prefer a contribution statement of comprehensive income, in which a distinction is made between fixed and variable costs. The contribution statement of comprehensive income is far more useful to management, because it provides cost information that can help in planning, control and decision-making. It provides vital information on the effect of changes in selling price, cost and volume on profit.

An example of a contribution statement of comprehensive income for a period (for the same results as above) is as follows:

\section*{R}

10000
5000
5000
3000
2000

\section*{Activity 3.1}

Last month's contribution statement of comprehensive income for Bonsero Ltd. is as follows:
\begin{tabular}{lccc} 
& Total & Per unit & Percent \\
& \(\mathbf{R}\) & \(\mathbf{R}\) & \(\%\) \\
Sales (1500 units) & 75000 & 50 & 100 \\
Less: Variable costs & \(\underline{45000}\) & \(\frac{30}{20}\) & \(\frac{60}{40}\) \\
Contribution & \(\underline{30000}\) & & \\
Less: Fixed costs & \(\underline{\underline{10000}}\) & & \\
Net profit & & &
\end{tabular}

\section*{REQUIRED}
a. Calculate the number of units sold.
b. Calculate the contribution ratio.

\section*{Solution to Activity 3.1}
a. Number of units sold

Contribution per unit \(=\) Total contribution \(\div\) number of units sold
Number of units sold \(=\) R30 \(000 \div\) R20 per unit
\(=500\) units
(Also: R75 \(000 \div \mathrm{R} 50\) per unit \(=\mathrm{R} 500\) units)
The contribution per unit remains constant as long as the selling price and variable cost per unit do not change.
b. Contribution ratio \(=\frac{\text { contribution }}{\text { sales }} \times 100\)
\[
\begin{aligned}
= & \frac{R 30000}{R 75000} \times 100 \\
= & 40 \% \\
& (\text { Also: R20/R50 }=40 \%)
\end{aligned}
\]

The contribution ratio of \(40 \%\) indicates that R0,40 of every R1 of sales is available to cover fixed costs. Once all fixed costs are covered, R0,40 of every R1 of sales will contribute to net profit.

\section*{Activity 3.2}

The following information is available for product Q :
\begin{tabular}{lr} 
Units sold & 5000 \\
& R \\
Sales & 150000 \\
Variable costs & 75000 \\
Fixed costs & 30000
\end{tabular}

\section*{REQUIRED}

Calculate the following:
a. Contribution in total and per unit
b. Contribution ratio

\section*{Solution to Activity 3.2}
a. Contribution in total
\begin{tabular}{lr} 
& \(\mathbf{R}\) \\
Sales & 150000 \\
Less: Variable costs & 75000 \\
Contribution & 75000
\end{tabular}

Contribution per unit:

Selling price per unit (R150 \(000 \div 5000) \quad 30\)
\(\begin{array}{lll}\text { Less: Variable costs per unit }(75000 \div 5000) & \frac{15}{15} \\ \text { Contribution per unit }\end{array}\)
Contribution per unit
OR
Contribution in total \(\div\) units sold \(=\) R75 \(000 \div 5000\)
\(=\) R15 per unit
b. Contribution ratio \(=\frac{R 75000}{R 150000} \times 100\)
\[
=50 \%
\]

OR
R15/R30 \(\times 100=50 \%\)

\section*{Breakeven analysis}

It is essential for management to know the point of operation at which business revenues (sales) and costs are exactly equal. A part of the value of each sales transaction is used to cover the variable costs incurred in production and selling, and the remainder (the contribution) is applied towards the recovery of fixed costs.

\section*{BREAKEVEN POINT}

The breakeven point is the point where the total contribution is equal to total fixed costs (the point where profit is zero).

When operating performance goes beyond the breakeven point, the contribution earned over and above fixed costs represents the profit.

The profit can be calculated by means of the following linear equation:
\(y=b x-a\)
Where:
y \(\quad=\) net profit
b \(\quad=\) contribution per unit
\(x \quad=\quad\) number of units sold
a \(\quad=\) total fixed cost

Mathematically, the breakeven point in units can be expressed as:
```

0 (nil) $=\mathrm{b} x-\mathrm{a}$
$\mathrm{a}=\mathrm{b} x$
$x=\frac{\mathrm{a}}{\mathrm{b}}$

```

This translates into the formula provided below.

\section*{Key formula: BREAKEVEN POINT IN UNITS}
\[
\text { Breakeven point in units }=\frac{\text { total fixed cost }}{\text { contribution per unit }}
\]

This is the minimum number of units that has to be sold to ensure that the fixed costs are covered and that a loss is not suffered. It is also known as the breakeven quantity or volume.

\section*{BREAKEVEN VALUE}

The breakeven value is the sales value of the breakeven units or quantity.

\section*{Key formula: BREAKEVEN VALUE}
```

Breakeven value = breakeven units x selling price per unit
OR
Breakeven value = total fixed costs
contribution ratio

```

\section*{Activity 3.3}

\section*{BREAKEVEN ANALYSIS}

Using the data provided in Activity 3.1, calculate the breakeven point in units and value.

\section*{Solution to Activity 3.3}
\[
\begin{aligned}
\text { Breakeven units } & =\frac{\text { total fixed cost }}{\text { contribution per unit }} \\
& =\frac{R 20000}{R 20} \\
& =1000 \text { units }
\end{aligned}
\]

This means that when 1000 units are produced and sold, sales and total costs (ie fixed and variable costs) are equal.

\section*{Proof}
\begin{tabular}{rl} 
Sales & \(=1000\) units \(\times\) R50 \\
& \(=\underline{\mathbf{R 5 0 0 0 0}}\) \\
Variable costs & \(=1000\) units \(\times\) R30 \\
& \(=\mathrm{R} 30000\) \\
+ fixed costs & \(=\underline{R 20000}\) \\
& \(=\underline{\mathbf{R 5 0 0 0 0}}\)
\end{tabular}

OR
Total contribution \(=1000\) units \(\times\) R20
\(=\) R20 000

The fixed cost of R20 000 can therefore be paid from the R20 000 contribution, which means that there is neither an excess nor a shortage.
```

Breakeven value }=\frac{\mathrm{ total fixed costs}}{\mathrm{ contribution ratio }
= R20 000
= R50 000

```

\section*{OR}
```

Breakeven value $\quad=\quad$ breakeven units x selling price per unit
$=1000$ units \times R50
$=$ R50 000

```

NOTE

The following layout will demonstrate that the total profit derived from 1500 units was earned by the 500 units sold in excess of the breakeven units:

Volume
Sales
Less: Variable costs
Contribution
Less: Fixed costs
Net profit
\begin{tabular}{|r|r|c|}
\hline Total & Breakeven & Excess \\
\hline 1500 & 1000 & 500 \\
75000 & 50000 & 25000 \\
45000 & 30000 & 15000 \\
\hline 30000 & 20000 & 10000 \\
20000 & 20000 & - \\
\hline \(\mathbf{1 0 0 0 0}\) & - & \(\mathbf{1 0 0 0 0}\) \\
\hline
\end{tabular}

\section*{6 The effects of price and cost changes on the breakeven point}

The usefulness of the cost-volume-profit analysis (also called a sensitivity analysis) comes to the fore when an organisation's management wants to predict the effect on profitability of certain changes in selling price, variable costs or fixed costs. We will now demonstrate how the cost-volume-profit analysis is applied in various scenarios.

\section*{Activity 3.4}

\section*{BREAKEVEN POINT - PRICE AND COST CHANGES}

The following information relates to a manufacturer of cement blocks:
\begin{tabular}{|c|c|c|c|}
\hline & R & R & R \\
\hline Sales (40 000 units @ R20) & & & 800000 \\
\hline Less: Cost of sales & Fixed & Variable & 560000 \\
\hline Cost of direct materials & - & 120000 & \\
\hline Cost of direct labour & - & 160000 & \\
\hline Manufacturing overheads & 200000 & 80000 & \\
\hline Gross profit & & & 240000 \\
\hline Less: Selling and administrative costs & 60000 & 40000 & 100000 \\
\hline Net profit & & & 140000 \\
\hline
\end{tabular}

\section*{REQUIRED}

Determine the following:
a. The breakeven point (in units and value)
b. The effect on the breakeven units if there is an
i. increase of \(10 \%\) in the selling price per unit
ii. increase of \(10 \%\) in the sales volume
iii. increase of \(10 \%\) in the variable costs per unit
iv. increase of \(10 \%\) in fixed costs

Scenarios i.-iv. should be considered independently from each other.

\section*{Solution to Activity 3.4}
a. The breakeven point (in units and value):
\begin{tabular}{lcr} 
& Total & Per unit \\
Sales \((40000\) units \(\times\) R20 \()\) & \(\mathbf{R}\) & \(\mathbf{R}\) \\
Less: Variable costs & 800000 & 20 \\
\begin{tabular}{l}
\((120000+160000+80000+40000)\) \\
Contribution
\end{tabular} & \begin{tabular}{l}
400000
\end{tabular} & \(10^{*}\) \\
\hline 400000 & 10 \\
\hline
\end{tabular}
* \(\mathrm{R} 400000 \div 40000\) units
\begin{tabular}{rl} 
Breakeven units & \(=\frac{\text { total fixed costs }}{\text { contribution per unit }}\) \\
& \(=\frac{\mathrm{R} 260000}{\mathrm{R} 10}\) \\
& \(=26000\) units \\
Breakeven value & \(=26000\) units \(\times \mathrm{R} 20\) \\
& \(=\mathrm{R} 520000\)
\end{tabular}

NOTE

1 Can you see that variable costs include ALL variable costs, not only production costs?
2 Can you see that fixed costs include ALL fixed costs, including selling and administrative costs?
b. Effect on breakeven units
i. The selling price per unit increases by \(10 \%(R 20 \times 1,10)=R 22\)
\begin{tabular}{lrr} 
& Total & Per unit \\
& \(\mathbf{R}\) & \(\mathbf{R}\) \\
Sales (40 000 units \(\times\) R22) & 880000 & 22 \\
Less: Variable costs & 400000 & 10 \\
\cline { 3 - 3 } Contribution & 480000 & 12 \\
\hline
\end{tabular}

OR
\[
\begin{aligned}
\text { Increase in selling price per unit } & =\mathrm{R} 2+\text { previous contribution per unit } \mathrm{R} 10 \\
& =\mathrm{R} 12 \text { per unit } \\
& =\frac{\mathrm{R} 260000}{\mathrm{R} 12} \\
& =21667 \text { units }
\end{aligned}
\]
\(\Rightarrow\) There is a decrease from 26000 to 21667 in the breakeven units.
ii. Sales volume increases by \(10 \%(40000 \times 1,10)=44000\) units.
\begin{tabular}{lrr} 
Total & Per unit \\
\(\mathbf{R}\) & \(\mathbf{R}\) \\
Sales (44 000 units x R20) & 880000 & 20 \\
Less: Variable costs (44 000 units x R10) & 440000 & 10 \\
\cline { 3 - 3 } Contribution & \hline 440000 & 10 \\
\hline
\end{tabular}

Breakeven units \(\quad=\frac{R 260000}{R 10}\)
\[
=26000 \text { units }
\]

OR
Fixed cost remained unchanged.
Contribution per unit remained unchanged.
Therefore: Breakeven units remained unchanged.
\(\Rightarrow\) There is no effect on the breakeven units.
iii. Variable costs increase by \(10 \%\) per unit \((R 10 \times 1,10)=R 11\).
\begin{tabular}{lcc} 
& Total & Per unit \\
& \(\mathbf{R}\) & \(\mathbf{R}\) \\
Sales \((40000\) units \(\times\) R20 \()\) & 800000 & 20 \\
Less: Variable costs \((40000 \times\) R11 \()\) & 440000 & 11 \\
\hline Contribution & 360000 & 9 \\
\hline
\end{tabular}

OR

\(\Rightarrow\) There is an increase from 26000 to 28889 in the breakeven units.
iv. Fixed costs increase by \(10 \%\)

Fixed costs increase by \(10 \%(R 260000 \times 1,10)=\quad\) R286 000
Breakeven units \(\quad=\frac{\mathrm{R} 286000}{\mathrm{R} 10}\)
\(=28600\) units
\(\Rightarrow\) There is an increase from 26000 to \(28 \mathbf{6 0 0}\) in the breakeven units.

\section*{NOTE}

The breakeven units move in the same direction as changes in the variable costs and fixed costs, whereas any change in the selling price has an effect in the opposite direction. The following table summarises the impact of these changes:
\begin{tabular}{|l|l|l|}
\hline Price factor & Direction of change & Number of breakeven units \\
\hline Fixed costs & \begin{tabular}{l} 
Increase \\
Decrease
\end{tabular} & \begin{tabular}{l} 
Increase \\
Decrease
\end{tabular} \\
\hline Variable costs & \begin{tabular}{l} 
Increase \\
Decrease
\end{tabular} & \begin{tabular}{l} 
Increase \\
Decrease
\end{tabular} \\
\hline Selling price & \begin{tabular}{l} 
Increase \\
Decrease
\end{tabular} & \begin{tabular}{l} 
Decrease \\
Increase
\end{tabular} \\
\hline
\end{tabular}

\section*{IMPORTANT:}

Breakeven units are one of the most critical performance indicators in any business.

\section*{7 Margin of safety}

Another feature in the cost-volume-profit analysis is the margin of safety.

\section*{MARGIN OF SAFETY}

The margin of safety is the excess of budgeted (or actual) sales over the breakeven sales, that is, the amount or percentage by which sales revenue may decline before losses commence.

\section*{Key formula: MARGIN OF SAFETY (IN UNITS OR VALUE)}

Margin of safety in units \(=\) total sales (units) - breakeven sales (units)
Margin of safety in value \(=\) total sales \(\boldsymbol{-}\) breakeven sales

\section*{MARGIN OF SAFETY RATIO}

The margin of safety can also be expressed as a percentage of the total sales value or sales units, which is known as the margin of safety ratio.

Key formula: MARGIN OF SAFETY RATIO (IN UNITS OR VALUE)
Margin of safety ratio (units) \%
\(=\frac{\text { total sales (units) - breakeven sales (units) }}{\text { total sales (units) }} \times \mathbf{1 0 0 \%}\) total sales (units)

\section*{Margin of safety ratio (value) \%}
\(=\underline{\text { margin of safety in value }}\)
total sales (value)
x 100\%

Mathematically, both the formulae above will give the same answer (because the selling price per unit is constant).

NOTE

The margin of safety ratio is useful to management because it indicates to what extent (by what percentage) the value of sales can decline before the business starts to show a loss.

\section*{Activity 3.5}

Refer back to Activities 3.1, 3.3 and 3.4a. What is the margin of safety in each case?

\section*{Solution to Activity 3.5}

Activity 3.1 and 3.3
\begin{tabular}{rl} 
Margin of safety in units & \(=1500\) units -1000 units \\
& \(=500\) units \\
Margin of safety in value & \(=\mathrm{R} 75000-\mathrm{R} 50000\) \\
& \(=\mathrm{R} 25000\) \\
Margin of safety \% (value) & \(=\mathrm{R} 25000 \div \mathrm{R} 75000 \times 100 \%\) \\
& \(=33,33 \%\) \\
Margin of safety \% (units) & \(=500 \div 1500\) \\
& \(=33,33 \%\)
\end{tabular}

Sales can decline by 33,33 percent before the business will start to show a loss.

\section*{Activity 4a.}
\(\begin{aligned} \text { Margin of safety in units } & =40000 \text { units }-26000 \text { units } \\ & =14000 \text { units } \\ \text { Margin of safety in value } & =\mathrm{R} 800000-\mathrm{R} 520000 \\ & =\mathrm{R} 280000 \\ \text { Margin of safety \% (value) } & =\mathrm{R} 280000 \div \mathrm{R} 800000 \\ & =35 \% \\ \text { Margin of safety \% (units) } & =14000 \div 40000=35 \%\end{aligned}\)
Sales may decline by \(35 \%\) before the business will start to show a loss.

\section*{8 Target profit analysis}

With the aid of cost-volume-profit analysis, it is also possible to determine the sales value that will produce a certain net profit.

\section*{Key formula: TARGET SALES (IN UNITS OR VALUE)}
```

Sales units $=$ fixed costs + expected profit
contribution per unit

```
Sales value \(=\) fixed costs + expected profit
    contribution ratio

\section*{NOTE}

When determining the required sales in units to achieve a certain profit, you must always determine whether that level of production is within the PRODUCTION CAPACITY of the plant.

\section*{Activity 3.6}

Refer back to Activity 3.1. Assume that the target profit is R15 000 per month. How many units must it sell each month to reach this target?

\section*{Solution to Activity 3.6}

Unit sales required to make a required profit
\[
\begin{aligned}
& =\frac{\text { total fixed costs }+ \text { target profit }}{\text { contribution per unit }} \\
& =\frac{\text { R20000 }+ \text { R15000 }}{\text { R20 }} \\
& =1750 \text { units }
\end{aligned}
\]

\section*{OR}

The units to be sold to make the required profit can also be calculated by using an equation:
\begin{tabular}{ll} 
Let \(x\) & \(=\quad\) units sold \\
Sales & \(=\) variable expenses + fixed costs + profits \\
R50x & \(=\) R30x + R20 \(000+\) R15 000 \\
R20x & \(=\) R35000 \\
\(x\) & \(=1750\) units
\end{tabular}

\section*{Activity 3.7}

Refer back to Activity 3.2. Assume that the expected profit on product \(Q\) is R22 500. How many units of product \(Q\) must be sold to reach the target profit?

\section*{Solution to Activity 3.7}

Unit sales to make required profit
\(=\frac{\text { total fixed costs }+ \text { target profit }}{\text { contribution per unit }}\)
\(=\underline{R 30000+R 22500}\)
R15
\(=3500\) units

NOTE

Later on in this module, you will learn how to apply these principles when working with an after-tax profit target. In your later MAC modules, you will also be introduced to further cost-volume-profit functions, such as the operating leverage and the change-over point.

\section*{9 Breakeven graph}

The relationship between sales, costs, volume and profit can be expressed graphically by preparing a breakeven graph, also known as a cost-volume-profit graph. This is a very useful tool for illustrating the concepts "breakeven" and "margin of safety" to nonfinancial managers.

The breakeven graph below is based on the following data:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Per unit} \\
\hline \multicolumn{5}{|c|}{R} \\
\hline Selling price & \multicolumn{4}{|c|}{100} \\
\hline Less: Variable costs & \multicolumn{4}{|c|}{60} \\
\hline Contribution & \multicolumn{4}{|c|}{40} \\
\hline Fixed costs for period & & R300 000 & & \\
\hline Breakeven units & \(=\) & \(\mathrm{R} 300000 \div \mathrm{R} 40\) & \(=\) & 7500 units \\
\hline Breakeven value & \(=\) & 7500 units \(\times\) R100 & \(=\) & R750 000 \\
\hline
\end{tabular}


FIGURE 3.1: Breakeven graph

NOTE
(1) Can you see that the breakeven point is reached where the total revenue line intersects with the total cost line?
(2) The organisation determined that, historically, its normal operating level is between 7000 and 9000 units. It has obtained cost and revenue data for these production and sales levels (relevant range). A cost-volume-profit analysis can be used with reasonable accuracy as long as the volume remains between 7000 and 9000 units.
(3) The lower limit of the relevant range is 7000 units. That is below the breakeven point, which means the organisation will be making a loss. The organisation will endeavour to limit the periods spent below the breakeven point, even though these periods are part of the relevant range.

\section*{10 Summary}

In this study unit, you have learnt the principles of cost-volume-profit analysis, and attention was given to the following:
- The assumptions of cost-volume-profit analysis
- Contribution
- Breakeven analysis
- The effects of price and cost changes on the breakeven point
- Margin of safety
- Target profit analysis
- Graphic representation

Self-assessment Activity

\section*{QUESTION 1}

Boka Ltd. produces and sells a single product. The following information is obtained from the budget for the month ending 30 October:

\section*{R}

Sales (20 000 units)
1000000
Direct materials
200000
Direct labour 150000
Manufacturing overhead costs:
Variable 70000
Fixed 80000
Selling and administrative costs:
Variable 100000
Fixed 30000

\section*{REQUIRED}

Calculate the following:
a. The contribution per unit
b. The contribution ratio
c. The breakeven units and breakeven value
d. The margin of safety ratio (also interpret your answer)
e. The number of units that must be sold to earn a profit of R500 000
f. The breakeven units and breakeven value if the variable production costs per unit increase by \(15 \%\) and the fixed selling and administrative costs increase by \(10 \%\)
g. The change in net profit if the sales volume increases by \(20 \%\) with no change in fixed costs

\section*{QUESTION 2}

Lebogang Ltd. provides you with the following statement of comprehensive income, which was compiled by using the contribution approach:
\begin{tabular}{|c|c|c|}
\hline & R & R \\
\hline Sales & & 987750 \\
\hline Less: Variable costs & & 600000 \\
\hline Direct materials & 225000 & \\
\hline Direct labour & 150000 & \\
\hline Overheads & 150000 & \\
\hline Selling costs & 75000 & \\
\hline Contribution & & 387750 \\
\hline Less: Fixed costs & & 305000 \\
\hline Production overhead costs & 110000 & \\
\hline Selling costs & 45000 & \\
\hline Administrative costs & 150000 & \\
\hline Net profit for the period & & 82750 \\
\hline
\end{tabular}

The projected statement of comprehensive income was based on sales of 75000 units. Lebogang has the capacity to produce 120000 units during the year.

\section*{REQUIRED}
(Round all calculations to three decimal places.)
a. Calculate the margin of safety ratio.
b. The sales manager believes the company could increase sales by 15000 units if advertising expenditures are increased by R50 000. The supplier of the direct material will give a discount of \(2,5 \%\) on all purchases because of the higher volumes. One additional supervisor must be appointed to cope with the larger production volumes. The supervisor will receive a salary of R30 000 for the period under consideration. Determine the effect on income by compiling a contribution statement of comprehensive income. Show all the manufacturing costs in your statement.
c. Calculate the breakeven point in units for the information in \(b\).
d. Refer to the information in \(b\). What is the maximum amount the company could pay for advertising if the advertising were to increase sales by 15000 units?
e. Calculate the number of units that must be sold in order to generate a net profit of R225 000. Use the information in b.
f. The general manager requests you to calculate the sales price and variable cost per unit if the contribution ratio is \(35 \%\) (which represents \(\mathrm{R} 4,75\) per unit).

\section*{QUESTION 3}

Zimbani Ltd. manufactures and sells a single product. The budgeted monthly information for the next year is as follows:
\begin{tabular}{lr} 
Sales per month & 70000 units \\
Selling price per unit & R5 \\
Variable costs per unit & R2 \\
Fixed costs per month (annual \(\div\) 12) & R150 000 \\
Initial investment & R2 000000
\end{tabular}

\section*{REQUIRED}
a. Calculate the budgeted profit for the year by using cost-volume-profit principles. You do not need to compile the statement of comprehensive income.
b. How many units must be sold per year if the company wishes to earn \(10 \%\) net profit per year on the initial investment?
c. What is the breakeven point in units and in value?
d. Using the figures for the year, assume that there is an increase of \(10 \%\) in fixed costs and an increase to R2,50 per unit in variable costs. Calculate the following:
i The breakeven point in value and in units
ii The margin of safety value and the margin of safety ratio

\section*{QUESTION 4}

Yambara Ltd. manufactures and sells a skin-care product. The budget for the year, according to which the company will work at \(80 \%\) of its capacity, is as follows:
\begin{tabular}{lr}
\multicolumn{1}{c}{ R } \\
Sales (10 000 units) & 1100000 \\
Variable costs & 345000 \\
Fixed costs & \(\underline{655000}\) \\
Net profit & \(\underline{100000}\)
\end{tabular}

The company's management are dissatisfied with the budgeted net profit and requests the sales manager to increase turnover. The sales manager proposes the following independent alternatives:
- Decrease the selling price by \(5 \%\) and increase the fixed costs by R30 000. This will result in a \(10 \%\) increase in sales volume.
- Decrease the selling price by \(10 \%\) and increase the fixed costs by R50 000. This will mean that the company will operate at \(100 \%\) capacity.
- Increase the quality of the products. This will increase the sales volume by \(15 \%\). The improvement in quality will increase the variable cost per unit by \(10 \%\) and the fixed costs by R40 000.

\section*{REQUIRED}
a. Determine the following for the budget year (exclude the alternatives):
i The contribution ratio
ii The breakeven sales in value and in units
iii The margin of safety ratio
b. Calculate the net profit for the three alternatives.
c. Calculate the margin of safety ratio for each alternative.
d. Which alternative should the sales manager choose? Give a reason for your answer.

\section*{QUESTION 5}

Lesenyeho Ltd. manufactures and sells calculators. The company's management accountant prepared the following cost and revenue data for the forthcoming year:
\begin{tabular}{lcc} 
Total & \begin{tabular}{c} 
Per \\
calculator
\end{tabular} \\
& \(\mathbf{R}\) & \(\mathbf{R}\) \\
Sales & 520000 & 65 \\
Variable costs & \(?\) & \(?\) \\
Fixed costs & 109200 &
\end{tabular}

Lesenyeho Ltd. must sell 2600 calculators in order to break even. It is expected that there will be no closing inventory at the end of the year. There was no opening inventory.

\section*{REQUIRED}
a. Calculate the following:
i The number of calculators produced and sold
ii The contribution per calculator
iii The variable cost per calculator
iv The breakeven value
v The number of calculators that must be sold to earn a profit of R75 600
b. Draw a breakeven graph that shows costs and sales from zero level of activity up to budgeted sales volume. (Indicate the breakeven point clearly.)

\section*{Solution to Self-assessment Activity}

\section*{QUESTION 1}
a. Contribution per unit
\begin{tabular}{|c|c|c|c|}
\hline & & Per unit R & Total R \\
\hline Selling price & (R1 \(000000 \div 20000)\) & 50,00 & 1000000 \\
\hline Less: Variable cost & & 26,00 & 520000 \\
\hline Direct material & (R200 \(000 \div 20000\) ) & 10,00 & 200000 \\
\hline Direct labour & (R150 \(000 \div 20000\) ) & 7,50 & 150000 \\
\hline Variable overheads & (R70 \(000 \div 20000\) ) & 3,50 & 70000 \\
\hline Variable selling and admin cost & (R100 \(000 \div 20000\) ) & 5,00 & 100000 \\
\hline Total contribution for 20000 units & & & 480000 \\
\hline Divided by 20000 units & & & 20000 \\
\hline Contribution per unit & & 24,00 & 24,00 \\
\hline
\end{tabular}

\section*{NOTE}

Examination technique: it saves time to rather work with the total amounts and only divide by the number of units right at the end. However, some questions may ask you for amounts per unit - in that case, you should calculate per unit amounts for every cost. It is important to read the wording of REQUIRED very carefully.
b. Contribution ratio \(=\) contribution per unit \(\times 100 \%\)
selling price
\[
\begin{array}{ll}
=\frac{R 24}{R 50} \times 100 & \text { OR } \frac{R 480000}{R 1000000} \\
=48 \%
\end{array}
\]
c. Breakeven units and breakeven value

First, calculate total fixed cost:
Fixed manufacturing overheads R 80000
Fixed selling and admin cost R 30000
Total fixed costs R110 000


Sales can decline by \(77,08 \%\) before the business will begin to show a loss. This is a very satisfactory margin of safety. Something dramatic has to happen before the organisation will be in jeopardy.
\[
\text { e. Units sold } \quad \begin{aligned}
& =\frac{\text { fixed costs }+ \text { target profit }}{\text { contribution per unit }} \\
& =\frac{R 110000+\text { R500 000 }}{\text { R24 }} \\
& =25417 \text { units }
\end{aligned}
\]

\section*{f. Change in breakeven units and value}

New variable production cost per unit:
\begin{tabular}{cr}
\multicolumn{1}{c}{} & \multicolumn{1}{c}{ Total } \\
10,00 & 200000 \\
7,50 & 150000 \\
3,50 & 70000 \\
\hline 21,00 & 420000 \\
& \(\div 20000=\) R21 \\
\(\underline{3,15}\) &
\end{tabular}

Current fixed selling and admin costs
30000
\(10 \%\) increase
3000
Total new fixed selling and admin costs
33000

Contribution per unit:
Prev. 24,00
Sales
Less: Variable costs:
Production costs
Selling and admin costs
Contribution per unit
\begin{tabular}{rrr}
\multicolumn{1}{r}{} & Prev. 24,00 \\
50,00 & \\
29,15 & \\
\hline 24,15 & Incr. 3,15 \\
5,00 & \\
\hline 20,85 & 20,85 \\
\hline
\end{tabular}

Fixed manufacturing overheads
80000 Prev. 110000
Fixed selling and admin costs
Total fixed costs
33000
Incr. 3000
\(113000 \quad 113000\)

\section*{NOTE}

Examination technique: It is possible to arrive at the same answers by working with the changes and applying that to the previous figures. This is called the incremental approach.
\begin{tabular}{rl} 
Breakeven point & \(=\frac{\text { fixed costs }}{\text { contribution per unit }}\) \\
& \(=\frac{\mathrm{R} 113000}{\mathrm{R} 20,85}\) \\
& \(=5419,664\) \\
& \(\approx 5420\) units (rounded) \\
Breakeven value & \(=5419,664 \times \mathrm{R} 50\) \\
& \(=\mathbf{R 2 7 0} 983\)
\end{tabular}
g. Change in net profit with \(\mathbf{2 0 \%}\) volume increase
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Sales (in units)} & \multirow{3}{*}{(*20 \(000 \times 120 \%\) )} & Current & Expected \\
\hline & & 20000 & 24 000* \\
\hline & & R & R \\
\hline Sales (in rand) & (R50 \(\times\) units) & 1000000 & 1200000 \\
\hline Less: Variable costs & (R26 \(x\) units) & 520000 & 624000 \\
\hline Contribution & (R24 \(x\) units) & 480000 & 576000 \\
\hline Less: Fixed costs & & 110000 & 110000 \\
\hline Net profit & & 370000 & 466000 \\
\hline
\end{tabular}

Net profit will increase by R96 000 (R466 000 - R370 000)
OR (saving time)
\begin{tabular}{lr} 
Increase in units \(\quad(20000 \times 0,2)\) & 4000 units \\
x contribution per unit \\
Increase in net profit \\
\(=\) increase in contribution (as no change in fixed cost) & x R24 \\
\end{tabular}

\section*{QUESTION 2}
(All calculations rounded to three decimal places.)

\section*{a. Margin of safety ratio}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{3}{*}{(R987 \(750 \div 75000\) units)} & Per unit & Total \\
\hline & & \multicolumn{2}{|l|}{R} \\
\hline Sales & & 13,17 & 987750 \\
\hline Less: Variable cost & & 8,00 & 600000 \\
\hline Direct material & (R225 \(000 \div 75000\) ) & 3,00 & 225000 \\
\hline Direct labour & (R150 \(000 \div 75000\) ) & 2,00 & 150000 \\
\hline Overheads & (R150 \(000 \div 75000\) ) & 2,00 & 150000 \\
\hline Selling costs & (R \(75000 \div 75000\) ) & 1,00 & 75000 \\
\hline Contribution & (R387 \(750 \div 75000\) ) & 5,17 & 387750 \\
\hline
\end{tabular}
\begin{tabular}{rl} 
Breakeven units & \(=\frac{\text { fixed cost }}{\text { contribution per unit }}\) \\
& \(=\frac{\mathrm{R} 305000}{\mathrm{R} 5,17}\) \\
& \(=58995\) units \\
Margin of safety ratio & \(=\frac{75000-58994}{75000}\) \\
& \(=\mathbf{2 1 , 3} \%\)
\end{tabular}

\section*{b. Contribution statement of comprehensive income}

Sales volume \(=75000+15000=90000\) units

Sales (90 000 units)
Less: Variable cost
Direct material (R3-2,5\%)
Direct labour
Overheads
Selling costs

\section*{Contribution}

Less: Fixed costs
Overheads (R110 \(000+\) R30 000)
Selling costs (R45 \(000+\) R50 000)
\begin{tabular}{cc} 
Per unit & Total \\
\(\mathbf{R}\) & \(\mathbf{R}\)
\end{tabular}

Administrative cost normal
Net profit
R
\begin{tabular}{rr}
13,170 & 1185300 \\
7,925 & 713250 \\
\hline 2,925 & 263250 \\
2,000 & 180000 \\
2,000 & 180000 \\
1,000 & 90000 \\
\hline 5,245 & 472050 \\
& \begin{tabular}{r}
385000 \\
\\
\\
\\
\\
\hline
\end{tabular} \\
\hline
\end{tabular}

Net profit increases by R4 300 (R87 050 - R82 750).

Proof:
\begin{tabular}{|c|c|c|}
\hline \(15000 \times \mathrm{R} 5,17\) & \(=77550\) & (additional units @ "old" contribution per unit) \\
\hline \(90000 \times \mathrm{R} 0,075\) & \(=6750\) & (additional contribution on ALL units: 5,245-5,17@ "old" contribution per unit) \\
\hline Incremental income & 84300 & \\
\hline Advertising increases by & (50 000) & \\
\hline Production overheads increase by & (30 000) & \\
\hline Incremental profit & 4300 & \\
\hline
\end{tabular}
c. Breakeven point

Breakeven units
\[
\begin{aligned}
& =\frac{\text { fixed cost }}{\text { contribution per unit }} \\
& =\frac{\text { R385 000 }}{R 5,245} \\
& =73404 \text { units }
\end{aligned}
\]

\section*{d. Maximum advertisement spend}

\section*{METHOD 1}

Increase in net profit available to spend on advertising
\(75000 \times\) R0,075 \(=\) R5 625 (additional contribution on 'old' units)
\(15000 \times R 5,245=78675\) (new contribution on 'new' units)
Additional supervisor (30 000) 54300

\section*{METHOD 2}

The additional contribution must cover the additional fixed costs. If we assume the same information as b, the profit only increased by R4 300 after spending R50 000 on advertising. We therefore add it back:

Maximum = R50 \(000+\mathrm{R} 4300=\) R54 300
NOTE

NB! The idea is to find out how much MORE you can spend on an expense item before you are back in the previous profit position. This is an important point.
e. Units sold for R225 000 profit

Units sold
\[
\begin{aligned}
& =\frac{\text { fixed cost }+ \text { target profit }}{\text { contribution per unit }} \\
& =\frac{\text { R385000 }+ \text { R225 } 000}{R 5,45} \\
& =116 \mathbf{3 0 2} \text { units }
\end{aligned}
\]

\section*{NOTE}

This is still within the capacity ( \(<120000\) units)!

\section*{f. Sales price and variable cost}

Contribution ratio
\(=\frac{\text { contribution }}{\text { sales }}\)
\(=\frac{35}{100}\)
Therefore:

Sales (R4,75 \(\div 0,35\) )
Less: Variable cost (R13,571 - R4,75)
Contribution
\begin{tabular}{rr} 
\% & Per unit \\
& \(\mathbf{R}\) \\
100 & 13,571 \\
65 & 8,821 \\
\hline \(\mathbf{3 5}\) & \(\mathbf{4 , 7 5 0}\) \\
\hline
\end{tabular}

\section*{QUESTION 3}

\section*{a. Budgeted profit per year}

The budgeted profit for the year:

\section*{R}
\begin{tabular}{llr} 
Contribution & \((R 5-R 2) \times 70000\) & 210000 \\
Less: Fixed costs & & \(\underline{150000}\) \\
Net profit & \\
\(\mathbf{X 1 2}\) & & \(\overline{\overline{\mathbf{7 2 0 0 0 0} 000}}\)
\end{tabular}
b. Number of units to be sold to earn a \(10 \%\) net profit return on investment

Net profit \(=\) R2 \(000000 \times 10 \%=\) R200 000
Number of units
\[
\begin{aligned}
& =\frac{\text { fixed cost }+ \text { net profit }}{\text { contribution per unit }} \\
& =\frac{(R 150000 \times 12)+R 200000}{R 5-R 2} \\
& =\frac{R 2000000}{R 3} \\
& =666667 \text { units per year }(55556 \text { units per month })
\end{aligned}
\]
c. Breakeven points
\begin{tabular}{rl} 
Breakeven units & \(=\frac{\text { fixed cost }}{\text { contribution per unit }}\) \\
& \(=\frac{R 1800000}{R 3}\) \\
& \(=600000\) units per year (50 000 units per month) \\
& \(=600000\) units \(\times\) R5 \\
Breakeven value & \(=\) R3 000000 per year (R250 000 per month) \\
OR & \(=\mathbf{R 1} 800 \mathbf{0 0 0} \div \mathbf{6 0 \%}=\mathbf{R 3} \mathbf{0 0 0} \mathbf{0 0 0}\)
\end{tabular}

\section*{d. Breakeven points, margins of safety, profit}

Increase in fixed cost \(=R 150000 \times 12 \times 110 \%\)
\(=\mathrm{R} 1980000\)
Increase in variable costs to R2,50 per unit
Contribution per unit \(=\) R5 - R2,50
\(=R 2,50\) per unit
\[
\begin{array}{ll}
\text { e. Breakeven units } & =\frac{\text { fixed cost }}{\text { contribution per unit }} \\
& =\frac{R 1980000}{R 2,50} \\
& =792000 \text { units per year (66 000 per month) } \\
& =792000 \text { units } \times \text { R5 } \\
& =R 3960000 \\
\text { Breakeven value } & \\
& \\
\text { f. Margin of safety } & =\text { sales - breakeven value } \\
\text { Margin of safety value } & =(R 70000 \times 12 \times R 5)-R 3960000 \\
& =R 240000 \\
\text { Margin of safety ratio } & =\frac{\text { sales }- \text { breakeven value }}{} \\
& =\frac{R 240000}{R 4200000} \\
& =5,7 \%
\end{array}
\]

\section*{QUESTION 4}

\section*{a. Budgeted figures}
i. Contribution per unit \(=\) selling price - variable costs
\[
=R 110-R 34,50
\]
\[
=\mathrm{R} 75,50
\]

Contribution ratio \(\quad=\frac{\text { contribution per unit }}{\text { selling price }}\)
\(=R 75,50\)
R110
\(=68,64 \%\)
OR \(\quad=\frac{\text { Total contribution }}{\text { total sales }}\)
\(=\frac{\mathrm{R} 1100000-\mathrm{R} 345000}{\mathrm{R1} 100000}\)
R1 100000
\(=68,64 \%\)
ii. Breakeven value \(=\frac{\text { fixed costs }}{\text { contribution ratio }}\)
\(=\frac{\mathrm{R} 655000}{0,6864}\)
\(=\mathrm{R} 954254\)
Units \(\quad=954254 / \mathrm{R} 110=8675\)
iii. Margin of safety \(=\) sales value - breakeven value
\(=\) R1 100000 - R954 254
\(=\mathrm{R} 145746\)
Margin of safety ratio \(=\underline{\text { sales value }- \text { breakeven value }}\) sales value
\(=\frac{\mathrm{R} 145746}{\mathrm{R} 1100000}\)
\(=13,25 \%\)
\[
\text { OR } \quad \begin{aligned}
& =\frac{\text { unit sales }- \text { breakeven sales }}{\text { unit sales }} \\
& =\frac{10000-8675}{10000} \\
& =13,25 \%
\end{aligned}
\]
b. and c. Net profit and margin of safety ratio
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Alternative 1} \\
\hline \multirow[t]{2}{*}{Units sold (10 \(000 \times 110 \%\) )} & 11000 units \\
\hline & R \\
\hline Sales (R110 \(\times 95 \% \times 11000\) units) & 1149500 \\
\hline Less: Variable costs (R34,50 \(\times 11000\) units) & 379500 \\
\hline Contribution (R70 per unit) & 770000 \\
\hline Less: Fixed costs (R655 \(000+\mathrm{R} 30\) 000) & 685000 \\
\hline Net profit & 85000 \\
\hline Breakeven point \(=9768\) units \(\quad\) Margin of & Margin of safety \% = 11,2\% \\
\hline
\end{tabular}

\section*{Alternative 2}
\begin{tabular}{lc} 
Units sold (10 \(000 \div 80 \% \times 100 \%)\) & 12500 units \\
& \(\mathbf{R}\) \\
Sales (R110 x 90\% x 12500 units) & 1237500 \\
Less: Variable costs (R34,50 x 12500 units) & 431250 \\
Contribution (R64,50 per unit) & R806 250 \\
Less: Fixed costs (R655 000 + R50 000) & \begin{tabular}{l}
705000 \\
Net profit
\end{tabular} \\
\hline
\end{tabular}

Breakeven point \(=10931\) units Margin of safety \(\%=12,6 \%\)

\section*{Alternative 3}
\begin{tabular}{lc} 
Units sold (10 \(000 \times 115 \%)\) & 11500 units \\
R \\
Sales (R110 x 11500 units) & 1265000 \\
Less: Variable costs (R34,50 x 110\% x 11500\()\) & 436425 \\
Contribution (R72,05 per unit) & 828575 \\
Less: Fixed costs (R655 000 + R40 000) & \(\underline{695000}\) \\
Net profit & \(\underline{\underline{135575}}\)
\end{tabular}

Breakeven point \(=9647\) units Margin of safety \(\%=16,1 \%\)
d. Alternative 3 would be the best option because it earns the highest net profit. Furthermore, it carries the least risk, because the breakeven units required are the lowest and its margin of safety percentage is the highest.

\section*{QUESTION 5}
a.
\begin{tabular}{rl} 
i Calculators produced and sold & \(=\frac{R 520000}{R 65}\) \\
& \(=8000\) calculators \\
ii Contribution per calculator & \(=\frac{\text { fixed cost }}{\text { breakeven units }}\) \\
& \(=\frac{R 109200}{2600}\) \\
& \(=R 42\) \\
& \(=\) sales - contribution \\
& \(=R 65-R 42\) \\
iii Variable cost per calculator & \(=R 23\) \\
& \(=R 65 \times 2600\) \\
iv Breakeven value & \(=R 169000\) \\
V Number of units to be sold & \(=\frac{\text { fixed cost }+ \text { expected profit }}{\text { contribution per unit }}\) \\
& \(=\frac{R 109200+R 75600}{R 42}\) \\
& \(=4400\) units
\end{tabular}
b. Breakeven graph

Total sales


\section*{Accounting for material, labour and overheads}

\section*{Learning outcomes}

After studying this topic, you should be able to:
- account for the acquisition of material, labour and overheads
- consider the appropriate allocation of these costs to cost objects
- calculate the economic order quantity (EOQ)
- calculate labour and overhead allocation rates

STUDY UNIT TITLE
Study unit 4 Material
Study unit 5 Labour
Study unit \(6 \quad\) Overheads


\section*{Introduction}

As explained in the previous topic, all resources and their associated costs can be classified as material, labour, or overheads (manufacturing or non-manufacturing). In this topic, we will investigate how to account for the acquisition of each of these resources and how to account for the use of them.

\section*{Material}

In this study unit
\begin{tabular}{|c|c|c|}
\hline Material recording \\
procedures
\end{tabular} Accounting entries

\section*{1 Introduction}

In this study unit, we will discuss the accounting treatment and management of material inventory. As mentioned in the previous topic, materials are one of the key inputs into the manufacturing process.

\section*{MATERIAL}

Material refers to the group of costs that includes all the physical materials converted into products during the manufacturing process, indirect material, and other consumables used by the organisation.

In practice, there is usually a time interval between the acquisition and use of materials. During this period, materials are held as inventory.

Part of the cost and management accounting functions in an organisation is to determine the value of the inventory on hand at any given time, as well as to provide information for the control and management of the inventory.

The planning and control of material inventory, including the valuation and recording of material inventory, are of considerable strategic significance to the management of an organisation. Effective material and inventory control is essential in order to minimise
cost and maximise profit, produce at maximum efficiency, manage inventories at predetermined levels and control investment in inventories. We will introduce you to some basic techniques for managing inventory. The valuation of material inventory will be covered in the next topic.

\section*{2 Material recording procedures}

The organisation's purchasing department orders raw material and other supplies required in the manufacturing process and elsewhere in the organisation. The warehouse or storeroom is responsible for taking delivery of the material purchased, which are then checked against the purchase order. The clerk signs the goods received note (GRN). You will learn more about the internal control surrounding purchases in your Auditing modules.

From the warehouse, the issuing of raw material takes place on receipt of an authorised material requisition form.

The material requisition form identifies the raw materials to be issued by the materials clerk to be used in production and indicates the department, job, or project charged with the materials used. The form serves as a record of the movement of materials, from the warehouse to the production plant or other department, and copies are sent to the cost accounting department. This process may be entirely automated and paperless.

The quantity (from the GRN) and value (from the purchase order) of each individual item of material are recorded in the materials inventory ledger or system. In addition to showing quantities and prices for each type of materials received, issued and on hand, the records normally detail the account number, description or type of material, locations, unit measurement and maximum and minimum quantities to carry. These records may be in the form of hard copies or computer records.

The accounting entries are recorded in an inventory control account, because the number of inventory types are usually too many (can be thousands) to be accounted for separately in the general ledger.
A perpetual inventory accounting system is used to record the movement in the materials inventory. The perpetual method of inventory recording enters each increase and reduction of inventory in order to maintain up-to-date materials ledger records. Under this system, a continuous record is kept of the movement of inventory. The inventory record is adjusted every time items are received or issued. The inventory record reflects the actual inventory on hand at all times.

A physical inventory count must be done from time to time, usually at the end of the financial period, to determine the correct value and quantity of each inventory item separately, and of the inventory in total. Inventory ledger records should be compared with the physical inventory count and any differences investigated.
A guiding principle in accounting for the cost of acquiring material is that all costs incurred in getting a unit of material into its current place and condition must be included. Acquisition costs, such as the supplier's invoice price and transportation costs, are the most visible costs of the purchased materials. When materials are imported, you would also add customs duty and shipping costs (including insurance whilst in transit) to the purchase price. Please refer to IAS2 (International Accounting Standards) for more detail on the accounting treatment of material.

NOTE

Remember that the organisation's own warehousing cost is treated as an overhead cost and is not treated as part of the cost of materials.

\section*{3 Accounting entries}

Accounting entries for recording purchases and issues of materials are similar to those used in financial accounting for a perpetual inventory system and are based on the double-entry principle. This principle requires that there should be a corresponding credit entry for each debit entry.

A control account for all inventory types is usually maintained in the general ledger. A separate computerised inventory system is usually kept that contains the detail for each inventory type (by inventory code). As mentioned before, the physical inventory is counted and compared at least once annually with the computerised inventory system. However, the total balance (value) of all inventories in the inventory system is reconciled monthly to the inventory control account in the general ledger.

The material inventory control account is debited as materials are received, and the accounts payable account or bank account (whichever is applicable) are credited. Both direct and indirect material, as well as other consumables, may be recorded in the material inventory control account.
\begin{tabular}{|ccc|}
\hline & Debit \\
Material inventory control account \\
Accounts payable/bank
\end{tabular}

When raw material is issued to production, direct material is recorded as work-inprocess (WIP) and indirect material as manufacturing overheads, that is, consumables used for maintenance of the factory. Consumables, like stationary issued to the sales department, will be allocated to non-manufacturing overheads.

Material and supplies (indirect material) requisitions are summarised and recorded as follows:
\begin{tabular}{|lcll|}
\hline & & Debit & Credit \\
WIP & [direct materia]] & xxx & \\
Manufacturing overheads & [indirect material] & xxx & \\
Non-manufacturing overheads & [other consumables] & xxx & \\
\multicolumn{1}{|c|}{ Material inventory control } & & & xxx \\
\hline
\end{tabular}

All returns from production or other departments to stores result in credits in the WIP account and/or the manufacturing overheads account and/or the administration overheads accounts (non-production overheads) and in debits to the material inventory control account.

Material returns are recorded as follows:
\begin{tabular}{|llll|}
\hline Material inventory control & & Debit & Credit \\
WIP & [direct material] & & xxx \\
Manufacturing overheads & [indirect materia]] & & xxx \\
Non-manufacturing overheads & [other consumables] & & xxx \\
\hline
\end{tabular}

\section*{NOTE}

You will learn more about the cost of material issued from stores to production, etc in the next topic.

\section*{Activity 4.1}

To illustrate this, the following balances were taken from the books of Indaka Ltd. for March:

Balances on 01 March:
\begin{tabular}{llc} 
& & R \\
Material inventory control & \((\mathrm{Dt})\) & 4000 \\
WIP & \((\mathrm{Dt})\) & 16000 \\
Accounts payable & \((\mathrm{Ct})\) & 30000 \\
Transactions for March: & & R \\
& & 38500 \\
Material purchased on credit & & 27500 \\
Material issued: & Direct material & 2000
\end{tabular}

The company uses a perpetual inventory system to record its inventory.

\section*{REQUIRED}

Prepare the journal entries and the T-accounts for the month.

\section*{Solution to Activity 4.1}

The journal entries for the above-mentioned transactions are:
\begin{tabular}{|ccc|}
\hline & Debit & Credit \\
1 Material inventory control & \begin{tabular}{c} 
R \\
Accounts payable
\end{tabular} & 38500
\end{tabular}

The ledger accounts for the above-mentioned transactions are:
Material inventory control
\begin{tabular}{|c|c|c|c|}
\hline & R & & R \\
\hline Balance & 4000 & WIP & 27500 \\
\hline \multirow[t]{3}{*}{Accounts payable} & 38500 & Manufacturing overheads & 2000 \\
\hline & & Balance & 13000 \\
\hline & 42500 & & 42500 \\
\hline Balance & 13000 & & \\
\hline
\end{tabular}
\begin{tabular}{lc|lc} 
& \(\mathbf{R}\) \\
& WIP \\
Balance & 16000 & & \\
Raw material & 27500 & & \\
\multicolumn{4}{c}{ Accounts payable } \\
\hline & & \(\mathbf{R}\) \\
& Balance & 30000 \\
& & Raw materials inventory & 38500
\end{tabular}

Manufacturing overheads
\begin{tabular}{cc|}
\hline & \(\mathbf{R}\) \\
Material (indirect) & 2000
\end{tabular}

\section*{4 Inventory planning and control}

In addition to determining the value of the material inventory on hand, the management accountant needs to ensure that the proper balance of material on hand is maintained. In large organisations, this is the role of the material management department (as part of supply chain management) by individuals who are specifically trained to do this, using advanced computer programs. The management accountant would then only act in an advisory role.

An inventory of sufficient size and diversity must be maintained for efficient operations, but the size should not be excessive in relation to the scheduled production needs. If too much inventory is purchased, capital is unnecessarily invested in inventory (the money could have earned interest in the bank account) and storage space is wasted. If insufficient inventory is purchased, losses may result due to production stoppages.

\section*{REASONS FOR HOLDING INVENTORY}

There are usually three reasons for holding inventory:
a. Transaction motive - this refers to holding inventory for day-to-day use in the production process or for sales, where the supplier might not be able to supply at short notice.
b. Precautionary motive - this refers to holding extra inventory when future demand is uncertain and/or the supply is unreliable.
c. Speculative motive - this refers to holding more or less inventory than usual, because a change in the supplier's price is anticipated.

Inventory planning and control deal with the question "How much of what is required when"? The two fundamental factors that must be determined here are: the quantity and the time to purchase. The quantity and timing of the order are determined by various techniques. We will introduce you to one of the techniques - the economic order quantity (EOQ) - in this study unit. You will learn about the timing of the order in the module: Application of management accounting techniques (MAC3701).

We will now discuss in more detail a number of important underlying concepts relating to the EOQ technique.

\subsection*{4.1 Inventory carrying and ordering costs}

\section*{INVENTORY CARRYING OR HOLDING COSTS}

Inventory carrying or holding costs are the relevant costs of keeping inventory on the organisation's premises until it is used and includes costs such as handling costs, warehouse or storage costs, insurance and obsolescence costs. The relevant costs are only those costs that change with a change in inventory levels. The interest incurred or forfeited as a result of the unit's purchase is usually expressed as a percentage of the unit purchase price.

If an organisation buys in large quantities, the cost of carrying the inventory will be extremely high, because of the sizeable investment. The carrying cost of inventory is dependent on the size of the average inventory on hand. This is a function of the size of the order, and assumes that the inventory is used or issued at a constant daily rate.

The average inventory would therefore be:
\(=1 / 2 \times\) order size

\section*{Activity 4.2}

X Ltd. orders inventory in quantities of 100 every 10 days. Usage occurs evenly (same quantity per day).

\section*{REQUIRED}

Calculate the average inventory on hand.

\section*{Solution to Activity 4.2}

\section*{Average usage per day}
\(=\) order size
order interval
\(=100\)
10
\(=10\) units per day
\begin{tabular}{ccll} 
Average of day & Units & \\
1 & 95 & \((100+90) / 2\) \\
2 & 85 & \((90+80) / 2\) \\
3 & 75 & etc \\
4 & 65 & \\
5 & 55 & \\
6 & 45 & \\
7 & 35 & \\
8 & 25 & \\
9 & 15 & \\
10 & \(\underline{5}\) & \\
& \(\mathbf{5 0 0}\) &
\end{tabular}

Average for 10 days \(=50\)
OR
\(1 / 2 \times\) order size \(\quad=\quad 1 / 2 \times 100\)

The effect of order size on average inventory can be depicted as follows (assuming equal constant usage per day):


FIGURE 4.1: Average inventory, effect of order size

You can see from the graphs above that the variable portion of the carrying cost would be higher when the average inventory held is higher.

\section*{ORDERING COSTS}

Ordering costs are the relevant costs of ordering inventory and may include delivery and transport costs, as well as the administrative cost of preparing and processing the order. Again, these costs only include the costs that will fluctuate if order numbers/quantities fluctuate.

If purchases are made in small quantities, the result will be frequent orders with correspondingly high ordering costs in total.

The quantity to order at a given time should therefore be determined by balancing the following factors:
- The total cost of carrying inventory
- The total cost of ordering materials
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{c} 
Inventory \\
situation
\end{tabular} & Size of orders & \begin{tabular}{c} 
Frequency of \\
orders
\end{tabular} & \begin{tabular}{c} 
Annual \\
ordering costs
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c} 
Annual \\
carrying costs
\end{tabular}} \\
\hline Over stocked & Large & Low & Low & High \\
\hline Under stocked & Small & High & High & Low \\
\hline
\end{tabular}

The total ordering and the total carrying costs move in opposite directions: when the size of the order increases, the ordering costs decrease and the carrying costs increase. The order quantity at which annual carrying and ordering costs are minimised is known as the economic order quantity (EOQ).

\subsection*{4.2 Determining EOQ}

\section*{EOQ}

The EOQ is the quantity of inventory to be ordered at one time in order to minimise annual ordering and carrying costs.

NOTE

The costs used in the EOQ model are only those costs that will vary or change depending on the level of the inventory. You will agree that costs that are unaffected by the size of the order are irrelevant and should be excluded. Examples of the latter are the storekeeper's salary.
We will look at the following methods for finding the EOQ:
- The tabular method
- The formula method

\section*{Activity 4.3}

Use the tabular method to find the EOQ.
To illustrate the tabular method, assume the following data:
- Annual demand (requirement) for inventory is 2400 units.
- Variable cost of placing an order is R25.
- Variable cost of carrying one unit for one year is R3.

\section*{REQUIRED}

Use the tabular method to find the EOQ.

\section*{Solution to Activity 4.3}

Based on this data, comparisons can be made of various order sizes (randomly selected).
\begin{tabular}{|l|r|r|r|r|r|r|r|}
\hline Order quantity & \(\mathbf{5 0}\) & \(\mathbf{5 0}\) & \(\mathbf{2 0 0}\) & \(\mathbf{3 0 0}\) & \(\mathbf{8 0 0}\) & \(\mathbf{1 2 0 0}\) & \(\mathbf{2 4 0 0}\) \\
\hline \begin{tabular}{l} 
Number of orders \\
(annual demand \(\div\) order \\
quantity)
\end{tabular} & \(\mathbf{4 8}\) & \(\mathbf{1 6}\) & 12 & 8 & 3 & 2 & 1 \\
\hline \begin{tabular}{l} 
Average inventory \\
(order quantity \(\div\) 2)
\end{tabular} & 25 & 75 & 100 & 150 & 400 & 600 & 1200 \\
\hline Relevant annual costs & R & R & R & R & R & R & R \\
\hline \begin{tabular}{l} 
Ordering costs \\
(number of orders \(\times \mathrm{R} 25)\)
\end{tabular} & 1200 & 400 & \(\mathbf{3 0 0}\) & 200 & 75 & 50 & 25 \\
\hline \begin{tabular}{l} 
Carrying costs \\
(average inventory \(\times \mathrm{R} 3\) )
\end{tabular} & 75 & 225 & \(\mathbf{3 0 0}\) & 450 & 1200 & 1800 & 3600 \\
\hline Total & 1275 & 625 & 600 & 650 & 1275 & 1850 & 3625 \\
\hline
\end{tabular}

Of the order sizes calculated, 200 is the most economical order. This means that an order must be placed every month (since \(2400 \div 200=12\) ). The average inventory level will be 100 units ( \(200 \times 50 \%\) ).

NOTE

The EOQ will always be where the ordering costs and the holding costs are equal to each other. In the table above you will notice that, at 200 units, the ordering costs and the carrying costs amount to R300.

\section*{Using the formula method to find the EOQ}

Determining the economic order by means of a table is a lengthy process and may not provide the most accurate answer. A formula is therefore the preferred method of calculating EOQ. The formula for the EOQ is the square root of a fraction, whose numerator is twice the product of the annual item demand and the cost per order, and whose denominatoris the product of the unit price and the annual carrying rate.

\section*{Key formula: EOQ}

Mathematically, the EOQ formula is expressed as follows:


Where:
\(2=\) a constant
C \(=\) variable cost of placing an order
\(\mathrm{U}=\) annual usage (demand)
\(H=\) other variable inventory holding cost (excl. interest) per annum per unit
\(\mathrm{i}=\) interest rate or required return (should be used when it is provided)
\(\mathrm{P}=\) purchase price per unit (should be used when it is provided)

The following assumptions were made in developing the EOQ model:
- The annual demand is known.
- The demand rate (daily consumption/usage) is known and uniform.
- There are no quantity discounts, that is, the purchase price per unit remains constant regardless of quantity ordered.
- Ordering costs are a known function of the number of orders (ie variable).
- Carrying costs are a known function of average inventory (ie variable).
- Stockouts are not intentionally permitted. (A stockout is when you have ordered too little and the requisition cannot be filled.) If it is a requisition from a production department, it means the production process will come to a halt due to a shortage of material inventory.

\section*{NOTE}

The impact of quantity discounts on order size will be discussed in MAC3701.

\section*{Activity 4.4}

Nkandla Ltd. consumes 1000 kg of materials per year. The variable ordering cost is R5 per order placed. The relevant annual carrying cost incurred was as follows:
\begin{tabular}{ll} 
Warehouse rent (average) & R 1 per kg (or R5 000 in total) \\
Theft and fire insurance & \(\mathrm{R} 0,20\) per kg \\
Desired return on investment & \(\mathrm{R} 0,80\) per kg
\end{tabular}

\section*{REQUIRED}
a. Calculate the EOQ.
b. Calculate the relevant annual variable ordering and carrying cost based on the EOQ.

\section*{Solution to Activity 4.4}
a. Calculate the EOQ.

We ignore the warehouse rent, because this is a fixed cost that does not vary with the size of the order.
EOQ
\[
\begin{aligned}
& =\frac{2 U C}{H} \\
& =\quad \frac{210005}{R 020 \mathrm{RO} 80} \\
& =100 \mathrm{~kg}
\end{aligned}
\]

The EOQ for this material is 100 kg or 10 orders per year.
b. Calculate annual variable cost.

Annual ordering cost
Average inventory on hand
Annual carrying cost
\(=10 \times \mathrm{R} 5=\mathrm{R} 50\)
\(=100 \times \frac{1}{2}=50\) units
\(=50 \times(\mathrm{R} 0,20+\mathrm{R} 0,80)=\mathrm{R} 50\)

\section*{Activity 4.5}

Soweto Ltd. uses the EOQ model to determine the quantity of raw material to order. You are provided with the following details about raw material:
\begin{tabular}{ll} 
Average usage per week & 6000 units \\
Number of production weeks per year & 50 \\
Purchase price per unit & R25,00 \\
Variable cost of placing an order & R40,00 \\
Variable carrying costs per unit per year (including interest) & R6,00
\end{tabular}

\section*{REQUIRED}

Calculate the following:
a. The annual usage units.
b. The EOQ in units Soweto Ltd. should order.
c. The number of orders Soweto Ltd. should order in a year.
d. The total purchase price for the year.

\section*{Solution to Activity 4.5}
a. Annual usage
\(=50\) weeks \(\times 6000\)
\(=300000\) units
b. EOQ
\(=\quad \begin{aligned} & \quad \frac{2 U C}{H} \\ & = \\ & \quad \frac{2300000}{6}\end{aligned} \quad \begin{aligned} & \text { R40 }\end{aligned}\)
\(=2000\) units
c. Annual usage
\(=300000\)
EOQ
\(=2000\)
\(=150\) orders
d. Annual usage \(x\) cost price per unit
\[
\begin{aligned}
& =\quad 300000 \text { units } \times \mathrm{R} 25 \\
& =\quad \mathrm{R} 7500000
\end{aligned}
\]

\section*{5 Summary}

In this study unit, we discussed the accounting entries for materials received and issued. We then investigated the EOQ technique as a tool for managing inventory levels.

In the next study unit, we will explore how labour costs are accounted for.

Self-assessment Activity

\section*{QUESTION 1}

A company has collected the following data for a given year:
\begin{tabular}{ll} 
EOQ (in units) & 5000 \\
Total variable ordering cost to place purchase orders for the year & R10 000 \\
Variable cost to place one order & R50 \\
Variable cost to carry one unit for one year & R4
\end{tabular}

\section*{REQUIRED}
a. What is the annual usage in units?
b. Calculate the total annual variable carrying costs based on the EOQ.
c. Assuming units are ordered in lots (order size) of 50000 units, what would the financial implication be for variable costs?
(NB: Show detailed calculations.)

\section*{QUESTION 2}

Presented below is the information about the material purchases and issues by Jobe Ltd. The company uses a perpetual inventory system.
a. Issued from direct materials R 4100
b. Issued from factory maintenance supplies R275
c. Return of direct materials to the storeroom R1400
d. Purchases of raw material on credit R17900
e. Return raw materials (bought on credit to supplier) R 5200

\section*{REQUIRED}

Prepare the necessary journal entries to record the above transactions.

\section*{QUESTION 3}

Topshopela Ltd, a regional supermarket chain, orders 320000 cans of frozen apple juice per year from a Ladysmith distributor. A can of apple juice delivered to Topshopela's central warehouse costs R0,50, including freight charges. The company borrows funds at a \(10 \%\) interest rate to finance inventories. Topshopela's purchasing agent calculates that it costs R15 (variable cost) to place an order for frozen juice and that the variable annual holding expense (insurance, electricity, and handling) is R0,10 for each can of juice.

\section*{REQUIRED}
a. Calculate the EOQ.
b. Calculate the related total annual ordering costs and carrying costs.
c. What would the financial implications be if only one order was placed for the year instead of ordering at EOQ level?

\section*{Solution to Self-assessment Activity}

\section*{QUESTION 1}

\section*{a. Annual usage in units}

Let annual usage be "a".
\begin{tabular}{ll}
\(\therefore \mathrm{EOQ}\) & \(=\) \\
\(\frac{2 \quad \mathrm{a} R 50}{\mathrm{R4}}\) \\
5000 & \(=25 a\) \\
\((5000)^{2}\) & \(=25 a\) \\
25 a & \(=25000000\) units \\
a & \(=1000000\) units
\end{tabular}

\section*{OR}
\begin{tabular}{rl} 
Total number of orders & \(=\frac{\text { annual order cost }}{\text { cost to place 1 order }}\) \\
& \(=\frac{10000}{50}\) \\
& \(=200\) \\
Annual demand & \(=\) number of orders \(\times\) EOQ \\
& \(=200 \times 5000\) \\
& \(=1000000\) units
\end{tabular}
b. Total annual variable carrying costs

Carrying costs [5000 units \(\div 2\) ] \(\times R 410000\)
R
c. If ordered in lots of \(\mathbf{5 0} \mathbf{0 0 0}\) units
\begin{tabular}{lr} 
Ordering costs would be \((1000000 \div 50000) \times\) R50 & 1000 \\
Carrying costs \([50000 \div 2] \times \mathrm{R} 4\) & 100000 \\
Total costs & 101000
\end{tabular}
\(\therefore\) The implication would be an increase of R81 000 made up as follows:

Total costs
Less: Ordering costs
Less: Carrying costs
Difference

R101 000
R 10000
R 10000
R 81000

\section*{QUESTION 2}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & R & R \\
\hline \multirow[t]{3}{*}{a.\& b.} & \multirow[t]{3}{*}{} & WIP & 4100 & \\
\hline & & Manufacturing overheads & 275 & \\
\hline & & Ct Materials inventory control & & 4375 \\
\hline \multirow[t]{2}{*}{b.} & \multirow[t]{2}{*}{Dt} & Materials inventory control & 1400 & \\
\hline & & Ct WIP & & 1400 \\
\hline \multirow[t]{2}{*}{c.} & \multirow[t]{2}{*}{Dt} & Materials inventory control & 17900 & \\
\hline & & Ct Accounts payable & & 17900 \\
\hline \multirow[t]{2}{*}{d.} & \multirow[t]{2}{*}{Dt} & Accounts payable & 5200 & \\
\hline & & Ct Materials inventory control & & 5200 \\
\hline
\end{tabular}

\section*{QUESTION 3}
a. \(\mathrm{EOQ}=\frac{2}{\mathrm{H}} \underset{\mathrm{P}}{\mathrm{C}} \mathrm{i}\)
\(=\quad \begin{array}{llll}2 & 320000 & \mathrm{R} 15 \\ \mathrm{RO} 10 & \mathrm{R} 050 & 10 \%\end{array}\)
\(=8000\) cans
b.
\begin{tabular}{|c|c|c|}
\hline & & R \\
\hline Ordering costs (320 000/8 000) x R15 & & 600 \\
\hline Carrying costs (8000/2) \(\times\) R0,15 & & 600 \\
\hline Total inventory costs & & 1200 \\
\hline \multicolumn{3}{|l|}{c.} \\
\hline & EOQ & 320000 \\
\hline & level & level \\
\hline No of orders & 40 & 1 \\
\hline Annual ordering costs: (see b.) & 600 & \\
\hline (1 x R15) & & 15 \\
\hline Annual carrying costs: (see b.) & 600 & \\
\hline (320 000/2) \(\times\) R0,15 & & 24000 \\
\hline Total costs & 1200 & 24015 \\
\hline
\end{tabular}

If the company places one order, it will incur additional variable expenses of R22 815 (R24 015 - R1 200).

75 … situdy o init 4

\section*{Labour}


\section*{1 Introduction}

In the previous study unit, we discussed the treatment of materials in the general ledger and for costing purposes. In this study unit, we will focus on labour costs.

The word "labour" is generally associated with human effort, and labour cost is indeed a major cost element in production processes that are still not completely automated. In accounting systems, labour cost is a vital cost factor that requires constant measurement, control and analysis. Labour costs represent amounts paid to any employee, be he or she the manager, supervisor, office clerk or cleaner. Total labour cost consists of the following:
- The gross amount due to an employee
- Employee benefits

An equitable wage rate or salary structure requires an analysis, description and evaluation of each job in the plant or office. Employee benefits, such as the employer's contribution to pension or provident funds and medical aid schemes, as well as vacation pay and bonuses, also form a substantial part of labour cost. In this topic, we will discuss accounting for labour-related costs in detail.

\section*{2 Labour cost control}

Labour cost control starts with an adequate production-planning schedule supported by labour-hour requirements and accompanying labour costs determined in advance of production runs. You will learn more about the link between budgeted production output and the budgeted labour requirements in MAC3701. The complete labour cost control
process begins with the product design and continues until the product is sold and delivered. The departments that should cooperate in this process include the human resources (HR) department, the production planning department, the timekeeping department, the payroll department and the cost accounting department.

\subsection*{2.1 The HR department}

Every enterprise requires labour stability. To achieve this and to ensure that the enterprise benefits from maximum labour performance, the right person needs to be appointed in each post. In large organisations, the HR department is responsible for personnel selection, while the heads of departments are responsible for the final appointment of personnel. In small enterprises, the manager appoints new personnel.

The HR department also determines the pay scales for each job grade and negotiates annual increases in benefits with the labour unions. This is usually done by the HR recruitment department and union negotiations take place in the joint bargaining forum.

The reasons why any employee decides to resign voluntarily need to be investigated to ensure that there is no underlying problem that is having a detrimental effect on the organisation's performance. Employees are discharged when they are found to be unsuitable for the posts in which they were appointed or when they are found to be guilty of misconduct. The right procedures should be followed to avoid unnecessary labour dissatisfaction and to ensure that the organisation is complying with labour legislation.

Labour turnover increases when the frequency of resignations and the appointment of new employees increase. To determine labour turnover, the number of resignations is totalled as a percentage of the labour force in a certain period. Management should always guard against a high labour turnover, because it tends to lead to greater costs being incurred in the human resources department and to poor production processes, simply because the work cannot be done without suitably qualified employees.

\subsection*{2.2 The timekeeping department}

This department is usually decentralised (individual timekeeping offices are situated close to each production or support area) and therefore proper management in this area is vital. The time officers report to a head timekeeper or supervisor. It is the duty of this department to keep accurate records, not only for each employee's time at work, but also for the type of work he/she performs. When employees are paid on an hourly basis, time recording is even more critical.

\subsection*{2.2.1 The time clock method}

This automated electronic method is normally used in organisations that employ a large labour force.

\section*{TIME CLOCK CARDS}

Time clock cards record the arrival and departure times of each employee. Each employee takes the card with his/her number from the rack and punches it in. This may also be done electronically (with or without fingerprint identification).

The timekeeper uses the time clock information to keep a record of each employee's hours spent at work. Manual recording of times on time sheets or job cards, however, is prone to error or even deliberate deception and is therefore unreliable. A time clock card or an automated time-keeping system is more accurate.

\section*{TIME SHEETS OR TICKETS}

Employees fill in time sheets or tickets for hours worked on each job (job code) or area of work (area code). The time ticket shows the specific use that has been made of the time acquired from the employee and is similar to the materials requisition card.

The costing department calculates the cost of hours worked.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{TIME SHEET:} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
EMPLOYEE NAME: \\
DATE: \\
DEPARTMENT:
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
CLOCK \\
CODE: \\
WEEK NO:
\end{tabular}} \\
\hline JOB NO & STARTING TIME & FINISHING TIME & QUANTITY & INSPECTION & HOURS & RATE \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

FIGURE 5.1: Example of a time ticket

JOB CARD

Each employee receives a job card showing the work to be done and the expected time it should take. The employee records the starting time and finishing time for each job. Breaks for tea and lunch may be noted on the card as standard times.

The accounting department is responsible for calculating the hours actually spent and the cost of these hours.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{JOB CARD} \\
\hline JOB NO: OPERATION NO: & ..................... & DEPARTMENT: \(\qquad\) DATE: \\
\hline TIME STARTED: \(\qquad\) TIME FINISHED: \(\qquad\) HOURS ON JOB \(\qquad\) &  & TIME ALLOWANCE: .................. \\
\hline DESCRIPTION OF JOB & HOURS & RATE COST: ............................. \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
EMPLOYEE NO: \(\qquad\) \\
SIGNATURE: \(\qquad\)
\end{tabular}} & CERTIFIED BY: ......................... \\
\hline
\end{tabular}

FIGURE 5.2: Example of a job card

\subsection*{2.3 The salary/payroll department}

The duties of this department can be summarised as follow:
- Calculate the gross and net wage or salary for each employee.
- Pay wages and salaries.

It is compulsory, by law, to draw up a payroll for each department. The payroll will indicate the time in employment, the amount earned and the deductions for each individual.

\subsection*{2.4 The cost accounting department}

This department is responsible for allocating the labour costs incurred by the administrative, selling and other support departments, as well as the labour costs incurred by the production cost centres or departments. Direct labour costs are allocated to the production or jobs using daily or weekly job cards.

Management accounting provides reports to all levels of management inside the organisation for the purposes of planning, control and performance evaluation. Labour costs is controlled mainly by comparing:
- What needs to be done (production units) and the time allowed for it (hours).
- What has actually been done and the actual time taken to do it.
- Anticipated or allowed labour cost and actual labour costs incurred.

\section*{3 Payroll accounting}

The accounting procedures for controlling and determining payroll costs and liabilities are straightforward, but somewhat detailed. Wages and salaries can be recorded in a payroll in several ways (eg in a manual register or by means of an accounting software package).

As mentioned before, clock cards can be used to record the labour time "purchased", while time (sheets) tickets can be used to record "performance received". The recorded data are then processed by following the two-step procedure described below:
- Calculating and preparing the payroll. The payroll is prepared from the clock cards. The final calculated payroll is recorded in the payroll journal or payroll record. This record should show gross wage, deductions and the net wage due to an employee.
- Distributing payroll costs to jobs, processes and departments. The individual time (sheets) tickets show the use made of the time purchased from each factory employee. The tickets for each employee should agree with the employee's gross wages for the week. The details on the time (sheets) tickets are used to allocate costs at predetermined rates to individual jobs, processes or support and administrative departments.

Different types of remuneration systems are used, depending on the type of work carried out.

\subsection*{3.1 Types of remuneration}

Before describing types of remuneration, we need to answer the following question: What exactly is remuneration?

\section*{REMUNERATION}

Remuneration is the amount an employer pays to an employee or on behalf of an employee (eg employer contributions to a medical aid scheme) for services rendered in terms of the employment agreement.

In practice, the following remuneration schemes are to compensate the workforce:
- A fixed monthly salary. The employee receives a fixed salary regardless of the quantity of work done or time spent on it. This form of remuneration is usually found to apply to employees in supervisory and administrative functions.
- The time-wage (clock) system. In this system, the worker is paid in accordance with the number of hours that he/she works, and not based on performance. Basic (normal) wage is determined as ordinary clock hours (ordinary hours of work) x basic (ordinary) rate per hour.
- The piece-wage system. In this system, the worker is paid for the work he/she has done and not according to the time spent on it. In other words, payment is based on the output attained instead of the duration of the work. Gross wage is determined as number of units produced \(x\) basic rate per unit.

\subsection*{3.2 Terms and acronyms used in payroll legislation}

Key LEGISLATIVE terms:
\begin{tabular}{|c|c|}
\hline Term/Acronym & Definition \\
\hline UIF & Unemployment Insurance Fund \\
\hline UI Act & Unemployment Insurance Act, 63 of 2001 \\
\hline UIC Act & Unemployment Insurance Contribution Act, 4 of 2002 \\
\hline BCOE Act & Basic Conditions of Employment Act, 75 of 1997 \\
\hline \(4^{\text {th }}\) Schedule & Fourth Schedule to the Income Tax Act \\
\hline IT Act & Income Tax Act, 58 of 1962 \\
\hline PAYE & Pay As You Earn, also known as "employees' tax" \\
\hline SARS & South African Revenue Service \\
\hline Employee & Section 1 of the UIC Act defines an employee for UI contribution purposes as any natural person who receives any remuneration or to whom remuneration accrues in respect of services rendered or to be rendered by that person, but excluding an independent contractor. \\
\hline Employer & Section 1 of the UIC Act and paragraph 1 of the 4th Schedule to the IT Act define an employer as any person who pays or is liable to pay a person an amount by way of remuneration. \\
\hline Ordinary hours of work & Section 9 of the BCOE Act provides that an employer may not require or permit an employee to work more than 45 hours in any week; and nine (9) hours in any day if the employee works for five days or fewer in a week; eight (8) hours in any day if the employee works for more than five days in a week. \\
\hline Normal wage & Normal wage is the amount of money paid or payable to an employee in respect of ordinary hours of work or, if they are shorter, the hours an employee ordinarily works in a day or week. \\
\hline Week & Section 1 of BCOE Act defines a week, in relation to an employee, as the period of seven (7) days within which the working week of that employee ordinarily falls. \\
\hline Overtime & Section 1 BCOE Act defines overtime as the time that an employee works during a day or a week in excess of ordinary hours of work. Section 10(1) (a and b) of the BCOE Act provides that an employer may not require or permit an employee to work overtime, except in accordance with an agreement, of more than ten (10) hours' overtime a week. \\
\hline Overtime wage/ earnings & Section 10(2) of the BCOE Act provides that an employer must pay at least one-and-a-half \((1,5)\) times the employee's wage for overtime worked. Furthermore, Section 16(1) of BCOE Act provides that an employer must pay an employee who works on a Sunday double the employee's wage for each hour worked, unless the employee ordinarily works on a Sunday, in which case the employer must pay the employee at one-and-a-half times the employee's wage for each hour worked. \\
\hline
\end{tabular}

\subsection*{3.3 Cost accounting terms used in payroll costs}

\section*{OVERTIME PREMIUM}

An overtime premium is an additional amount paid over and above the normal rate/ time.

The overtime premium paid to all factory employees for both direct and indirect labour is considered to be part of indirect labour costs. It therefore forms part of manufacturing overheads and is not traced directly to any job or product.

If an employee earns R100 an hour and works two hours overtime on a Saturday, the overtime wages will amount to \(\mathrm{R} 100 \times 1,5 \times 2=\mathrm{R} 300\). The overtime premium is only \(50 \% \times\) R100 \(=\) R50 per overtime hour which, in this case, will amount to \(2 \times\) R50 \(=\) R100. This cost will be charged to indirect labour costs. The R200 of the R300 overtime wages that was costed at the normal rate will be classified as direct or indirect labour, depending on the employee's job specification.

\section*{GROSS REMUNERATION}

Gross remuneration is an amount earned by the employee for total hours worked. It includes overtime wages or earnings, and other allowances that the employee is entitled to in terms of the employment contract, such as a travel allowance, or a guaranteed bonus/13th cheque. These amounts are amounts due to the employee.

\section*{TAXABLE INCOME}

Taxable income is the balance of the gross remuneration remaining after deducting any contribution by the employee concerned to any pension fund (provident funds are excluded).

NOTE

To simplify calculations in MAC2601, the contributions by employees to a pension fund will be limited to and calculated based on the normal wage/salary earnings only (ie excluding all overtime remuneration).

\section*{COST TO COMPANY (CTC)}

This represents the total amounts expended by the employer to and on behalf of the employee. It is equal to the gross remuneration plus employer contributions to retirement funds and medical aid schemes, memberships of professional bodies etcetera.

\section*{NET REMUNERATION}

Net remuneration is the amount remaining after all deductions from gross remuneration. This is also referred to as the 'take home pay'.

Various labour-related deductions are made from gross remuneration:
- Pension and provident fund contribution. Section 11(k) of the IT Act limits the deductions for tax (and PAYE) purposes in respect of pension fund contributions by employees to \(7,5 \%\) of pensionable remuneration. Contributions to a provident fund are not allowed as a deduction for tax purposes.

\section*{NOTE}

To simplify matters, in this study guide the contributions by employees to retirement funds will be limited to pension funds.
- PAYE: 4th Schedule (par 2-12) provides that the employer must deduct employees' tax, also known as PAYE. You will learn more about this later on in your taxation modules. For now, all you need to know is that PAYE must be calculated on the employee's taxable income.
- UIF: Contributions to UIF are the compulsory contributions payable in terms of the UIC Act to fund benefits available to employees in terms of this Act. In terms of Section 6 of the UIC Act, the amount of the contribution payable by an employee must be equal to \(1 \%\) of the gross remuneration paid to him/her by his/her employer. The amount of the contribution payable by an employer must be equal to \(1 \%\) of the gross remuneration paid to that employee.
- Sundry deductions: These deductions include medical aid contributions, trade union subscription fees, voluntary retirement annuity fund contributions, and the repayment of loans granted by the employer.

\section*{Activity 5.1}

The following information pertains to Mr Godfrey Sikhakhane, a factory employee at Mboma Ltd. The company's normal working hours per week are 40 hours. The basic rate is R20 per hour and the overtime rate is times one and a half the normal rate. In the week ended 31 May, Mr Sikhakhane worked 45 hours. His deductions and employer contributions for the week were as follows:

\section*{Pension fund}

Employee contribution
Employer contribution
Medical aid contribution
Employee contribution R48
Employer contribution R96
PAYE
UIF
Employee contribution
Employer contribution

7,5\% (based on normal wage)
8\% (based on normal wage)R48R96
\(18 \%\) of taxable income

1\% (based on gross wage)
1\% (based on gross wage)

\section*{REQUIRED}
a. Calculate the net wage payable to Mr Sikhakhane.
b. Calculate the total cost to company in respect of Mr Sikhakhane.

\section*{Solution to Activity 5.1}
\begin{tabular}{lr} 
a. Net wages & R \\
Normal wage - ordinary hours (R20 x 40 hours) & 800,00 \\
Overtime pay (R20 x 1,5 x 5 hours) & 150,00 \\
\hline Gross remuneration & 950,00 \\
Less: Pension fund contribution (R800 x 7,5\%) & 60,00 \\
Taxable income & 890,00 \\
Less: Other deductions & 217,70 \\
\(\quad\) PAYE (R890 x 18\%) & 160,20 \\
\(\quad\) UIF (R950 x 1\%) & 9,50 \\
\(\quad\) Medical aid & 48,00 \\
Net wage payable & 672,30 \\
& \\
b. Total cost to company & \(\mathbf{R}\) \\
Gross remuneration & 950,00 \\
Pension fund contribution (R800 x 8\%) & 64,00 \\
UIF (R950 x 1\%) & 9,50 \\
Medical aid & 96,00 \\
Total cost to company & \(\underline{\underline{119,50}}\)
\end{tabular}

\subsection*{3.4 The role of labour and technology}

Before we go on to discuss the various types of labour, we will first discuss the role of labour in a modern manufacturing environment.

In the 1960's, Joan Woodward was one of the leading British researchers who looked at the impact of technical complexity in the manufacturing process of organisations. In 1965, she studied the structure and technology of more than 100 British manufacturing organisations. She classified these organisations into three categories, based on the level of technology used:
- Small-batch production is used to manufacture a variety of custom (made-to-order) products. Each item is made slightly differently to meet customers' individual specifications. Workers' time can be traced to specific jobs. Car repairs/services or custom-built motorbikes are examples of small-batch production. You will learn more about this in the topic on job costing.
- Mass production is used to manufacture a large number of identical products in an assembly-line system. Because the product passes from stage to stage until completion, workers are highly dependent on one another. Equipment may be sophisticated, and workers often follow detailed instructions while performing simplified jobs. Workers' time can still be traced to specific production batches that were completed or handled by the workers. An example of an organisation that uses mass production is a company that manufactures electronic products, or a motorcar assembly plant. You will learn more about this in the topic on process costing.
- A continuous production process is used by organisations that manufacture products by continuously feeding raw materials, such as solids, liquids and gases, through a highly programmed or automated system. Such systems are equipment (production plant) intensive and can often be operated by a relatively small labour force. Typical examples are automated bottling plants, chemical plants and oil refineries. In these scenarios, workers' time can no longer be traced to individual products, because automated machines complete the production process and the human input consists of simply monitoring the equipment. You will learn more about this in the topic on process costing.

Even though this was a few decades ago, it is still applicable to the manufacturing environment today. Now that you have a better understanding of the different roles in the manufacturing setup, we will deal with the cost accounting classification of labour costs.

\subsection*{3.5 Direct, indirect and non-manufacturing labour cost}

\section*{DIRECT LABOUR}

The term direct labour cost is reserved for those labour costs that can be physically and conveniently traced to individual units of products.

Wages for those employees who contribute to the physical conversion of a product fall into this category (eg carpenters, bricklayers and machine operators [where the machine operator drills, say, three holes into each unit at a time]). This is usually the case in smallbatch production and mass production.

\section*{INDIRECT LABOUR}

Labour costs that cannot be physically traced to the manufacture of individual product units are known as indirect labour costs, and are treated as part of manufacturing overheads, along with indirect materials.

Indirect labour includes the labour costs of supervisors, material handlers and factory maintenance personnel and cleaners. It also includes the labour costs of machine operators in an automated process where large numbers of units are processed continuously by machines or robots. In this case, the operator simply monitors the machines and his/her time cannot be traced to individual units. This is usually the case in continuous-process production environments.

\section*{NOTE}
- The overtime premium paid to both direct and indirect labour employees is usually considered part of manufacturing overheads and is not traced to any job or product directly. However, in a job costing system, it might be booked to a specific job.
- The labour costs of people employed in non-manufacturing departments are treated as administrative overheads and selling and distribution costs. These costs are NOT allocated to products, but are treated as period costs.

\section*{Activity 5.2}

Dundee Ltd. has 61 employees of whom 52 employees work in production and 9 employees work in the service departments. The normal hourly rates paid are R24,00 for direct wages and R19,50 for indirect wages. Overtime is payable at 1,5 times the basic rate. The following additional information applies to the latest period:

Hours worked:
Normal direct 25520 hours
Normal indirect 4430 hours
Overtime direct 2120 hours
Overtime indirect 380 hours

Deductions were as follows:
Pension fund contribution
7,5\% of the normal wage
R14 529, 12
Medical aid contribution - direct
R3 455,40
UIF
Tax (PAYE) 18\% of taxable income

\section*{REQUIRED}

From this information, calculate the following:
a. Total gross wages as per the payroll (before cost allocations)
b. Taxable income of direct labour employees
c. Net wages of indirect labour employees
d. The total overtime premium
e. Total amounts allocated to direct and indirect labour costs

\section*{Solution to Activity 5.2}

\section*{a. Total gross wages}
\begin{tabular}{lr} 
Normal wage: \\
\(\quad\) Direct wage (25 520 hrs \(\times\) R24 \()\) & 612480 \\
\(\quad\) Indirect wage (4 430 hrs \(\times \mathrm{R} 19,50)\) & 86385 \\
Overtime: & \\
\(\quad\) Direct employees (2 \(120 \mathrm{hrs} \times \mathrm{R} 24 \times 1,5)\) & 76320 \\
\(\quad\) Indirect employees (380 hrs \(\times \mathrm{R} 19,50 \times 1,5)\) & \(\underline{11115}\) \\
Total gross wages & \(\underline{\underline{786300}}\)
\end{tabular}

\section*{NOTE}

The grouping above is based on the classification of the type of labourer on the payroll and when the hours were clocked. It does not represent the cost classification. The cost classification of the wages is dealt with in section e below.

\section*{b. The taxable income of the direct labour employees}
\begin{tabular}{lr} 
Normal wage & 612480 \\
Overtime & \(\underline{76320}\) \\
Gross wage & 688800 \\
Less: Pension fund (R612 \(480 \times 7,5 \%)\) & \(\underline{45936}\) \\
Taxable income of direct labour employees & \(\underline{\underline{642864}}\)
\end{tabular}
c. The net wages of the indirect labour employees

\section*{R}
\begin{tabular}{|c|c|}
\hline Normal wage & 86 385,00 \\
\hline Overtime & 11 115,00 \\
\hline Gross wage & 97 500,00 \\
\hline Less: Pension fund (R86 \(385 \times 7,5 \%\) ) & 6 478,88 \\
\hline Taxable income & 91 021,12 \\
\hline Less: Sundry deductions & 20 814,20 \\
\hline PAYE (R91 021,12 x 18\%) & 16 383,80 \\
\hline Medical aid & 3 455,40 \\
\hline UIF (R97 500x 1\%) & 975,00 \\
\hline Net wages of indirect labour employees & 70 206,92 \\
\hline
\end{tabular}
d. The total overtime premium

\section*{R}

Overtime premium:
Direct employees (2 120 hrs x R24,00 x 0,5) 25440
Indirect employees (380 hrs x R19,50 x 0,5) 3705
Total overtime premium
29145
e. The total amount allocated to direct and indirect labour costs
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{R} & R \\
\hline Overtime premium (from d.) & 29145 & OR & Direct overtime & 25440 \\
\hline Indirect wages (4 810* hrs x R19,50) normal rate & 93795 & & Indirect gross & 97500 \\
\hline Total manufacturing overheads (indirect) & 122940 & & & 122940 \\
\hline \multicolumn{5}{|l|}{* Total indirect hours worked \(=\) normal hours + overtime \(=4430+380=4810\)} \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Total direct labour cost } \\
& =\text { normal hours }+ \text { overtime } \\
& =25520+2120=27640 \times \mathrm{R} 24=\mathrm{R} 663360
\end{aligned}
\]} \\
\hline Proof & \multicolumn{4}{|c|}{R} \\
\hline Direct labour cost & & & 663360 & \\
\hline Indirect labour cost & & & 122940 & \\
\hline Total gross wages (cost to company) & & & 786300 & \\
\hline
\end{tabular}

\section*{4 Accounting entries in respect of labour remuneration}

To record the accounting entries for labour costs, two sets of detailed records are kept, one for financial accounting and the other for cost accounting. The accounting entries required are set out below.

\subsection*{4.1 Entries made in the financial accounting records}

For each payroll period, net wages due to employees and the liability for all amounts withheld from wages result in the following entry:
\begin{tabular}{|lcc|}
\hline & Debit & Credit \\
Payroll/Wages control account & xxx & \\
Pension fund contribution (employee's contribution) & & xxx \\
PAYE & & xxx \\
UIF (employee's contribution) & xxx \\
Medical aid contribution (employee's contribution) & & xxx \\
Net wages payable & & \\
\hline
\end{tabular}

The employer contributions are accounted for as follows:
\begin{tabular}{|ccc|}
\hline & Debit & Credit \\
Payroll/Wages control account & xxx & \\
Pension fund contribution & & xxx \\
UIF & & xxx \\
Medical aid contribution & & xxx \\
\hline
\end{tabular}

For each payroll period, when wages are paid to employees and deductions paid over to various institutions, the following journal entry will be made:
\begin{tabular}{|llcc|}
\hline & & Debit & Credit \\
Net wages payable & & \(x x x\) & \\
Pension fund contribution & (employer and employee) & \(x x x\) & \\
PAYE & & \(x x x\) & \\
UIF & (employer and employee) & \(x x x\) & \\
Medical aid contribution & (employer and employee) & \(x x x\) & \\
\(\quad\) Bank & & & \(x x x\) \\
\hline
\end{tabular}

\subsection*{4.2 Entries made in cost accounting records}

To charge the total labour cost to appropriate jobs, processes and departments, these entries are made in the cost accounting records:
\begin{tabular}{|ccc|}
\hline & Debit & Credit \\
WIP (direct labour hours @ labour recovery rate) & xxx & \\
\begin{tabular}{l} 
Manufacturing overheads (indirect labour hours @ labour \\
recovery rate) \\
Administrative (non-manufacturing) overheads \\
Payroll/Wages control account
\end{tabular} & xxx & \\
\hline
\end{tabular}
(The calculation of the wage or labour recovery rate is discussed later on in this study unit.)

\section*{Activity 5.3}

Using the data provided in Activity 5.1, we will now illustrate all the necessary journal entries to record the transaction that occurred in the given payroll period.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Wages control \\
Net wages payable \\
Pension fund \\
PAYE \\
UIF \\
Medical aid \\
Recording the net wage payable and liabilities of amounts withheld in the general ledger
\end{tabular} & \[
\begin{aligned}
& \text { Debit } \\
& \mathbf{R} \\
& 950,00
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Credit } \\
& \text { R } \\
& \\
& 672,30 \\
& 60,00 \\
& 160,20 \\
& 9,50 \\
& 48,00
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Wages control \\
Pension fund (R800 x 8\%) \\
UIF \\
Medical aid \\
Recording the employer's contribution in the general ledger \\
Note: The employer's contribution to third parties is not taken into account in the calculation of net wages payable, because it is not due to the employee.
\end{tabular} & 169,50 & \[
\begin{array}{r}
64,00 \\
9,50 \\
96,00
\end{array}
\] \\
\hline \begin{tabular}{l}
Wages payable \\
Pension fund (R60 + R64) \\
PAYE \\
UIF (R9,50 + R9,50) \\
Medical aid (R48 + R96) \\
Bank \\
Recording the payment of wages and withholdings in the general ledger
\end{tabular} & \[
\begin{array}{r}
\hline 672,30 \\
124,00 \\
160,20 \\
19,00 \\
144,00
\end{array}
\] & 1 119,50 \\
\hline \begin{tabular}{l}
When the labour costs are charged to a specific job, the accounting entries are as follows: \\
WIP (direct labour) (45 hours @ R20 per hr + employer contributions) \\
Manufacturing overheads (overtime premium) (5x R20 x 50\%) \\
Wages control account \\
Recording the labour costs in the cost ledger
\end{tabular} & 1069,50
50,00 & 1 119,50 \\
\hline
\end{tabular}

\section*{Activity 5.4}

Sandile is a house painter working for Isiphalaphala Ltd. You receive the following information on Sandile for the week ended 28 November:

Normal working week
Normal wage
Overtime hours
Overtime rate
Employee's deductions:
Pension
Medical aid
UIF
PAYE
Employer's contribution:
Pension
Medical aid

40 hours
R20 per hour
10 hours
Times one and a half
\(7,5 \%\) of normal wage R16
\(1 \%\) of gross wage
\(18 \%\) of taxable income
\(2 \%\) of normal wage R48

\section*{REQUIRED}
a. Calculate Sandile's net pay for this week.
b. Prepare the journal entry when charging direct labour to work-in-process.
c. Calculate the overtime premium per hour.
d. Prepare the journal entry when charging overtime to indirect manufacturing costs.
e. Determine the amount due to the pension fund and medical aid on a weekly basis.

\section*{Solution to Activity 5.4}

\section*{a. Net pay}
\begin{tabular}{|c|c|}
\hline Normal wage (40 hours x R20) & 800,00 \\
\hline Overtime (10 hours x R20 x 1,5) & 300,00 \\
\hline Gross wage & 1 100,00 \\
\hline Less: Pension (7,5\% x R800) & 60,00 \\
\hline Taxable income & 1 040,00 \\
\hline Less: Deductions: & 214,20 \\
\hline Medical aid & 16,00 \\
\hline UIF (1 \(100 \times 1 \%\) ) & 11,00 \\
\hline PAYE (18\% x R1 040) & 187,20 \\
\hline Net wage & 825,80 \\
\hline
\end{tabular}
b. Journal entry

Dr Work-in-process R1 064
Ct Payroll control account
R1 064
\([(50\) hours \(x\) R20 \()+(2 \% \times R 800)+R 48]\)

NOTE

Remember to include the overtime hours, but at normal rates. The overtime premium is charged to manufacturing overheads.
c. Overtime premium
\begin{tabular}{ll} 
Overtime rate & R30 per hour \\
Normal rate & \(\underline{\text { R20 }}\) per hour \\
Overtime premium & \(\underline{\underline{R 10}}\) per hour
\end{tabular}
d. Journal entry

Dt Manufacturing overheads R100
Ct Payroll control account (10 hours x R10) R100
e. Amounts due to pension fund and medical aid

Pension (R800 x 9,5\%*) R76
Medical aid (R16 + R48) R64
* Employee's contribution + employer's contribution \(=7,5 \%+2 \%=9,5 \%\)

\section*{5 Labour recovery rate}

Direct labour costs are assigned to the products manufactured, processes or jobs completed according to the number of hours worked per job card. These hours are then multiplied by the budgeted labour recovery rate.

\section*{BUDGETED LABOUR RECOVERY RATE}

The budgeted labour recovery rate is the expected/budgeted labour cost per hour.

In addition to the gross amount due to an employee, employee benefits such as the employer's share of the pension fund contribution and the medical aid scheme, vacation pay and bonuses form a substantial part of labour cost. Organisations that require more accurate costing of cost objects would therefore incorporate employee benefits into direct labour costs by means of the labour recovery rate. Employee benefits of direct labourers are therefore included in the labour costs charged directly to work-in-process and are NOT booked to manufacturing overheads for indirect allocation later.

It is vital to determine the expected or budgeted number of hours for a certain future period and the corresponding direct labour costs accurately. Although, in practice, a rate is calculated per department or cost centre (for all employees), in the examples used in this section, we will calculate the total budgeted annual expenditure per hour for one employee. This exercise involves the following two basic calculations:
1. Expected/Budgeted productive hours
2. Total budgeted labour costs/cost to company

\section*{Key formula: BUDGETED LABOUR RECOVERY RATE}
\(=\frac{\text { total budgeted annual labour cost step2 }}{\text { total budgeted annual productive hours step1 }}\)

The budgeted annual productive hours can further be based on either clock hours, or work hours. This will result in a budgeted clock hour rate, or a budgeted work hour rate.

\section*{CLOCK HOURS}

Clock hours are the hours that the employees clock in to be on the premises. Gross remuneration is normally based on hours clocked by the employee. Clock hours would include normal working hours as well as any overtime hours actually worked.

\section*{IDLE TIME}

Idle time for cost accounting purposes is when the employee is clocked in, but not actively working owing to tea, lunchtime or scheduled meetings. (This definition might be different from that in the BCOE Act.)

A certain amount of idle time is normal and unavoidable, owing to the stipulations of the BCOE Act and operational requirements (eg the BCOE Act prescribes when employees should have tea breaks etc). Also, of course, businesses normally schedule weekly or daily planning meetings. Machine breakdowns, materials shortages and the like also result in abnormal (avoidable) idle time. The labour costs incurred during abnormal idle time are ordinarily treated as a period cost instead of a direct labour cost.

\section*{PRODUCTIVE WORK HOURS}

Productive work hours are the hours that the employees are expected to be physically working in the production process or on jobs. These hours correspond to the job card hours.

The productive work hours are calculated by subtracting a percentage for normal idle time due to scheduled tea breaks, meetings etcetera from the clock hours.

\section*{NOTE}

Do not confuse the productive work hours above for costing purposes with the "normal working hours" of the BCOE Act.

We will illustrate this in the next activity.

\section*{Activity 5.5}

A junior engineer in a chemical company earns R80 per hour. The company operates a five-day, 40 -hour week. Each worker is entitled to 15 working days' annual leave, and a holiday bonus equal to two weeks' normal pay.

There are 12 paid public holidays annually. Idle time allowed is equal to \(5 \%\) of available clock time. The company contributes \(16 \%\) of normal wage (including vacation pay) to the pension fund and R13 312 to the medical aid fund. Apply a 52-week year.

\section*{REQUIRED}

Calculate the budgeted hourly labour recovery rate per work hour.

\section*{Solution to Activity 5.5}

The budgeted hourly labour recovery rate would be determined as follows:

\section*{Step 1: Calculate the annual productive time}
\begin{tabular}{lllr} 
& & & Hours \\
& & & \\
Number of clock hours in a year & 52 weeks \(\times 40\) hours & 2080,0 \\
Less: Vacation hours & 15 days & \(\times 8\) hours & 120,0 \\
Less: Public holidays & 12 days & \(\times 8\) hours & \(\underline{96,0}\) \\
Available clock hours & & & \\
Less: Normal idle time & \(5 \%\) & \(\times 1864\) hours & \(\underline{93,0}\) \\
Annual productive work hours & & & \(\underline{\underline{1770,8}}\)
\end{tabular}

\section*{Step 2: Calculate the total annual labour cost}
\begin{tabular}{llr} 
& \multicolumn{1}{c}{ R } \\
Normal wage \((52-3)\) & 49 weeks \(\times 40\) hours \(\times\) R80 & 156800 \\
Vacation pay & 3 weeks \(\times 40\) hours \(\times\) R80 & 9600 \\
Bonus pay & 2 weeks \(\times 40\) hours \(\times\) R80 & 6400 \\
Pension fund: employer contribution & \(16 \% \times\) R166 \(400^{(1)}\) & 26624 \\
Medical aid fund: employer contribution & 13312 \\
& & \(\underline{\text { R212 736 }}\) \\
\hline
\end{tabular}
(1) R166 \(400=\) R156 \(800+\) R9 600

Step 3: Calculate the hourly recovery rate
Labour recovery rate
\[
\begin{aligned}
& =\quad \frac{\text { total annual labour cost step2 }}{\text { total annual productive work hours step1 }} \\
& =\quad \frac{\text { R212 736 }}{1770 \text { 8hours }} \\
& =\quad \mathrm{R} 120,14 \text { per productive work hour }
\end{aligned}
\]

NOTE
The vacation days are in addition to the public holidays. Both are deducted from available hours. On the other hand, the employee is paid for these days, irrespective of when they occur during the year. They therefore form part of the annual labour cost.

\section*{Activity 5.6}

Ezakheni Ltd. is a small business that manufactures computer stands. It is situated in KwaZulu-Natal. The business wishes to determine the available
productive time to be used in the calculation of the hourly recovery rate for the forthcoming year. Nakiwe Mkhwanazi, the business's wage clerk, prepared the following wage summary for Mike Mvelase, who works at the assembly department:
\begin{tabular}{ll} 
Normal wage rate & R15 per hour \\
Holiday bonus & R4 800
\end{tabular}

\section*{Ezakheni Ltd. makes the following contributions:}
\(16 \%\) of normal wage (including vacation pay) to the pension fund \(14 \%\) of normal wage (including vacation pay) to the medical aid fund

\section*{Additional information}
- The company operates on a 45-hour week (Mon-Fri) for 52 weeks a year.
- Vacation leave is 20 workdays per employee annually. There are 10 paid public holidays per year.
- Idle time makes up \(5 \%\) of available clock time.

\section*{REQUIRED}

Calculate the following:
a. annual productive work hours
b. the normal annual wage cost
c. the total annual labour costs
d. the productive work hour labour recovery rate

\section*{Solution to Activity 5.6}

\section*{a. Annual productive hours}

\section*{Hours}

Number of clock hours in a year (45 hours x 52 weeks) 2340,0
Less: Public holidays (10 days x 9 hours) 90,0
Less: Vacation hours (20 days x 9 hours) 180,0
Total clock hours available for production 2070,0
Less: Idle time (2 \(070 \times 5 \%\) )
103,5
Annual productive hours 1966,5
b. Normal annual wage cost
\begin{tabular}{ll} 
Number of weeks in a year & 52 weeks \\
Less: Vacation weeks & \multicolumn{1}{|c|}{} \\
Actual working weeks & \(\underline{=}\) \\
Normal annual wages & \(=\) \\
& \(=R 32400\)
\end{tabular}

NOTE

Normal wage cost refers to the wage paid for ordinary hours of work. It normally excludes the paid vacation leave.
\begin{tabular}{|c|c|}
\hline c. Total annual labour costs & \\
\hline Annual normal wage & 32400 \\
\hline Vacation pay (R15 \(\times 180\) hours) & 2700 \\
\hline & 35100 \\
\hline Bonus pay & 4800 \\
\hline Pension fund contribution (R35 \(100 \times 16 \%\) ) & 5616 \\
\hline Medical aid contribution (R35 \(100 \times 14 \%\) ) & 4914 \\
\hline Total annual labour costs & 50430 \\
\hline d. Labour recovery rate & \\
\hline total annual labour costs & \\
\hline annual productive hours & \\
\hline R50 430 & \\
\hline 19665 & \\
\hline \(=\quad \mathrm{R} 25,64\) per work or productive operating hour & \\
\hline
\end{tabular}

\section*{6 Summary}

In this study unit, we have discussed the following:
- The different types of remuneration
- How to calculate gross and net pay
- How to allocate labour costs appropriately
- How to calculate a labour recovery rate

In the next study unit, we will investigate overheads and the treatment of these overheads in depth.

\section*{Bibliography}

Please refer to the bibliography at the end of study unit 6.
Self-assessment Activity

\section*{QUESTION 1}

Ekuvukeni Ltd's ledger shows the following balances (basic earnings) at the end of May:

\section*{R}
\begin{tabular}{lr} 
Direct labour & 60000 \\
Indirect labour & 20000 \\
Sales salaries & 12000 \\
Office salaries & 8000
\end{tabular}

No overtime earnings or other remuneration were payable.
The following deductions must be taken into consideration:
\begin{tabular}{ll} 
PAYE & \(18 \%\) of taxable income \\
Pension fund & \(7,5 \%\) of basic earnings \\
UIF & \begin{tabular}{l}
\(1 \%\) of gross earnings
\end{tabular} \\
Medical aid & R10 000
\end{tabular}

The company makes the following contributions on behalf of its employees and treats these as indirect costs:
\begin{tabular}{ll} 
Pension fund & \(16 \%\) of basic earnings \\
Medical aid - direct labour & R6 000 \\
Medical aid - indirect labour & R2 000 \\
Medical aid - sales staff & R1 200 \\
Medical aid - admin staff & R800 \\
UIF & \(1 \%\) of gross earnings
\end{tabular}

NOTE

Basic earnings exclude overtime and bonuses. Gross earnings include these. In this question, there is no overtime or bonuses, so the two amounts are equal.

\section*{REQUIRED}

Prepare the following:
a. the journal entry to record the payroll liability (excluding employer contribution)
b. the journal entry to distribute the payroll cost in a. above
c. the journal entry to record the employer's contributions and distribute it in one compound entry

\section*{QUESTION 2}

Wasbank Ltd. has four employees deployed in the manufacturing department on its payroll.
\begin{tabular}{|l|c|c|}
\hline NAME & WAGE PER WEEK & PAID LEAVE IN DAYS \\
\hline Khosi & R800 & 15 \\
\hline Busisiwe & R700 & 15 \\
\hline Zanele & R900 & 10 \\
\hline Sphiwe & R600 & 10 \\
\hline
\end{tabular}

The company works a 45-hour clock week (five days per week). There are 12 public holidays annually, 10 of which occur during the course of the working week throughout the year. Pension contributions and UIF contributions are calculated at \(7,5 \%\) and \(1 \%\) of the gross wage respectively, and Wasbank Ltd. contributes the same amount. PAYE is levied at the rate of \(18 \%\) of taxable income.

\section*{REQUIRED}
a. Draw up the company's payroll for one week (exclusive of employer contributions).
b. Calculate the hourly recovery rate for each of the employees (work or clock rate).
c. The following hours were recorded for week 33 for each employee:
\begin{tabular}{ll} 
Khosi & 44 hours on job cards \\
Busisiwe & 42 hours on job cards \\
Zanele & 45 hours on job cards \\
Sphiwe & 43 hours on job cards
\end{tabular}

Calculate the amount that would be debited to the WIP account.

NOTE

Since there is no allowance for normal idle time, in this case, the clock hours would be equal to the productive work hours.

Solutionto Self-assessment Activity

\section*{QUESTION 1}
a.

Dt Payroll control account
(R60 \(000+\mathrm{R} 20000+\mathrm{R} 12000+\mathrm{R} 8000) \quad\) R100 000
Ct Pension fund ( \(7,5 \% \times \mathrm{R} 100\) 000)
R 7500
PAYE [18\% x (R100 000 - R7 500)]
R16 650
R1 000
R10 000
R64 850
b.

Dt WIP (direct labour)
R60 000
Manufacturing overheads
R20 000
Non-manufacturing overheads:
Marketing salaries
R12 000
Administrative salaries R8 000
Ct Payroll control account
R100 000
c.

Dt WIP (16\% x R60 0000) + R6 000 + R600
R16 200
Manufacturing overheads
\((16 \% \times R 200000)+R 2000+R 200\)
R7 400
Marketing salaries (16\% x R12 000) + R1 \(200+\) R120 R3 240
Administrative salaries (16\% x R8 000) + R800 + R80
R2 160
Ct Pension fund ( \(16 \% \times\) R100 000)
R16 000
Medical aid (R6 \(000+\mathrm{R} 2000+\mathrm{R} 1200+\mathrm{R} 800)\)
R10 000
UIF (1\% x R100 000)
R1 000

\section*{QUESTION 2}

\section*{a. Payroll}
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ NAME } & \begin{tabular}{c} 
GROSS \\
WAGE
\end{tabular} & \begin{tabular}{c} 
7,5\% PENSION \\
CONTRIBUTION
\end{tabular} & \begin{tabular}{c} 
TAXABLE \\
INCOME
\end{tabular} & \(\mathbf{1 8 \%}\) PAYE & \begin{tabular}{c} 
1\% UIF \\
CONTRIBUTION
\end{tabular} & NET WAGE \\
\hline & \(\mathbf{R}\) & \(\mathbf{R}\) & \(\mathbf{R}\) & \(\mathbf{R}\) & \(\mathbf{R}\) & \(\mathbf{R}\) \\
\hline Khosi & 800,00 & 60,00 & 740,00 & 133,20 & 8,00 & 598,80 \\
\hline Busisiwe & 700,00 & 52,50 & 647,50 & 116,55 & 7,00 & 523,95 \\
\hline Zanele & 900,00 & 67,50 & 832,50 & 149,85 & 9,00 & 673,65 \\
\hline Sphiwe & 600,00 & 45,00 & 555,00 & 99,90 & 6,00 & 449,10 \\
\hline Total & 3000,00 & 225,00 & 2775,00 & 499,50 & 30,00 & 2245,50 \\
\hline
\end{tabular}

\section*{b. Labour recovery rate}

First, calculate productive time.
\begin{tabular}{|l|r|r|}
\cline { 2 - 3 } \multicolumn{1}{l|}{} & \begin{tabular}{c} 
Khosi and \\
Busisiwe
\end{tabular} & \begin{tabular}{c} 
Zanele and \\
Sphiwe
\end{tabular} \\
\hline \begin{tabular}{l} 
Number of weeks per year \\
x 5 days
\end{tabular} & 52 & 52 \\
\hline Number of weekdays & x 5 & \(\times 5\) \\
Less: Leave & 260 & 260 \\
\hline Total number of days & 15 & 10 \\
\hline Less: Public holidays & 245 & 250 \\
\hline Number of productive days & 10 & 10 \\
\hline x 9 hours (45-hour week/5 days per week =9 hours per & 235 & 240 \\
day) & \(\times 9\) & \(\times 9\) \\
\hline Total productive hours & 2115 & 2160 \\
\hline
\end{tabular}

NOTE

Examination technique: in order to save time, we grouped employees with the same working conditions together.

Then, calculate total annual wage.
\begin{tabular}{|l|c|c|c|c|}
\hline & Khosi & Busisiwe & Zanele & Sphiwe \\
\hline & R & R & R & R \\
\hline Gross wage per week & 800,00 & 700,00 & 900,00 & 600,00 \\
Employer contributions (1) & 68,00 & 59,50 & 76,50 & 51,00 \\
\hline Weekly labour cost & 868,00 & 759,50 & 976,50 & 651,00 \\
X 52 & X52 & X52 & X52 & X52 \\
\hline Total direct labour cost per year & 45136 & 39494 & 50778 & 33852 \\
\hline
\end{tabular}
(1) The employer contribution percentages are the same as those contributed by the employee. Use the information from the table in a.
(2) The employer's contribution to the pension fund and UIF is an expense over and above the gross wage. The employee's remuneration package or cost to company therefore forms the total direct labour cost.

Hourly work recovery rate
\begin{tabular}{lllll} 
Khosi: & R45 136 & \(\div 2115\) & \(=\) & R21,34 per hour \\
Busisiwe: & R39 494 & \(\div 2115\) & \(=\) & R18,67 per hour \\
Zanele: & R50 778 & \(\div 2160\) & \(=\) & R23,51 per hour \\
Sphiwe: & R33 852 & \(\div 2160\) & \(=\) & R15,67 per hour
\end{tabular}

\section*{c. Amount debited to WIP account}

Khosi: \(\quad\) R21,34 \(\times 44\) hours
\[
\begin{array}{lr}
= & \mathrm{R} 938,96 \\
= & \mathrm{R} 784,14 \\
= & \mathrm{R} 1057,95 \\
= & \mathrm{R} 673,81 \\
= & \mathrm{R} 315186
\end{array}
\]

\section*{Overheads}

\section*{In this study unit}


\section*{1 Introduction}

In the previous study unit, we discussed how labour costs are accounted for. In this study unit, we will investigate how overheads are accounted for.

As you know, one of the objectives of cost and management accounting is to provide information to management about the costs of the products manufactured, the services rendered, and the processes used in the manufacture of products. This information is needed for decision-making. The sum of the three cost elements - direct material, direct labour and manufacturing overheads makes up the cost of the product or service. Other cost objects (ie geographical areas) can even include non-manufacturing expenses such as marketing expenses. However, for this study unit we will focus on products and services as cost objectives.
While direct material and labour can easily be traced to the product or service, manufacturing overheads cannot be traced directly to individual products or services, because they include indirect costs. We will be examining the systems or methods identified to address this problem.

\section*{2 Why do manufacturing overheads present a problem?}

Earlier, in topic 1, we explained that all manufacturing costs that cannot easily be traced directly to an individual product unit are called indirect costs. These can be grouped together as manufacturing overheads, and consist of indirect materials, indirect labour costs and other indirect expenses. Indirect expenses or costs are items such as electricity, depreciation on production equipment, and insurance for production assets.

The factor common to these costs, however, is that there is no direct link between their incurrence and units of output produced. This causes cost accountants endless problems in assigning these costs to output to establish a cost per unit. We will demonstrate the problem with a simple example, using one product only.

The following relates to the total actual production costs for a table manufacturer for the latest financial year:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & Tota \\
\hline Direct raw material (wood) & 200 & 200 & 100 & 300 & 200 & 100 & 0 & 100 & 200 & 300 & 200 & 100 & 2000 \\
\hline Direct labour & 240 & 240 & 120 & 360 & 240 & 120 & 0 & 120 & 240 & 360 & 240 & 120 & 2400 \\
\hline Overheads & 1320 & 1345 & 1320 & 1360 & 1330 & 1310 & 1305 & 1285 & 1315 & 1390 & 1365 & 1355 & 16000 \\
\hline
\end{tabular}

Monthly product
costs (R) \(\quad 1760178515402020 \quad 1770153013051505176020501805157020400\)
Total items produced

Resources consumed:
Wood (m \({ }^{3}\) )
Hours
\begin{tabular}{|l||r||r|r||r|r||r|r||r|r|r|r|r|}
\hline 20 & 20 & 10 & 30 & 20 & 10 & 0 & 10 & 20 & 30 & 20 & 10 & 200 \\
\hline 16 & 16 & 8 & 24 & 16 & 8 & 0 & 8 & 16 & 24 & 16 & 8 & 160 \\
\hline
\end{tabular}
- Each table requires \(10 \mathrm{~m}^{3}\) of wood and eight labour hours to complete.
- The overheads consist of a production supervisor's salary of R750 per month and other monthly indirect raw materials (glue, nails etc) and indirect costs (eg electricity).

Answer the following questions:
a. Select any two months and then determine the unit cost per table in terms of the raw materials and labour costs. Repeat the exercise based on the total figures for the year. What did you notice about each of your answers?
b. Select any two months and then determine the unit cost per table in terms of the overhead costs. Repeat the exercise based on the total figures for the year. What did you notice about each of your answers?

Hopefully, you obtained any of the following per unit answers:
a. Month

Direct raw material (wood)
Direct labour
\begin{tabular}{|r||r||r|r|r|r|r|r|r||r|r|r|r|r|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & Total \\
\hline\(R 100\) & \(R 100\) \\
\hline\(R 120\) & \(R 120\) \\
\hline
\end{tabular}

NOTE
Did you notice that all the unit costs are the same for every unit produced in any period? Why do you think that is?
b. Month

Overheads
R
\begin{tabular}{|r|r|r|r|r|r|r|r|r|r|r|r|r|r|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & Total \\
\hline 660 & 672,50 & 1320 & 453,33 & 665 & 1310 & 0 & 1285 & 657,50 & 463,33 & 682,50 & 1570 & 800 \\
\hline
\end{tabular}

NOTE

Did you notice that in no month are the unit costs the same? Why do you think that is?

From these observations, we can state the following:
Referring back to the cost concepts covered in topic 1, we can conclude that, in a., we are dealing with variable costs because the cost per unit is constant, but in total it varies with production. In b., we are dealing with a mixed cost, that is, one that contains both fixed and variable costs, because the cost per unit changes from period to period.

In answering the question "What does it cost to produce 1 table?", we can clearly conclude that direct costs can be traced to each unit produced. (Each unit requires \(10 \mathrm{~m}^{3}\) wood at R10 per \(\mathrm{m}^{3}\), and eight labour hours at R15 per hour.) In terms of its direct costs, each table costs R220.

However, in terms of its overheads, the price per unit varied from R0 to R1 570 per unit, with an average price of R800 per unit. Does one take the cost for month 6 of R1 310 or, worse still, the cost for month 7 of R0 when determining the overhead cost of a table? Or does the average price of R800 make more sense?

The range of prices for each respective month fluctuates drastically and leaves one in no position to state the cost of overheads per unit. The average price of R800, however, is meaningful and seems representative of the overhead cost per unit.

What is perhaps less clear is that this average actual overhead cost of R800 per unit only becomes known at the end of the year. Assigning each unit the same overhead cost of R800 (ie avoiding fluctuations) can only be achieved by obtaining the total overhead cost for the year and dividing this by the total output for the year.

This, however, presents another problem. This data is only available at the end of each year, which is too late for the purposes of costing production and making this information available for sales. This information is already required during month 1, because the production output needs to be sold and costs determined for pricing and other decisions.

This example thus illustrates the two main issues regarding overheads:
a. overhead cost per unit fluctuates greatly as output fluctuates; and
b. data required to eliminate these fluctuations are only available after the event (too late).

How can these issues be resolved?
The most suitable solution to resolve the dual problem identified above is to apply a budgeted allocation rate (based on the total budgeted overheads and the total budgeted production output), as briefly explained as follows, using the data from the example above:

Assume the following budgeted data was available:
At the start of the year, the enterprise budgeted to produce, say, 22 tables.
At the start of the year, the enterprise budgeted to incur manufacturing overheads of, say, R16 500.

The budgeted overhead allocation rate per table would therefore amount to R750. (R16 \(000 \div 22\) )

Budgeting the data up front ensures that a constant amount of overheads are included in
the costing for each table. Although it will not be accurate (in this case it was R50 out on the eventual actual data), the benefits from using this method to cost a product outweighs any objections. This elementary concept will be further explained in the rest of this study unit.

\section*{3 Budgeted, applied and actual manufacturing overheads}

We have acknowledged that it is difficult to assign a representative manufacturing overhead cost to products or services. Several products, product lines or departments share these costs. This causes a problem of determining how much should be assigned to each individual product. However, the objective remains that the unit cost for overheads should be as accurate as possible.

As explained in the introductory example, the only way to assign overhead cost to products is to use a budgeted overhead rate based on the following:
- budgeted estimates; and
- these budgeted estimates are established before the accounting period begins.

We have identified that waiting until the accounting period is over in order to determine actual overhead costs could be too late. Furthermore, if we base the overhead rates on actual costs and activity, the unit costs would fluctuate substantially for every month, simply because of random fluctuations in activity. You will see later the impact of activity level on the overhead allocation rate. It is therefore better to use a predetermined budgeted allocation rate.

NOTE

The actual cost of overheads is therefore not used to cost the product or service. Budgeted overheads are absorbed into the costs of each product as the period progresses, using the budgeted predetermined overhead allocation or recovery rate.

\subsection*{3.1 Applied manufacturing overheads}

The use of a predetermined, budgeted overhead allocation rate to cost a product introduces a new term, namely "applied overheads". A clear distinction therefore has to be made between the following:

ACTUAL OVERHEADS: These are the actual overhead costs incurred during a period.
BUDGETED OVERHEADS: These are overhead costs estimated before, or at the start of a financial year.
APPLIED OVERHEADS: These are the total overheads included/allocated to the cost of the products based on the predetermined, budgeted allocation or recovery rate. For each actual unit produced, a budgeted rate will be assigned, thus accounting for the total applied overheads.

\section*{OVERHEAD RECOVERY RATE:}

The formula for calculating a predetermined, budgeted overhead recovery rate is:
Budgeted manufacturing overhead costs numerator

\section*{Estimated production denominator}

The predetermined overhead recovery rate is also referred to as the overhead absorption rate, overhead applied rate, or the overhead allocation rate.

NOTE

Only actual and applied overheads are recorded in the financial records (general ledger) of an organisation. The budgeted data is only there for control purposes and usually only appears in the management reports or the costing system database for decision-making purposes.

We will start the discussion on allocation rates, using one overall rate and assuming one product only. later on, we will add more rates and products.

\section*{Activity 6.1}

The following data relates to a manufacturer of a single product:
Budgeted (estimated) overhead costs for the year R200 000
Budgeted production output 250 units

At the end of the financial year, the company actually produced 242 units at an actual overhead cost of R196 020

\section*{REQUIRED}

Calculate the applied manufacturing overhead costs for the year.

\section*{Solution to Activity 6.1}

Budgeted allocation rate per unit R200 000 / 250 units \(=R 800\)
Applied manufacturing overheads
\(=242\) units \(\times\) R800 \(=\mathrm{R} 193600\)

This amount of R193 600 represents the amount to be included in the total production cost of the product.

\subsection*{3.2 Under or over applied manufacturing overheads}

Since the budgeted predetermined rate is based on estimated production activities and manufacturing overheads, applied overheads will usually not agree with the actual overheads incurred. The costs actually incurred during the year is recorded in the records of an organisation as and when it is incurred. The amount applied is the amount allocated periodically to the cost of the products manufactured in the period. The
difference between the actual and applied amounts is known as either an under or over application (recovery), based on whether the applied overheads were either more or less than the actual overheads.

\section*{UNDER OR OVER APPLIED OVERHEADS}

If the applied overheads are less than the actual overheads, this is known as an under application. Over applied overheads occur when applied overheads are greater than the actual overheads.

The following are possible causes for under- or over applied overheads:
- The budgeted overhead application rates were incorrectly predetermined.
- The total actual overheads are more or less than what was budgeted for.
- The activity in the basis used for allocation (the denominator) is higher or lower than estimated (we will discuss the impact of this denominator later on in more depth).

\section*{Activity 6.2}

Refer to the data for Activity 6.1.

\section*{REQUIRED}

Calculate the under or over applied manufacturing overheads where the budgeted rate is R 800 per unit.

\section*{Solution to Activity 6.2}

Applied manufacturing overheads amount to (R800 x 242) R193 600
Actual manufacturing overheads were Hence there is an under application of R196 020

\section*{4 Accounting entries in respect of manufacturing overheads}

Actual overhead costs incurred are debited to the manufacturing overheads account (and not to the WIP account). The following will, however, occur in the WIP account every time a unit is produced:

The budgeted overhead rate will be charged to the WIP account. Bear in mind that the direct costs (raw materials and labour) will also accumulate in this account in direct proportion to output as production increases. This account thus accumulates costs as units are produced, which in turn ensures that a constant cost of production output is determined.

The credit entry for the budgeted overhead rate charged to the WIP account (mentioned above) is entered in the manufacturing overheads account. This will result in the manufacturing overhead account reflecting a balance equal to the under or over application.

The data provided in Activity 6.1 will thus be recorded as follows:
Manufacturing overheads
\begin{tabular}{ll||ll}
\hline \begin{tabular}{l} 
Bank / Accounts payable \\
(actual)
\end{tabular} & R196 020 & WIP (applied overheads) & R193 600 \\
\hline
\end{tabular}
\begin{tabular}{lc||} 
& \multicolumn{2}{c}{ WIP } \\
\hline \begin{tabular}{l} 
Material and labour (actual) \\
Manufacturing overheads \\
(applied)
\end{tabular} & XX XXX \\
& 193600
\end{tabular}

This also shows that production cost amounted to RXX XXX plus only R193 600 of the actual overheads. Thus R2 420 overheads were under applied in the cost of production. This is the balance of the manufacturing overheads account.

The under- or over applied overheads balance must be cleared at the end of the period. This balance is disposed of by debiting cost of sales by the amount under applied during the year.
\begin{tabular}{|ccc|}
\hline & Debit & Credit \\
R & \begin{tabular}{c} 
R \\
Cost sales \\
[under applied overheads] \\
Manufacturing overheads
\end{tabular} & 2420
\end{tabular}

When overheads are over applied (the actual overheads are less than the applied overheads), the cost of sales is credited with the amount over applied during the year.

NOTE

The under or over applied overheads is a period cost, that is, it is written off or credited directly to profit in the period and it is not included in the valuation of inventory or the calculation of production cost.

The objective of management would be to minimise the under/over applied overheads balance year on year. The implication of a minimal balance in this account would be that, although a budgeted rate was used to cost production, it virtually represents actual overheads and the following would therefore apply:
- The overheads cost included in each unit are really representative of actual cost.
- The unit cost of each output is normalised, that is, it does not fluctuate.
- Together with the direct costs (raw material and labour), the cost per unit output is known and available for pricing and other decisions.

This largely eliminates the problems of costing production output as identified at the start of this study unit. However, it depends on effective budgeting and control procedures.

At this point, it must be emphasised that the focus has been on an enterprise that only produces a single product. In practice, of course, this is a highly unlikely scenario. In the remainder of this study unit we will therefore focus on how we will need to adapt the above concepts when an organisation produces a range of different products.

5 Multiple range of products: expanding on the overhead concepts to date

The example provided at the start of this study unit has been slightly adjusted to include the production of chairs also. The data for the year is thus as follows (assume now that this represents the budgeted data for the year):

Month
Direct raw material (wood)
Direct labour
Overheads
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & Total \\
\hline 440 & 520 & 460 & 540 & 440 & 380 & 240 & 260 & 280 & 620 & 600 & 420 & 5200 \\
\hline 420 & 480 & 390 & 540 & 420 & 330 & 180 & 240 & 300 & 600 & 540 & 360 & 4800 \\
\hline 1320 & 1345 & 1320 & 1360 & 1330 & 1310 & 1305 & 1285 & 1315 & 1390 & 1365 & 1355 & 16000 \\
\hline
\end{tabular}

Units (products)
produced
Chairs
Tables Total items (products) produced
\begin{tabular}{|l|l|l|l|l||r|r||r|r|r|r|r|r|r|}
\hline 6 & 8 & 9 & 6 & 6 & 7 & 6 & 4 & 2 & 8 & 10 & 8 & 80 \\
\hline 2 & 2 & 1 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 2 & 1 & 20 \\
\hline
\end{tabular}

\section*{Resources} consumed:
Wood ( \(\mathrm{m}^{3}\) )
Hours
\begin{tabular}{|l||l||r|r||r|r|r|r|r|r|r|r|r|r|}
\hline 44 & 52 & 46 & 54 & 44 & 38 & 24 & 26 & 28 & 62 & 60 & 42 & 520 \\
\hline 28 & 32 & 26 & 36 & 28 & 22 & 12 & 16 & 20 & 40 & 36 & 24 & 320 \\
\hline
\end{tabular}
- Each table requires \(10 \mathrm{~m}^{3}\) of wood and eight labour hours to complete.
- Each chair requires \(4 \mathrm{~m}^{3}\) of wood and two labour hours to complete.
- The overheads consist of a production supervisor's salary of R750 per month and other monthly indirect raw materials (glue, nails etc) as well as indirect costs (eg electricity).

If one recalls the original example, where only tables were manufactured, the actual overheads of R800 per unit were determined as follows:

Overheads per table R16 000 / 20 units \(=\) R800
If you apply this approach to the new scenario with two products:
Overheads per table and chair \(\quad \mathrm{R} 16000 /(20+80)\) units \(=R 160\)
This indicates that each table and chair costs R160 in terms of overheads. We added the tables and chairs together to obtain the 100 units above (total items produced). It is not surprising to note that each unit of output in the scenario above (whether a table or a chair), is assigned with exactly the same overhead cost!

The fundamental error in this approach is that tables and chairs are two different kinds of products and the units \((20+80)\) cannot be added together in the allocation of overheads.

In fact, when determining a predetermined, budgeted overhead rate in instances where more than one product is produced, this dilemma is resolved as follows when dealing with the total budgeted overheads for the year:
- A suitable common allocation basis (denominator) is adopted to apportion the total budgeted overheads between the range of products types, that is, in our example, R16 000 between the tables and chairs. The selection of a suitable allocation basis is dealt with below.
- The total applied budgeted overheads for each product type are then apportioned to each unit, based on the number of units budgeted for that product type.

This culminates in an overhead recovery rate for each product type.

\subsection*{5.1 What types of allocation bases (denominators) can be used?}

Some of the appropriate bases that can be used to calculate the predetermined overhead rate include the following:

Non-financial bases
- direct labour hours (appropriate in a labour-intensive environment)
- raw material quantities (appropriate where the raw material volumes drive the overhead cost)
- machine hours (appropriate in machine-intensive or automated environments)
- physical units of output (only applicable where the range of units is very similar)

Financial bases (total overhead costs expressed as a percentage of ...):
- total direct labour cost
- total direct material cost
- total prime costs

The overriding consideration in determining this basis is to identify, as accurately as possible, the cause-and-effect relationship between the overhead costs and the allocation basis.

Using the data in our example provided above for the tables and chairs manufacturer, the first two non-financial bases, for example, will result in the following:

Based on direct labour hours:
Budgeted allocation rate
\(=\) R16 \(000 /[(20 \times 8 \mathrm{hrs})+(80 \times 2 \mathrm{hrs})=320\) hours \(]=\) R50 per direct labour hour
\begin{tabular}{lrr} 
Thus, the total overheads will be apportioned as follows: & Tables & Chairs \\
Based on R50 per hour \((160 ; 160)\) & R8 000 & R8 000 \\
Budgeted overheads per unit \((\div 20 ; \div 80)\) & R400 & R100
\end{tabular}

Based on direct raw materials:
Budgeted allocation rate
\(=\) R16 \(000 /\left[\left(20 \times 10 \mathrm{~m}^{3}\right)+\left(80 \times 4 \mathrm{~m}^{3}\right)=520 \mathrm{~m}^{3}\right]=\mathrm{R} 30,77\) per \(\mathrm{m}^{3}\)

Thus, the total overheads will apportioned as follows:
Based on R30,77 per m \({ }^{3}\) ( \(200 \mathrm{~m}^{3} ; 320 \mathrm{~m}^{3}\) )
Budgeted overheads per unit \((\div 20 ; \div 80)\)

\section*{Activity 6.3}

The budgeted manufacturing overhead costs for Cost Centre 66 for the forthcoming period is R200 000 at an activity level of 100000 direct labour hours. The direct labour cost is budgeted at R400 000. What is the organisation's predetermined overhead allocation rate for each of these allocation bases?

\section*{Solution to Activity 6.3}

Predetermined overhead rate
\[
\begin{aligned}
& =\frac{\text { budgeted manufacturing overheads }}{\text { budgeted direct labour hours }} \\
& =\frac{\mathrm{R} 200000}{100000 \text { hours }} \\
& =\mathrm{R} 2,00 \text { per direct labour hour }
\end{aligned}
\]

\subsection*{5.2 What is an appropriate activity (capacity) level to use for the selected basis (denominator)?}

Once you have selected an appropriate allocation basis (eg machine hours), you have to determine what you are going to use as the estimated activity level for that basis. You can see from the mathematical formula above that the level of the denominator will have a big impact on the size of the allocation rate. This, in turn, influences the cost of the product. It is therefore of the utmost importance that management carefully consider the level at which to set the allocation basis.

Furthermore, and in addition to any of the bases selected, an organisation has a range of four capacity levels to choose from:
- Theoretical maximum capacity is the volume of activity that could be attained under ideal operating conditions (ie with no allowance for inefficiency).
- Practical capacity is the volume of activity that could be attained taking into account all unavoidable interruptions (eg stoppages for maintenance).
- Normal average long-run capacity is the average level of operating activity that is sufficient to meet the demand for the organisation's product for several years. It is normally used when sales fluctuate from one period to another.
- Budgeted capacity is the required activity needed for the next budget period.

\section*{NOTE}

In terms of International Accounting Standards - IAS2 - the correct capacity level to use for the allocation of fixed manufacturing overhead is the normal average long-run capacity. This prevents undue fluctuation in the cost of the product from year to year.

In the next activity, you will see the impact of the activity level on the product cost.

\section*{Activity 6.4}

Bondela Manufacturers is a manufacturer of bags. The fixed cost for operating machine A amounts to R35 000 per annum (fixed for the next three years). The remaining useful life of the machine is three years. The following information is available:
- The maximum annual operating hours for the machine are 50 weeks \(\times 8\) hours x 5 days per week.
- Under normal situations, Bondela can manufacture 10 bags per operating hour.
- Bondela only manufactures bags to order.
- It is estimated that Bondela will manufacture and sell 14000 bags in the next year and 15000 and 16000 bags will be manufactured in the following years.
- Bondela has calculated that \(12,5 \%\) of capacity will be allocated for unavoidable interruptions (eg planned maintenance of the machine).

Bondela Manufacturers allocates fixed overhead manufacturing cost based on machine hours.

\section*{REQUIRED}
a. Calculate the overhead application rate if the following activity levels are used as the denominator:
i. the theoretical maximum capacity
ii. the practical capacity
iii. the normal, average long-run capacity
iv. the budgeted activity (limit your calculation to year 1 only)
b. Calculate the fixed overhead cost per unit for each of the denominator levels in a.

\section*{Solution to Activity 6.4}

\section*{a. and b.}
i. The theoretical maximum capacity as denominator:

Maximum hours \(=50\) weeks \(\times 8\) hours \(\times 5\) days \(=2000\) hours
Overhead rate \(=\) R35 000/2 000 hours \(=\) R17,50 per hour
Per unit \(=\mathrm{R} 17,50 \div 10=\mathrm{R} 1,75\)
ii. The practical capacity as denominator:

Practical available hours \(=(50\) weeks \(\times 8\) hours \(\times 5\) days \() \times 87,5 \%=\) 1750 hours
Overhead rate \(=\) R35 000/1 750 hours \(=\) R20,00 per hour Per unit \(\quad=R 20 \div 10=R 2,00\)
iii. The normal, average long-run capacity as denominator:
\[
\begin{aligned}
\text { Long-run hours required }= & (14000+15000+16000) \text { bags } / 10 \text { bags per } \\
& \text { hour } \\
= & 4500 \text { hours }
\end{aligned}
\]

Average hours required per annum \(=4500\) hours/3 years \(=1500\) hours
Overhead rate \(=\) R35 000/1 500 hours \(=\) R23,33 per hour
Per unit \(\quad=R 23,33 \div 10=R 2,33\)
iv. The budgeted activity as denominator (for year 1 only):

Budgeted hours required \(=14000\) bags/10 bags per hour \(=1400\) hours
Overhead rate \(=\) R35 000/1 400 hours \(=\) R25,00 per hour Per unit \(\quad=R 25 \div 10=R 2,50\)

\section*{NOTE}

Notice the difference between ii. and iii./iv. Although the machine is physically capable of delivering 1750 hours (produce 17500 bags) in ii., the allocation basis level in iii/iv. is determined by the market demand for the product, that is, the estimate of how many bags will be sold.

The average long-run demand will usually be based on the sales that will be generated over the life of the plant or machine (ie how many years/months it can be operated before it will have to be disposed/dismantled and replaced).

\section*{NOTE}

The choice of the level at which to set the allocation basis is one of the most important decisions that the cost accountant makes. Overheads constitute a major portion of most organisations' cost structure. The overhead recovery rate, therefore, has a significant impact on product cost.

If the question does not indicate any other capacity level, you may use the budgeted activity level for the period under review

If the question does not indicate any other capacity level, you may use the budgeted activity level for the period under review.

The following activities will reinforce some of the principles covered thus far:
Activity 6.5 Under- or over-applied manufacturing overheads
Activity 6.6 Under- or over-applied manufacturing overheads
Activity 6.7 Under- or over-applied manufacturing overheads (using different recovery bases)
Activity 6.8 Accounting entries for manufacturing overheads
Activity 6.9 General short questions

\section*{Activity 6.5}

Refer back to Activity 6.3. Assume that overhead costs are allocated based on direct labour hours and that actual direct labour hours worked for the period were 95 000. Actual manufacturing overheads amounted to R191 500.

\section*{REQUIRED}

Determine the under or over recovery of manufacturing overhead costs for the period.

\section*{Solution to Activity 6.5}

Applied manufacturing overheads \(=95000\) hours \(\times\) R2 per direct labour hour

Actual manufacturing overheads \(=\) R191 500
Under applied \(=\) R1 500

\section*{Activity 6.6}

The budgeted and actual data for Cost Centre 70 for February were as follows:
\begin{tabular}{lrr} 
& Budgeted & Actual \\
Manufacturing overheads & R6 000 & R6 312 \\
Direct labour hours & 800 & 792 \\
Direct labour cost & R1 600 & R1 705 \\
Direct materials & R3 000 & R2 947 \\
Machine hours & 1200 & 1172 \\
Units produced & 45 & 46
\end{tabular}

The appropriate predetermined overhead rate is based on budgeted direct labour hours. You can assume that February represents an average month.

\section*{REQUIRED}
a. Calculate the under or over applied manufacturing overheads.
b. Prepare the T-account for the manufacturing overhead account.
c. Make a journal entry for the under or over recovery for February.

\section*{Solution to Activity 6.6}
a. The predetermined overhead rate is \(R 7,50\) per hour ( \(\mathrm{R} 6000 \div 800\) hours).

Applied manufacturing overheads amount to (792 hours x R7,50) R5 940
Actual manufacturing overheads were \(\quad\) R6 312
Therefore there is an under application of (R6 312 - R5 940) R372
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Manufacturing overheads} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Bank/accounts payable (actual)}} & \multirow[t]{2}{*}{6312} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
WIP (applied overheads) \\
Cost of sales
\end{tabular}}} & 5940 \\
\hline & & & & & 372 \\
\hline & & 6312 & & & 6312 \\
\hline \multicolumn{6}{|c|}{WIP} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Material and labour (actual) Manufacturing overheads (applied)}} & 4652 & & & \\
\hline & & 5940 & & & \\
\hline \multirow[t]{2}{*}{c. Dt} & \multicolumn{3}{|l|}{Cost of sales (under recovery)} & R372 & \\
\hline & Ct Ma & \multicolumn{2}{|l|}{Manufacturing overheads} & & R372 \\
\hline
\end{tabular}

\section*{Activity 6.7}

The budgeted cost information below is obtained from the budget of Guduza Herbs, a manufacturing pharmaceutical, for the year ended 31 March 20XX.
\begin{tabular}{lr} 
& R \\
Direct material & 100000 \\
Direct labour & \(\underline{150000}\) \\
Prime cost & \(\underline{250000}\) \\
Manufacturing overheads & \(\underline{\underline{400000}}\) \\
Total costs & \\
& \\
Additional information: & 75000 \\
Budgeted direct labour hours & 50000 \\
Budgeted machine hours & 50000 \\
Budgeted production (units) & 49750 \\
Actual units produced & 49500 \\
Actual machine hours & 74300 \\
Actual direct labour hours & \(R 142500\)
\end{tabular}

\section*{REQUIRED}
a. Calculate six possible predetermined overhead recovery rates.
b. Determine the applied manufacturing overhead costs based on direct labour hours and machine hours.
c. Comment on the budgeted, applied (based on direct labour hours) and actual manufacturing overhead costs, giving reasons why they differ.

\section*{Solution to Activity 6.7}
a. Predetermined overhead rates


\section*{b. Applied manufacturing overheads}

Applied manufacturing overheads based on direct labour hours:
\(=R 2 \times 74300\) hours
\(=\) R148 600
Applied manufacturing overheads based on machine hours:
\(=R 3 \times 49500\) hours
= R148 500
c. Budgeted manufacturing overheads of R150 000 were merely estimates made before the start of the financial year.

Applied manufacturing overheads of R148 600, based on direct labour hours, were allocated during the year by multiplying the actual direct labour hours by the predetermined overhead rate (calculated on the basis of the budgeted overheads). This is very close to the budgeted overhead cost, because the actual direct labour hours did not differ substantially from the hours budgeted.

Actual overheads of R142 500 were the actual amounts spent, but only known at the end of the period. The difference between actual overheads and applied overheads indicates an over application (recovery) of R6 100 (R142 500 - R148 600), which could be the result of incorrectly estimating the budgeted overhead costs and activity levels.
The over recovery should be written off against cost of sales.

\section*{Activity 6.8}

The following information was obtained from the accounting records of Jobe Ltd. as at 31 December:
\begin{tabular}{|lc|}
\hline & R \\
Actual manufacturing overheads & 250000 \\
Applied manufacturing overheads & 240000 \\
Goods completed & 770000 \\
Direct material & 360000 \\
Direct labour & 170000 \\
\hline
\end{tabular}

\section*{REQUIRED}

Prepare the T-accounts for manufacturing overheads, WIP and cost of sales for the period, including the closing-off entries.

\section*{Solution to Activity 6.8}

The relevant ledger accounts are:
Manufacturing overheads
\begin{tabular}{|c|c|c|c|}
\hline & R & & R \\
\hline \multirow[t]{3}{*}{Bank/accounts payable} & 250000 & \multirow[t]{3}{*}{WIP (applied overheads) Cost of sales (under applied overheads)} & 240000 \\
\hline & & & 10000 \\
\hline & 250000 & & 250000 \\
\hline
\end{tabular}
\begin{tabular}{lc||r}
\multicolumn{2}{c}{ WIP } & \\
\hline & \(\mathbf{R}\) & \\
Material & 360000 & Finished goods \\
Labour & 170000 & \\
Manufacturing overheads & 240000 & 770000 \\
& \(\underline{770000}\) & \\
\hline
\end{tabular}
\begin{tabular}{lc||c}
\hline & \(\mathbf{R}\) \\
\begin{tabular}{l} 
Manufacturing overheads \\
(under applied)
\end{tabular} & 10000 & \(\mathbf{R}\) \\
\hline
\end{tabular}

\section*{Activity 6.9}

At 31 December, the manufacturing overheads account for a manufacturing company is as follows:
\begin{tabular}{rc}
\multicolumn{2}{c}{ Manufacturing overheads } \\
\(\mathbf{R}\) & \\
385000 & \(\mathbf{R}\) \\
10000 & 395000
\end{tabular}

\section*{REQUIRED}
a. What was the amount for the actual manufacturing overheads?
b. What manufacturing overheads were applied to work-in-process?
c. What does the balance of R10 000 represent?
d. Prepare the journal entry for disposing of the manufacturing overhead balance.

\section*{Solution to Activity 6.9}
a. R385 000
b. R395 000
c. Over applied overheads
d. Journal entry
\begin{tabular}{|ccc|}
\hline & Debit & Credit \\
\(\mathbf{R}\) & \(\mathbf{R}\) \\
Manufacturing overheads \\
Cost of sales & 10000 & \\
\hline
\end{tabular}

6 Multiple range of products: departmentalisation/allocation of overheads
In the examples and activities until now, we have determined one overhead recovery rate for the organisation as a whole. This is called a plant-wide rate or blanket overhead rate.

\section*{BLANKET OVERHEAD RATE}

All the manufacturing overheads (for all production departments) are added together and allocated, based on one collective allocation basis common to all products and all production/service departments.

In most instances, this is very inaccurate, since different products consume the production costs of different production departments in differing proportions.

For example:
\begin{tabular}{|l|c|c|c|c|c|}
\hline Product & Dept A & Dept B & Dept C & Dept D & Dept E \\
\hline X12 & X & X & & X & \\
\hline L253 & & X & X & & \\
\hline W4 & X & X & X & X & X \\
\hline O322 & & & X & & X \\
\hline
\end{tabular}

Allocation of manufacturing overheads (via a budgeted rate) can be carried out in more detail in those cases, such as the above, where different products are processed through different production departments.

In order to achieve a more accurate and fairer overhead allocation, a predetermined overhead recovery rate should instead be calculated for each production department (based on the principles explained to date). A completed product would then only be charged for its actual activity usage in each of the production departments where processing and conversion takes place. For instance, in the example above, product X12 would only be allocated a portion of the overheads of production departments \(A, B\) and \(D\), and none from the others. On the other hand, department \(A\) allocates its manufacturing overheads only to product X12 and W4 and not to any other products.

Remember, that the direct material and labour costs are still traced directly to the products based on their usage (requisitions/job or time cards). There is no "allocation" of direct costs.

NOTE

Departmental recovery rates essentially do not apply to organisations that produce only a single product. This is because all the manufacturing overhead costs are incurred to produce the one and only product. It is therefore not necessary to determine how much is allocated by which department. For example:
\begin{tabular}{|l|c|c|c|}
\hline & Dept K & Dept L & Dept M \\
\hline Only product & X & X & X \\
\hline
\end{tabular}

\section*{DEPARTMENTAL OVERHEAD RATE}

Overhead recovery rates are determined for each department separately, based on the individual department's overhead costs and an appropriate allocation basis, depending on the type of activity that takes place in that specific department.

The manufacturing overhead costs attributable to each production department must therefore be determined (budgeted). This is referred to as the departmentalisation of manufacturing overheads.

Treatment of manufacturing overheads where separate departments exist should be dealt with as follows:
1. Primary allocation/apportionment, where ALL overhead expenses (eg rent, salaries, insurance etc) are divided among ALL the departments in the organisation, including the service departments (ie maintenance, scheduling) and non-production departments (ie administration and sales, where necessary). Accumulation of a department's overhead cost either occurs directly (eg depreciation on plant in department A will only reside in department A's costs) or by apportionment (eg total rent paid, common to all departments, will be apportioned amongst the various departments).
2. Secondary allocation, where the accumulated overhead costs (from step 1 above) of service departments are allocated to the production and non-production departments for which they (the service/support department) render services. This is carried out by means of an allocation rate or service charge. An example: the maintenance department reallocates its total accumulated manufacturing overheads to the respective production departments (maintenance of production plant and equipment) and the dispatch department (maintenance of delivery vehicles). In this way, all production-related overheads are finally accumulated solely in the various production departments.
3. A recovery rate (as explained before) is determined for each respective production department depending on its own overhead and allocated service costs, and using a basis suitable to its activities. Each production department will therefore have its own recovery rate.
4. Each departmental overhead rate is then applied to actual activity data for each product type it processes in order to calculate the total applied manufacturing overheads.

Steps 1 and 2 are referred to as the first-stage allocations. These allocations involve the allocation of manufacturing related overheads to production departments (also called cost centres). Steps 3 and 4 are referred to as second stage allocations. These allocations involve allocating manufacturing overhead costs to products and other cost objects.

Each of these steps will now be discussed in more detail.

\subsection*{6.1 Primary allocation of overheads}

In the primary allocation stage, every overhead item (eg depreciation, salaries, rent, electricity etc) are assigned directly/apportioned to the organisation's production, service (support) and non-manufacturing departments on appropriate bases. Each of these departments is referred to as a cost centre, because each department is mainly controlled and managed on the basis of the costs it incurs.

Production departments are identified based on the type of goods they produce or the activities they perform.

Examples are production departments for cutting, assembling, drilling and finishing.
In a production environment, a number of service departments provide support functions to the production departments and, at times, to other service departments as well. A service department might also render services to non-production departments.

Examples of service departments are production scheduling, maintenance, quality control, information technology and HR. Service departments play a vital role in the overall manufacturing process and provide auxiliary support to production departments and the rest of the organisation. In highly technical production environments, these departments may contribute a substantial amount to the total manufacturing overhead costs.

NOTE

Overhead costs such as rental, insurance etc will also be apportioned to nonmanufacturing departments (eg marketing, dispatch and administration departments). These non-manufacturing overhead costs will be EXCLUDED from the costs eventually accumulated in the various production departments. These costs are classified as period costs.

For the primary allocation of overheads (as well as secondary allocation), it is necessary to find a suitable basis for the apportionment of individual cost items among the various departments. The basis will be determined by the causal relationship between the cost and the ultimate allocation activity. The allocation basis used to allocate a particular department's costs should drive these costs. For example, the area utilised \(\left(\mathrm{m}^{2}\right)\) by each department would be the most appropriate basis for the apportionment of the rental cost for a factory building to the various departments.

\section*{Activity 6.10}

Gobe Ltd. has a production, service and administration department; the following budgeted information is available:

Number of employees
Number of copies made (Xerox)
Value of machines and equipment
\begin{tabular}{|r|r|r|}
\hline Production & Service & Administration \\
\hline 53 & 5 & 2 \\
3000 & 1250 & 5100 \\
R70 000 & R20 000 & R10 000 \\
1150 & 100 & 50 \\
\hline
\end{tabular}

The following budgeted overhead costs are applicable:
\begin{tabular}{lr} 
& R \\
Buildings insurance & 23600 \\
Machinery insurance & 12400 \\
Cafeteria & 11400 \\
Maintenance of copy machines & 16000 \\
Protective overalls & 3600 \\
Indirect material: & \\
Production & 14000 \\
Service & 2400 \\
Administration & 1500
\end{tabular}

\section*{REQUIRED}

Complete the primary allocation of overheads to the respective departments.

\section*{Solution to Activity 6.10}

Calculation of primary allocation of overheads
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & \multicolumn{3}{|c|}{DEPARTMENTS} \\
\hline Cost item & Allocation basis & Total R & Production R & Service R & Administration R \\
\hline Buildings insurance & Area & 23600 & \[
\begin{array}{r}
1150 / 1300 \\
x \text { R23 } 600 \\
=\text { R20 } 877
\end{array}
\] & \[
\begin{array}{r}
100 / 1300 \\
\times \text { R23 } 600 \\
=\text { R1 } 815
\end{array}
\] & \[
\begin{array}{r}
50 / 1300 \\
\times R 23600 \\
=R 908
\end{array}
\] \\
\hline Machinery insurance & Value & 12400 & \[
\begin{array}{r}
R 70 \text { 000/100 } 000 \\
\text { x R12 } 400 \\
=R 8680
\end{array}
\] & \[
\begin{array}{r}
\mathrm{R} 20 \text { 000/100 } 000 \\
\text { x R12 } 400 \\
=\text { R2 } 480
\end{array}
\] & \[
\begin{array}{r}
\text { R10 000/R100 } 000 \\
x \text { R12 } 400 \\
=\text { R1 } 240
\end{array}
\] \\
\hline Cafeteria & Employees & 11400 & \[
\begin{array}{r}
53 / 60 \\
\times \mathrm{R} 11400 \\
=\mathrm{R} 10070
\end{array}
\] & \[
\begin{array}{r}
5 / 60 \\
\times R 11400 \\
=\mathrm{R} 950
\end{array}
\] & \[
\begin{array}{r}
2 / 60 \\
\times R 11400 \\
=\text { R380 }
\end{array}
\] \\
\hline Maintenance of copy machines & Copies made & 16000 & \[
\begin{array}{r}
3000 / 9350 \\
\text { x R16 } 000 \\
=\text { R5 } 134
\end{array}
\] & \[
\begin{array}{r}
1250 / 9350 \\
\text { x R16 } 000 \\
=\text { R2 } 139
\end{array}
\] & \[
\begin{array}{r}
5 \text { 100/9 } 350 \\
\text { x R16 } 000 \\
=\text { R8 } 727
\end{array}
\] \\
\hline Protective overalls & Employees & 3600 & \[
\begin{array}{r}
53 / 60 \\
\times R 3600 \\
=R 3180
\end{array}
\] & \[
\begin{array}{r}
5 / 60 \\
\times R 3600 \\
=R 300
\end{array}
\] & \[
\begin{array}{r}
2 / 60 \\
\times R 3600 \\
=R 120
\end{array}
\] \\
\hline Indirect material & NONE & & 14000 & 2400 & 1500 \\
\hline \multicolumn{3}{|l|}{Primary allocation of overheads} & 61941 & 10084 & 12875 \\
\hline
\end{tabular}

The R12 875 will not end up being allocated to the cost of the products.

NOTE

Did you notice that the indirect material usage was not apportioned, since it was debited directly to each department based on the completed stores requisitions?

\subsection*{6.2 Secondary allocation of service (support) overheads}

Secondary allocation refers to the re-apportionment of a service department's overhead costs to all the other departments to the extent that this service department renders a service or supports these other departments.

Some service departments also render services to other service departments. For instance, the payroll department and the HR department provide services to production, maintenance, and administration departments AS WELL AS to each other

\section*{INTERDEPARTMENTAL SERVICES}

When one service department renders services to another service department, this type of service is regarded as an interdepartmental service.

Apportioning of these may cause a spiral effect (eg Dept A debits Dept B which, in turn, debits Dept A again, etc). There are various methods available for the treatment of these interdepartmental service costs. You will learn more about this in MAC3701.

In this module, we will limit interdepartmental services to one other service department. In other words, no reciprocal services will apply or we will provide you with the amount of costs allocated to production departments from the service departments.

\section*{Activity 6.11}

Marklin Company Ltd. has three production departments (P1, P2 and P3) and two service departments (S1 and S2).

The budgeted overheads for the year for the different departments are as follows (the primary apportionment has already been carried out):

Variable costs Fixed costs
\begin{tabular}{|c|c|c|c|c|c|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & \multicolumn{5}{c|}{ At a factory capacity of 80\% } \\
\hline Total & \begin{tabular}{c} 
Dept \\
P1
\end{tabular} & \begin{tabular}{c} 
Dept \\
P2
\end{tabular} & \begin{tabular}{c} 
Dept \\
P3
\end{tabular} & \begin{tabular}{c} 
Dept \\
S1
\end{tabular} & \begin{tabular}{c} 
Dept \\
S2
\end{tabular} \\
\hline\(R\) & \(R\) & \(R\) & \(R\) & \(R\) & \(R\) \\
112600 & 60000 & 25000 & 17600 & 6000 & 4000 \\
117000 & 60000 & 35000 & 22000 & - & - \\
\hline 229600 & 120000 & 60000 & 39600 & 6000 & 4000 \\
\hline \hline
\end{tabular}

A survey of the factory and its activities reveals the following at a factory capacity of \(80 \%\) :
\begin{tabular}{|l|r|r|r|c|}
\hline Department & \begin{tabular}{c} 
Investment in \\
equipment
\end{tabular} & \begin{tabular}{c} 
Machine \\
hours
\end{tabular} & \begin{tabular}{c} 
Direct labour \\
hours
\end{tabular} & \begin{tabular}{c} 
Direct \\
labour cost
\end{tabular} \\
\hline P1 & R & & & \(R\) \\
P2 & 200000 & 8000 & 32350 & 120000 \\
P3 & 150000 & 6000 & 15650 & 60320 \\
S1 & 100000 & 2000 & 10000 & 80000 \\
S2 & 20000 & & & \\
\hline
\end{tabular}

Service departmental costs are allocated to production and service departments on the following bases and in the following sequence:

Department S1 - Investment in equipment
Department S2 - Machine hours
Department P1 uses direct labour hours as a basis for calculating its predetermined overhead rate.

\section*{REQUIRED}
a. Calculate the total budgeted overheads that will be used in the calculation of the overhead rates for each of the production departments.
b. Calculate the budgeted overhead recovery rate for department P1.
c. Calculate the budgeted overheads for department P3 if the company decides to operate at \(90 \%\) capacity.

NOTE
It is important to first allocate the overheads of the service department that renders services to the other departments.
a. Total budgeted overheads
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Total & Dept
P1 & Dept P2 & Dept P3 & Dept
s1 & \[
\begin{gathered}
\text { Dept } \\
\text { S2 }
\end{gathered}
\] \\
\hline Primary allocations & 229600 & 120000 & 60000 & 39600 & 6000 & 4000 \\
\hline \multirow[t]{2}{*}{Allocation dept S1 1} & - & 2400 & 1800 & 1200 & (6000) & 600 \\
\hline & 229600 & 122400 & 61800 & 40800 & & 4600 \\
\hline \multirow[t]{2}{*}{Allocation dept S2 (2) Total budgeted overheads} & - & 2300 & 1725 & 575 & & (4 600) \\
\hline & 229600 & 124700 & 63525 & 41375 & & \\
\hline
\end{tabular}
(1) Allocation basis for department S1 (R6 000)
\begin{tabular}{|l|l|}
\hline Department & \begin{tabular}{l} 
Investment in \\
equipment \\
\(\mathbf{R}\)
\end{tabular} \\
P1 & 200000 \\
P2 & 150000 \\
P3 & 100000 \\
S1 & EXCLUDED \\
S2 & 50000 \\
\hline
\end{tabular}

NOTE

Always remember to exclude own department (ie the department that one is allocating) from the allocation basis. In (1) we are allocating service department S1's cost, so we exclude the R20 000 investment in equipment relating to S 1 to avoid being left with an unallocated amount.

Allocation as follows:
\[
\begin{aligned}
& P 1=R 200000 / R 500000 \times R 6000=R 2400 \\
& P 2=R 150000 / R 500000 \times R 6000=R 1800 \\
& P 3=R 100000 / R 500000 \times R 6000=R 1200 \\
& S 2=R 50000 / R 500000 \times R 6000=R 600
\end{aligned}
\]
(2) Allocation basis for department S2 (R4 600)
\begin{tabular}{|l|l|}
\hline Department & Machine hours \\
P1 & 8000 \\
P2 & 6000 \\
P3 & 2000 \\
S1 & NONE \\
S2 & EXCLUDED (\& NONE) \\
\hline
\end{tabular}

Allocation as follows:
\[
\begin{aligned}
& P 1=8000 \text { hours } / 16000 \text { hours } \times R 4600=R 2300 \\
& \text { P2 }=6000 \text { hours } / 16000 \text { hours } \times R 4600=R 1725 \\
& \text { P3 }=2000 \text { hours } / 16000 \text { hours } \times R 4600=R 5575
\end{aligned}
\]
b. Budgeted overhead rate for department P1

Budgeted overheads/budgeted direct labour hours
= R124 700 / 32350 hours
\(=\) R3,85
c. Budgeted overheads for department P3 if the company decides to operate at 90\% capacity
R22 000 fixed costs (3) \(+\left(\right.\) R19 375 variable costs (4) \(\left.\times \frac{90}{80}\right)\)
\(=\mathrm{R} 22000+\mathrm{R} 21796\)
\(=\mathrm{R} 43796\)

\section*{NOTE}

We only adjust the variable costs for the change in manufacturing volume.
(3) Given. None of the two service departments have any fixed costs, which means that the overheads allocated to P3 will only consist of variable costs.
(4) Variable costs for department P3:

Total budgeted overheads (as (a)) R41 375
Less: Fixed costs (3) R22 000
R19 375

\section*{Activity 6.12}

Mkhize Ltd. has two service departments (the human resource - HR department and the maintenance department) and two production departments (cutting and assembly).

The service and cost data for these departments are provided below.
\begin{tabular}{|l|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ SERVICES PROVIDED TO: } \\
\hline \begin{tabular}{l} 
SERVICES PROVIDED \\
BY:
\end{tabular} & \multicolumn{2}{|c|}{ Service } & \multicolumn{2}{c|}{ Production } \\
\cline { 2 - 5 } & HR & Maintenance & Cutting & Assembly \\
\hline HR & - & \(20 \%\) & \(35 \%\) & \(35 \%\) \\
Maintenance & - & - & \(60 \%\) & \(40 \%\) \\
\hline \begin{tabular}{l} 
Department's accumu- \\
lated costs - based on \\
primary allocations
\end{tabular} & R940 000 & R506 000 & R2 160 000 & R1 440000 \\
\hline
\end{tabular}
\(10 \%\) of the HR department's time is spent servicing the finance department.
REQUIRED
Prepare a schedule for apportioning the service departments' costs.

NOTE
- First, allocate the overhead costs of the service department that renders services to other service departments
- Then obtain the total for the other service departments.
- Then allocate the remaining service department's costs to the production departments.

Own costs
Secondary allocation: HR

Maintenance
Total
Solution to Activity 6.12
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Production departments CUTTING ASSEMBLY} & Service HR & \begin{tabular}{l}
epartments \\
MAINTENANCE
\end{tabular} & Non-production FINANCE \\
\hline & R & R & R & R & R \\
\hline Own costs & 2160000 & 1440000 & 940000 & 506000 & \\
\hline Secondary allocation: HR & 35\%: 329000 & 35\%: 329000 & (940 000) & 20\%: 188000 & 10\%:94 000 \\
\hline & & & & 694000 & \\
\hline Maintenance & 60\%: 416400 & 40\%: 277600 & - & (694 000) & \\
\hline Total & 2905400 & 2046600 & (1)- & (1) - & (2) 94000 \\
\hline
\end{tabular}

NOTE
(1) Can you see that the service departments end up with zero balances? All their overhead support costs are re-apportioned. The objective, at each stage, is to obtain appropriate accumulated costs, thereby ensuring that the total costs that end up in each production department are as appropriate as possible.
(2) The HR costs allocated to the finance department are non-production costs and are treated as period costs (administrative overheads).

\subsection*{6.3 The predetermined overhead recovery rate per production department}

In the third step of the departmentalisation of manufacturing overheads, a predetermined overhead recovery rate per production department is calculated. This is used to allocate the manufacturing overheads to production (ie the products absorb these costs). Earlier in this topic, we encountered the various bases that can be used to calculate the rate. Machine hours, labours hours and units manufactured are normally used. See section 5.1.

The following is an example of a section of a job-order cost sheet where a job progressed through various departments before being finalised. Each department had its own budgeted allocation rate:
\begin{tabular}{|l|l|l|r|r|r|}
\hline Date & \begin{tabular}{c} 
Production \\
department
\end{tabular} & Allocation basis & \begin{tabular}{c} 
Actual hours/ \\
cost
\end{tabular} & \begin{tabular}{c} 
Budgeted rate \\
(R)
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c} 
Allocated \\
cost (R)
\end{tabular}} \\
\hline \(30 / 12\) & Cutting & Direct labour hours & 150 & 6 & 900 \\
\hline \(30 / 12\) & Assembly & Direct labour hours & 160 & 5 & 800 \\
\hline \(30 / 12\) & Finishing & Direct labour hours & 180 & 5 & 900 \\
\hline \(30 / 12\) & Upholstery & Direct labour cost & R3 000 & \(80 \%\) & 2400 \\
\hline \multicolumn{5}{|l|}{ Total applied manufacturing overheads }
\end{tabular}

FIGURE 6.1: Overheads in a job-order costing system

\section*{Activity 6.13}

Mogale Ltd. is a manufacturing concern with two production departments, PD1 and PD2, as well as two service departments, SD1 and SD2.

Total budgeted manufacturing overhead costs of R480 000 for the year must be allocated to the production departments in order to determine the overhead recovery rate per production department.

The overhead costs are allocated on the following basis:
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{2}{|c|}{ Production departments } & \multicolumn{2}{|c|}{ Service departments } \\
\hline PD1 & PD2 & SD1 & SD2 \\
\hline \(60 \%\) & \(25 \%\) & \(10 \%\) & \(5 \%\) \\
\hline
\end{tabular}

Secondary allocation is based on service provision. Service department SD2 renders a service to both production departments based on the ratio of their respective machine hours, whereas SD1 provides an equal service to the production departments.

The production departments' overhead recovery rates are based on machine hours. The budgeted machine hours for the period are as follows:
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Production departments } \\
\hline PD1 & PD2 \\
\hline 12000 & 6000 \\
\hline
\end{tabular}

\section*{REQUIRED}

Determine the overhead recovery rates for PD1 and PD2 respectively.

\section*{Solution to Activity 6.13}

Calculation of total overhead costs to be recovered from each production department by a primary and secondary allocation of overheads
\begin{tabular}{|l|r|r|c|c|}
\hline & PD1 & PD2 & SD1 & SD2 \\
\hline Total manufacturing overheads: R480 & 288000 & 120000 & 48000 & 24000 \\
000 (given) (Calculation 1) & 16000 & 8000 & & \((24000)\) \\
\cline { 3 - 4 } (Calculation 2) & 24000 & 24000 & \((48000)\) & - \\
(Calculation 3) & 328000 & 152000 & - & - \\
Budgeted overheads & 12000 & 6000 & & \\
Machine hours & R27,33 & R25,33 & & \\
\hline Overhead recovery rate (Calculation 4) & & \\
\hline
\end{tabular}

\section*{Calculation 1}

Total overheads \(=\) R480 000 (given)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ PD1 } & \multicolumn{1}{|c|}{ PD2 } & \multicolumn{1}{c|}{ SD1 } & \multicolumn{1}{c|}{ SD2 } \\
\hline \begin{tabular}{l} 
R480 000 \(\times 60 \%\) \\
\(=\) R288 000
\end{tabular} & \begin{tabular}{l} 
R480 000 \\
\(=\) R120 \(25 \%\)
\end{tabular} & \begin{tabular}{l} 
R480 000 \(\times 10 \%\) \\
\(=R 48000\)
\end{tabular} & \begin{tabular}{l} 
R480 000 \(\times 5 \%\) \\
\(=\) R24 000
\end{tabular} \\
\hline
\end{tabular}

\section*{Calculation 2}

Service department SD2 renders services to the two production departments based on their machine hours:
\begin{tabular}{|c|c|}
\hline PD1 & \multicolumn{1}{|c|}{ PD2 } \\
\hline\(R 24000 \times \frac{12000}{18000}\) & R24 \(000 \times \frac{6000}{18000}\) \\
\(=\) R16 000 & \(=\) R8 000 \\
\hline
\end{tabular}

\section*{Calculation 3}

Service department SD1 renders equal services to the two production departments.
\begin{tabular}{|r|c|}
\hline PD1 & \multicolumn{1}{|c|}{ PD2 } \\
\hline R48 \(000 \times \frac{1}{2}\) & R48 \(000 \times \frac{1}{2}\) \\
\(=\) R24 000 & \(=\) R24 000 \\
\hline
\end{tabular}

Calculation 4: Overhead recovery rate per production department
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ PD1 } & \multicolumn{1}{c|}{ PD2 } \\
\hline \begin{tabular}{ll} 
Total overheads & \multicolumn{1}{c|}{ Budgeted labour hours } \\
\(=\frac{328000}{12000}\) & \begin{tabular}{l} 
Budgeted labour hours \\
\(=R 27,33\)
\end{tabular} \\
\(=\frac{152000}{6000}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{7 Summary}

In this study unit, we discussed the following:
- How to identify the main reasons for applying a budgeted predetermined overhead recovery rate when costing products in terms of manufacturing overheads
- How to distinguish between budgeted, applied (recovered) and actual manufacturing overheads
- How to calculate the under or over recovery of overheads
- How to account for overheads in an organisation's financial records
- How to differentiate between the approaches required for organisations that produce a single product range and organisations that produce a multiple product range
- How to choose an appropriate allocation basis and a suitable denominator (capacity) level
- How to distinguish between a blanket overhead rate and a departmental overhead rate
- How to apply primary and secondary allocations of overheads when determining departmental overhead rates

Self-assessment Activity

\section*{QUESTION 1}

Gobiqolo Ltd. uses direct machine hours as the basis for allocating overheads to production. Budgeted overheads for the next year are R100 000 and budgeted machine time 31250 hours. These hours are equal to the average long-term capacity utilisation of the machines.

By the end of the year, total machine time was 33000 hours and the actual overhead cost was R112 000. The company produced 5000 units of its product.

\section*{REQUIRED}
a. Calculate the budgeted overhead recovery rate.
b. Determine the amount of applied overheads during the year.
c. Calculate the under or over applied overheads for the year.
d. Determine the overhead cost component per unit manufactured in order to value the inventory.

\section*{QUESTION 2}

A company uses a predetermined overhead rate based on average long-term machine hour utilisation. The budgeted factory overheads for a year were estimated at R760 000, but the actual factory overheads incurred amounted to R738 000. The actual machine hours were 119000.

During the year, the company applied overheads to the amount of R714 000.

\section*{REQUIRED}

Calculate the following:
a. Budgeted machine hours
b. The under or over applied manufacturing overheads

\section*{QUESTION 3}

Terror Ltd. manufactures toys. The monthly average budgeted fixed production related overhead cost amount to R219 500. The budgeted overhead recovery rate is based on the following methodology:
1. The primary allocation takes place on the following basis:
\begin{tabular}{llll} 
Production department & P1 & - & \(40 \%\) \\
& P2 & - & \(20 \%\) \\
& P3 & - & \(20 \%\) \\
Service department & S1 & - & \(10 \%\) \\
& S2 & - & \(10 \%\)
\end{tabular}
2. Secondary allocation is on a service provision basis. Service department S2 renders a service to all other departments, whereas service S1 provides a service to production departments only. Secondary allocation and the budgeted fixed overhead recovery rate are based on labour hours.
\begin{tabular}{llllll} 
& P1 & P2 & P3 & S1 & S2 \\
Labour hours & 1500 & 1000 & 500 & 100 & 50
\end{tabular}

Management would like you to estimate the overhead costs of the toys for December. The following actual information is available so far:
\begin{tabular}{lll} 
Month & Hours & Total overhead costs (R) \\
June & 10000 & 365000 \\
July & 10100 & 366500 \\
August & 10200 & 368000 \\
September & 10260 & 368900 \\
October & 10360 & 370400 \\
November & 10400 & 371000 \\
December & 10300 & \(?\)
\end{tabular}

\section*{REQUIRED}

Calculate the following:
a. the total budgeted fixed overheads to recover per production department
b. the budgeted fixed overhead recovery rate per production department
c. the actual fixed cost (total) and variable cost (per unit) for the six months using the high-low method
d. the forecast overheads for December, assuming your answer in c. is correct

\section*{QUESTION 4}

Ekuvukeni (Pty) Ltd. manufactures lawn-trimming devices. The company uses a departmental overhead recovery rate based on two production departments, assembly \((A)\) and finishing (F), and two service departments, maintenance \((M)\) and stores (S). The management accountant estimates the budgeted factory and support overhead costs for the forthcoming financial year as follows:

\section*{R}

Canteen expenses 23500
Depreciation on machinery 40000
Rent for factory building 24500

For allocating factory overheads on an equitable basis, the following budgeted information is available:
\begin{tabular}{lrrrr}
\hline & Production departments & \multicolumn{2}{c}{ Service departments } \\
& A & F & M & S \\
\hline Requisition direct materials (R) & 25200 & 14800 & & \\
Estimated machine hours & 800 & 400 & - & - \\
Estimated direct labour hours & 2100 & 900 & - & - \\
Number of employees employed & 16 & 12 & 8 & 4 \\
Machinery at cost (R) & 240000 & 80000 & 60000 & 20000 \\
Floor space \(\left(\mathrm{m}^{2}\right)\) & 1100 & 500 & 100 & 300
\end{tabular}

\section*{Additional information}
- The maintenance department's costs will be reapportioned based on machine value, whereas the stores department's costs will be reapportioned based on requisitions for direct materials.
- The maintenance department renders services to all departments, whereas the stores department provides services to the production departments.
- The two service departments are located in the factory building.

\section*{REQUIRED}
a. Calculate the total factory overhead costs for the production departments (assembly and finishing) to be recovered in the forthcoming year. (Where applicable round off to the nearest R1.)
b. Calculate the budgeted overhead recovery rate for the assembly department based on direct labour hours. (Round off to two decimal places.)

Solution to Self-assessment Activity

\section*{QUESTION 1}
a. Overhead rate
\(=\underline{\text { budgeted overhead cost }}=\underline{\text { R100 } 000}\) budgeted machine hours 31250 hours \(=\) R3,20 per machine hour

\section*{b. Applied overheads}
\(=\) actual machine hours \(\times\) overhead rate
\(=33000 \times \mathrm{R} 3,20\)
= R105 600
c. Under or over application (recovery)
= Actual overheads less applied overheads
= R112 000 - R105 600
= R6 400 under applied
d. Cost per unit
\(=\frac{\text { applied overhead cost }}{\text { number of units produced }}=\frac{\text { R105 600 }}{5000}\)
\(=\mathrm{R} 21,12\) per unit

NOTE

Only the applied overhead cost is debited to the WIP account. We therefore only use the costs accumulated in the WIP account to value the output or units produced. The under recovery of overheads is written off directly in the statement of comprehensive income and does not form part of the inventory value (ie it is a period cost).

\section*{QUESTION 2}
a. Budgeted machine hours
\begin{tabular}{rl} 
Predetermined overhead rate & \(=\frac{\text { applied overheads }}{\text { actual machine hours }}\) \\
& \(=\frac{\mathrm{R} 714000}{119000 \text { hours }}\) \\
& \(=\frac{R 6 \text { per machine hour }}{\text { Budgeted machine hours therefore }}\) \\
\(=\frac{\text { budgeted overheads }}{\text { predetermined overhead rate }}\) \\
& \(=\frac{R 76000}{R 6}\) \\
& \(=126667\) hours
\end{tabular}
b. Under or over application

Applied overheads - actual overheads
= R714 000 - R738 000
\(=\) R24 000 under applied

\section*{NOTE}

In practice, the management accountant would enquire from the production manager why there was such a drop in the production level. Perhaps there were unexpected machine breakdowns or a new competitor entered the market, resulting in a drop in demand for this organisation's products?

\section*{QUESTION 3}
a. Budgeted fixed overheads per department
\begin{tabular}{lrccrrrr} 
COST ITEM & TOTAL & P1 & P2 & P3 & S1 & S2 \\
\begin{tabular}{l} 
Primary allocation: \\
Secondary allocation: \\
S2 Calc (1)
\end{tabular} & 219500 & 87800 & 43900 & 43900 & 21950 & 21950 \\
\multicolumn{1}{l}{} \\
\multicolumn{1}{l}{ S1 Calc (2) } & & 10621 & 7081 & 3540 & 708 & \((21950)\) \\
\cline { 3 - 8 } & & & 11329 & 7553 & 3776 & \((22658)\) & Nil \\
\hline
\end{tabular}

Calculation (1): S2's costs are allocated based on all the other departments' hours:
```

$\mathrm{P} 1=\mathrm{R} 21950 \times \frac{15}{15100501}$
$=\quad \mathrm{R} 10621$
$\mathrm{P} 2=\mathrm{R} 21950 \times \frac{10}{31}$
$=\quad \mathrm{R} 7081$
etcetera
Calculation (2): S1's costs are allocated based on only the three production
departments' hours:
$\mathrm{P} 1=\mathrm{R} 22658 \times \frac{15}{151005}$
$=\mathrm{R} 11329$
$\mathrm{P} 2=\mathrm{R} 22658 \times \frac{10}{30}$
$=\quad \mathrm{R} 7553$
etcetera

```

NOTE

Can you see that the final total budgeted fixed overheads of the three production departments add up to the total of the three production department's own fixed costs, plus that of the two service departments?

You should always check that these amounts agree. Remember, however, that this total EXCLUDES services rendered to marketing, administration and other non-manufacturing related departments.
b. Budgeted fixed overhead recovery rate per labour hour
\(=\quad\) overheads to recover
labour hours
P1 \(\frac{109750}{1500} \quad=\quad\) R73,17
P2 \(\frac{58534}{1000} \quad=\quad\) R58,53
P3 \(\quad \frac{51216}{500} \quad=\quad\) R102,43

\section*{c. Actual fixed and variable overheads}
b \(=\frac{\text { difference between highest and lowest related costs }}{\text { difference between highest and lowest hours }}\)
\[
=\frac{371000 \quad 365000}{1040010000}=\mathrm{R} 15 \text { per hour (variable) }
\]
\[
\begin{aligned}
a & =Y-b x \\
& =371000-15(10400)=R 215000 \text { (total fixed cost) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { d. Forecast overhead costs } \\
& \qquad \begin{aligned}
Y & =a+b x \\
& =215000+15(10300) \\
& =R 369500
\end{aligned}
\end{aligned}
\]

NOTE

Did you notice that, in this case, we asked you to forecast the costs for the next month using the latest information, based on the actual results so far, rather than the budgeted information?

\section*{QUESTION 4}
a. Total manufacturing overhead cost


\section*{Calculation 1}

The service department that renders services to other departments is allocated first. Ignore its own machine's cost price and only allocate based on other departments' costs:
\(\mathrm{A}=\mathrm{R} 11925\)
x
\begin{tabular}{rr} 
& 240 \\
\hline \(240 \quad 80 \quad 20\)
\end{tabular}
\(=\) R8 418
\(F=R 11925 \quad x \quad \frac{80}{340}\)
\(=\) R2 806
\(S \quad=R 11925 \quad x \quad \frac{20}{340}\)
\(=\quad \mathrm{R} 701\)

Calculation 2
\begin{tabular}{rlll}
\(A\) & \(=R 8726\) & \(x\) & \(\frac{25200}{2520014800}\) \\
& \(=R 5497\) & & \\
\(F\) & \(=R 8726\) & \(x\) & \(\frac{14800}{40000}\) \\
& \(=R 3229\) & &
\end{tabular}
a. \(\frac{\text { Budgeted overhead costs }}{\text { Budgeted labour hours }}\)
\(=\frac{\text { R60 } 790}{2100 \text { labour hours }}\)
\(=\) R28,95 per labour hour

\section*{NOTE}

Since there were no service and support overhead costs allocated to non-manufacturing departments, the total of the overhead cost accumulated in the production departments equal that of the total factory and support departments.

\section*{Comprehensive Self-assessment Activity}

The following activity will combine the knowledge you have gained in the three individual study units. In this activity, you are required to value the inventory produced. This activity will include tracing direct material and labour costs and allocating manufacturing overheads to cost products.

\section*{QUESTION 1}

Lotus Manufacturers manufactures a single product. The sales volumes differ from year to year.

The budgeted variable cost of this product is made up as follows:

Direct material
Direct labour
Indirect labour recovery rate
Variable manufacturing overhead recovery rate
Variable selling cost

3 metre at R3,10 per metre 2 hours
R7,50 per hour
R1,70 per hour
R6,30 per unit

Variable manufacturing overheads varies with labour hours worked. The total budgeted fixed manufacturing overhead cost amounts to R120 000 for the period. Fixed manufacturing overheads are recovered based on direct labour hours. The average long-run capacity utilisation of the plant is 1500 units per annum.

\section*{REQUIRED}
a. Calculate the budgeted product cost of one unit.
b. Calculate the total budgeted profit if Lotus manufactures and sells only 1400 units at a price of R130 per unit.

\section*{Solution to Comprehensive Self-assessment Activity}

\section*{QUESTION 1}
a. Calculation of the budgeted product cost of one unit
\begin{tabular}{lr} 
& \(\mathbf{R}\) \\
Direct material (3 m x R3,10) & 9,30 \\
Direct labour (2 hours \(\times \mathrm{R} 7,50\) ) & 15,00 \\
Variable manufacturing overheads (2 hours x R1,70) & 3,40 \\
Variable selling - not production cost \(\rightarrow\) not part of product cost & \(\frac{-}{27,70}\) \\
Total variable costs per unit & \(\frac{80,00}{107,70}\) \\
Fixed costs (1) (2 hours \(\times \mathrm{R} 40)\) &
\end{tabular}
(1) Calculating the fixed overhead recovery rate:
\(=\frac{\text { total fixed overheads }}{\text { total direct labour hours average long run capacity }}\)
\(=\frac{\mathrm{R} 120000}{1500 \times 2 \text { hours }}\)
\(=\) R40 per direct labour hour
b. Calculate the total budgeted profit if Lotus manufactures and sells 1400 units

R

Sales (1 \(400 \times\) R130) 182000
Less:
Variable product cost of one unit (R27,70 x 1400 ) 38780
Variable selling and administrative overheads (1400×R6,30) 8820
Fixed costs
Total net profit 120000

OR

R
Sales (1 \(400 \times\) R130) 182000
Less:
Production cost (R107,70 x 1 400)
150780
Less: Fixed production cost under recovered (2)
Gross profit
Variable selling and administrative overheads (1400 x R6,30)
Total net profit 8000
23220
8820
14400

\section*{NOTE}

Did you notice that the allocation basis that was used (long-run average capacity utilisation) differs from the budgeted production capacity utilisation? See Study unit 6, section 5.2. In such a case there would be a under or over recovery of budgeted fixed production overheads.

\section*{Bibliography}

Woodward, J. 1965. Industrial organization: theory and practice. Oxford: University Press.

\section*{Methods of inventory valuation}

\section*{LEARNING OUTCOMES}

After studying this topic, you should be able to:
- value inventory on the first-in-first out (FIFO) basis
- value inventory on the weighted average basis

\section*{STUDY UNIT}

Study unit 7
Study unit 8

TITLE
First-in-first-out (fifo) method
Weighted average method


\section*{Introduction}

In the previous topic, you learned how manufacturing and support costs (service costs) are allocated to the production process (via the WIP account) and how an individual unit is ultimately costed. In this topic, we will focus on the valuation of purchased inventory items in circumstances where the cost price fluctuates during the period. Methods of valuing manufactured inventory is covered in the topics on job costing, process costing, joint and byproduct costing and standard costing.

\section*{STUDYUNIT \\ 7}

\section*{First-in-first-out (FIFO) method}


Introduction
In this study unit, we will discuss the different kinds of inventories and explain how to apply the FIFO method of inventory valuation.

\section*{INVENTORY VALUATION}

Inventory valuation is the process of assigning costs to inventory.

The cost associated with each issue of materials poses a problem, simply because the same materials currently in store could have been purchased at different prices. To complicate matters further, it is often difficult to keep track of the actual individual physical materials issued to production, because units of the same inventory type look alike (eg all 30 mm screws look the same).

An accounting assumption therefore has to be made in order to calculate and record the cost of each inventory item issued from the stores.

Popular methods of calculating the cost of materials are:
- The FIFO method (covered in this study unit)
- The weighted average method (covered in the next study unit)
- Standard cost (covered later on in Topic 10)
- Specific identification (individual items are identified in a stock count and the historical cost price determined). This is not a very common accounting method and we will not be discussing it.

In this topic, we will only address the FIFO- and the weighted average method.

\section*{2 Categories of inventory}

\section*{INVENTORY}

Inventory can be defined as any tangible property bought, manufactured, processed, developed, or sold by an organisation in the ordinary course of business.

A manufacturing organisation will have the following four categories of inventory:
- Raw materials
- Consumables
- Work-in-process
- Finished goods

\section*{RAW MATERIALS}

Raw materials are the inventory used in the manufacturing process. Raw materials are natural, unprocessed or partially processed materials that are converted into a more refined product.

These types of materials, which are used in the manufacturing process, will be classified as direct materials.

\section*{CONSUMABLES}

Consumables refer to smaller items kept in the stores that are used by all departments (manufacturing, support and administrative). Consumables are items which, as the term suggests, are consumed. They can be destroyed, wasted or spent.

Examples are stationery, refreshments, light bulbs, oils, filters, small parts etcetera.
When issued to production and production support departments, these items are classified as indirect materials. If they are issued to non-manufacturing departments, they are classified as non-production overheads.

\section*{WORK-IN-PROCESS (WIP)}

Work-in-process inventory refers to partially completed products or components that cannot be classified as finished products.

\section*{FINISHED (OR COMPLETED) GOODS, PRODUCTS, UNITS OR INVENTORY}

Finished goods inventory refers to the finished products on the factory floor, in the finished goods store, in transit, at warehouse distribution points and in retail outlets. These goods are ready for sale.

NOTE

Although this study unit deals with raw materials and consumables inventory, the same methods also apply to finished goods inventory or ready-to-sell trading inventory.

\section*{3 The FIFO method}

\section*{FIFO}

According to the FIFO method, the accounting assumption is that materials received or purchased first are issued first. We assume that the units are issued in the order received: the oldest units first and then the units received from the next batch etcetera.

\section*{NOTE}
(1) It is important to note that the flow of materials does not dictate the flow of costs. The flow of materials is the order in which the materials are actually issued for use in the factory, while the flow of costs is the order in which unit costs are assigned to the materials issued. The FIFO method can be used even if materials are physically issued in a different order.
(2) In the inventory ledger, returns to suppliers are treated as negative purchases (receipts), whereas returns from the factory are handled as negative issues. With regard to the returns from the factory, it is assumed that the last issues would be returned first, thus keeping their purchase date for aging purposes.
(3) During times of inflation (price increases), the use of the FIFO method will result in issues to production being made at "cheaper" prices. Profits will therefore be higher until issues take place at the new or latest price. The inverse will happen in times of deflation (price decreases).

\section*{Activity 7.1}

The warehouse clerk of Wasbank Ltd. presents you with the following information on material NKR:
\begin{tabular}{cll} 
Date & & Transaction details \\
Feb & & \\
1 & Opening inventory & 250 units @ R1,50 each \\
2 & Purchased & 750 units @ R1,80 each \\
5 & Issued & 300 units to production \\
11 & Purchased & 500 units @ R1,90 each; \\
& freight charges of R150 were paid for this order \\
12 & Returned & 200 units bought on 2 February, to the supplier \\
13 & Issued & 500 units to production \\
21 & Returned & 150 excess units from factory to stores
\end{tabular}

\section*{REQUIRED}

Calculate the value of inventory at 21 February using the FIFO method of inventory valuation.

Solution to Activity 7.1
FIFO method
\begin{tabular}{|l|r|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Date } & \multicolumn{2}{c|}{ Receipts } & \multicolumn{4}{c|}{ Issues } & \multicolumn{3}{c|}{ Balance } \\
\hline Feb & Quantity & \begin{tabular}{c} 
Price \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Amount \\
\(\mathbf{R}\)
\end{tabular} & Quantity & \begin{tabular}{c} 
Price \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Amount \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Quantity
\end{tabular} & \begin{tabular}{c} 
Price \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Amount \\
\(\mathbf{R}\)
\end{tabular} \\
\hline 1 & & & & & & & 250 & 1,50 & 375 \\
\hline 2 & 750 & 1,80 & 1350 & & & & 250 & 1,50 & 375 \\
\hline 5 & & & & 250 & 1,50 & 375 & & & \\
\hline
\end{tabular}

\section*{Explanation}

\section*{Date}

2 Two batches are available: 250 units at R1,50, which came in first, and 750 units at R1,80, which came in last.
5 A quantity of 300 units is issued: 250 units at R1,50 are issued first, then the balance of 50 units from the 750 units at R1,80.
11 The freight charges of R150 must be added to the cost of the batch. [(500 \(x R 1,90)+R 150]=R 1100 ; R 1100 \div 500=R 2,20)\)
12 The 200 units are returned at the price at which they were purchased on 2 February. (Returns are treated as negative receipts and subtracted from the balance.)
13 The first batch of 500 units at R1,80 is issued. The batch of 500 units at R2,20 is still in inventory.
21 The units returned from the factory are from the last issue. (Returns from the factory are treated as negative issues and added to the balance.)

The value of the inventory on hand at 21 February is R1 370.

NOTE

Can you see that, for accounting and costing purposes, separate batches are kept for the different purchase prices? Physically the warehouse clerk would make no distinction in the units that are kept on the warehouse shelves or in the inventory bin. Note that, in practice, in the case of perishable materials or inventory, inventory might be identified according to expiry date and strictly issued based on FIFO principles.

\section*{4 Summary}

In this study unit, we explained the difference between the physical flow of materials and the flow of costs based on the accounting assumption of the FIFO method.

In the next study unit, we will explore how to apply the weighted average method to value inventories on hand.

Self-assessment Activity

\section*{QUESTION 1}

Gobiqolo Ltd. recorded the following purchases and issues for the material "Smile" for the month of November:

\section*{Date Transaction details}

November
\begin{tabular}{lll}
01 & Opening inventory & 500 units @ R5,50 \\
02 & Purchased & 2500 units @ R5,80 \\
06 & Issued & 1000 units to production \\
10 & Purchased & 3000 units @ R6,00 \\
15 & Issued & 500 units to production \\
20 & Production returned & 200 units issued on 15 November to the store \\
26 & Issued & 2700 units to production \\
30 & Returned & \begin{tabular}{l} 
250 units purchased on 10 November to the \\
\\
\end{tabular}
\end{tabular}

\section*{REQUIRED}
a. Calculate the value of the following:
i Closing inventory as at 30 November by using the FIFO method of inventory valuation
ii Issues to production
b. Show the journal entry for recording the transaction on 20 November.

\section*{QUESTION 2}

An extract from the records of Umthente Ltd. shows the following data about the raw material with inventory code DKH123:
\begin{tabular}{llr} 
Date & Transaction & details \\
\(1 / 10\) & Opening inventory & 50 units @ R6,30 \\
\(3 / 10\) & Purchases & 1000 units @ R5,25 \\
\(5 / 10\) & Issues & 1000 units \\
\(6 / 10\) & Purchases & 500 units @ R5,40 \\
& Freight cost paid R50,00 & \\
\(7 / 10\) & Returned & 20 units to the store (issued on 5 October) \\
\(8 / 10\) & Issues & 400 units \\
\(9 / 10\) & Returned to the supplier & 10 units bought on 6 October
\end{tabular}

\section*{REQUIRED}
a. Calculate the total cost of materials issued so far during the month using the FIFO method of inventory valuation.
b. Prepare a journal entry for the returns on 9 October.

\section*{QUESTION 1}
a. FIFO method
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date & \multicolumn{3}{|r|}{Receipts} & \multicolumn{3}{|r|}{Issues} & \multicolumn{3}{|c|}{Balance} \\
\hline Nov & Quantity & \[
\begin{gathered}
\text { Price } \\
\mathrm{R} \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Amount } \\
R \\
\hline
\end{array}
\] & Quantity & \[
\begin{gathered}
\text { Price } \\
\mathbf{R} \\
\hline
\end{gathered}
\] & Amount R & Quantity & \[
\begin{gathered}
\text { Price } \\
\text { R } \\
\hline
\end{gathered}
\] & Amount R \\
\hline 01 & & & & & & & 500 & 5,50 & 2750 \\
\hline 02 & 2500 & 5,80 & 14500 & & & & \[
\begin{array}{r}
500 \\
2500
\end{array}
\] & \[
\begin{aligned}
& 5,50 \\
& 5,80
\end{aligned}
\] & \[
\begin{array}{r}
2750 \\
14500
\end{array}
\] \\
\hline 06 & & & & \[
\begin{array}{r}
500 \\
500 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 5,50 \\
& 5,80 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
2750 \\
2900 \\
\hline
\end{array}
\] & 2000 & 5,80 & 11600 \\
\hline 10 & 3000 & 6,00 & 18000 & & & & \[
\begin{array}{r}
2000 \\
3000 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5,80 \\
6,00 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 11600 \\
& 18000 \\
& \hline
\end{aligned}
\] \\
\hline 15 & & & & 500 & 5,80 & 2900 & \[
\begin{array}{r}
1500 \\
3000 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5,80 \\
6,00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8700 \\
18000 \\
\hline
\end{array}
\] \\
\hline 20 & & & & (200) & \((5,80)\) & (1 160) & \[
\begin{array}{r}
1700 \\
3000 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5,80 \\
6,00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9860 \\
18000 \\
\hline
\end{array}
\] \\
\hline 26 & & & & \[
\begin{aligned}
& 1700 \\
& 1000 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5,80 \\
& 6,00 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9860 \\
& 6000
\end{aligned}
\] & 2000 & 6,00 & 12000 \\
\hline 30 & (250) & \((6,00)\) & (1500) & & & & 1750 & 6,00 & 10500 \\
\hline & & & & Total & & 23250 & & & \\
\hline
\end{tabular}

The value of the closing inventory is R10 500 at 30 November, and the value of issues to production is R23 250.
b. Journal entry

Dt Materials inventory control account R1 160 Ct WIP

R1 160

\section*{QUESTION 2}
a. FIFO method
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date & \multicolumn{3}{|c|}{Receipts} & \multicolumn{3}{|c|}{Issues} & \multicolumn{3}{|c|}{Balance} \\
\hline Oct & Quantity & Price R & Amount R & Quantity & Price R & Amount R & Quantity & Price R & Amount R \\
\hline 01 & & & & & & & 50 & 6,30 & 315,00 \\
\hline 03 & 1000 & 5,25 & 5250 & & & & \[
\begin{array}{r}
50 \\
1000
\end{array}
\] & \[
\begin{aligned}
& 6,30 \\
& 5,25
\end{aligned}
\] & \[
\begin{array}{r}
315,00 \\
5250,00
\end{array}
\] \\
\hline 05 & & & & \[
\begin{array}{r}
50 \\
950 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
6,30 \\
5,25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
315,00 \\
4987,50 \\
\hline
\end{array}
\] & 50 & 5,25 & 262,50 \\
\hline 06 & 500 & \({ }^{(1)} 5,50\) & 2750,00 & & & & \[
\begin{array}{r}
50 \\
500 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 5,25 \\
& 5,50 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
262,50 \\
2750,00 \\
\hline
\end{array}
\] \\
\hline 07 & & & & (20) & \((5,25)\) & \((105,00)\) & \[
\begin{array}{r}
70 \\
500
\end{array}
\] & \[
\begin{aligned}
& 5,25 \\
& 5,50
\end{aligned}
\] & \[
\begin{array}{r}
367,50 \\
2750,00
\end{array}
\] \\
\hline 08 & & & & \[
\begin{array}{r}
70 \\
330 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 5,25 \\
& 5,50 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
367,50 \\
1815,00 \\
\hline
\end{array}
\] & 170 & 5,50 & 935,00 \\
\hline 09 & (10) & \[
\begin{array}{r}
{ }^{(2)}(5,40) \\
(0,10)
\end{array}
\] & \[
\begin{array}{r}
54,00 \\
1,00 \\
\hline
\end{array}
\] & & & & 160 & 5,50 & 880,00 \\
\hline & & & & & Total & 7380,00 & & & \\
\hline
\end{tabular}

The total cost of materials issued is R7 380.
(1) \([(500 \times R 5,40)+R 50] \div 500=R 5,50\)
(2) Refer to journal in \(b\).
b. Journal entry

Dt Accounts payable/supplier \(\quad\) R 54
Sundry expenses
R 55

Returning inventory for credit and writing off portion of original transport costs not recoverable from supplier.

\section*{NOTE}

The supplier would only refund or give credit to the value of the purchase price. The transport costs relating to the units returned therefore have to be written off.

\section*{Weighted average method}


\section*{1 Introduction}

In the previous study unit, we explained the FIFO method of inventory valuation. In this study unit, we will explain how the weighted average method works.

\section*{2 Weighted average method}

\section*{WEIGHTED AVERAGE METHOD}

The weighted average method makes no assumptions about the flow of materials. The issuing of materials at a weighted average cost assumes that each batch taken from the storeroom is made up of the same quantities from each consignment in inventory at the date of issue. No attempt is made to identify when the units were purchased.

\section*{NOTE}
(1) The weighted average method divides the total cost of all materials of a particular class by the number of units on hand for that class in order to find the average price. The result is therefore the average price.
(2) After an issue to production, there should not be any change in the cost price per unit in the balance column of the inventory ledger, because the units are issued at the average price. However, there could be a small difference due to rounding.
(3) However, with every receipt or purchase returned to the supplier, as well as those returned from the factory, the new weighted average price should be determined.

\section*{Activity 8.1}

Using the Wasbank Ltd. data from the FIFO illustration shown in Activity 7.1 and calculate the value of inventory at 21 February using the weighted average method of inventory valuation.

\section*{Solution to Activity 8.1}

THE WEIGHTED AVERAGE METHOD
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Date & \multicolumn{3}{|c|}{ Receipts } & \multicolumn{3}{c|}{ Issues } & \multicolumn{3}{c|}{ Balance } \\
\hline & Quantity & Price & Amount & Quantity & \begin{tabular}{c} 
@ \\
average \\
price
\end{tabular} & Amount & Quantity & \begin{tabular}{c} 
Average \\
price \\
(calc)
\end{tabular} & Amount \\
\hline Feb & & \(\mathbf{R}\) & \(\mathbf{R}\) & & \(\mathbf{R}\) & \(\mathbf{R}\) & & \(\mathbf{R}\) & \(\mathbf{R}\) \\
\hline 1 & & & & & & & 250 & 1,50 & 375,00 \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

Explanation
Date
\begin{tabular}{|c|c|c|}
\hline 2 & \begin{tabular}{l}
The average price of the units in inventory after the receipt must be calculated: \\
Add the units and the total cost Divide the total cost by the total units to obtain the average price per unit.
\end{tabular} & \(\left.\begin{array}{rl}(250+750 & =1000) \\ (R 375+R 1350 & =R 1725) \\ (R 1725 & \div 1000\end{array}=\mathrm{R} 1,725\right)\) \\
\hline 5 & \begin{tabular}{l}
All the units are issued at the average price. \\
To determine the balance, calculate the value of the units in inventory at the average price.
\end{tabular} & \((700 \times \mathrm{R} 1,725=\mathrm{R} 1207,50)\) \\
\hline 11 & A new average price is calculated after each receipt. & \((\mathrm{R} 2307,50 \div 1200=\mathrm{R} 1,923)\) \\
\hline 12 & Units are returned to the supplier at the actual cost price. A new average price is calculated. & \((\mathrm{R} 1947,50 \div 1000=\mathrm{R} 1,948)\) \\
\hline 13 & \begin{tabular}{l}
All the units are issued at the average price. \\
The rounding causes a small change in the average.
\end{tabular} & \\
\hline 21 & Units are returned from the factory at the average price at which they were last issued. & \\
\hline
\end{tabular}

NOTE

The average price per unit is rounded off to three decimals. This may result in very small changes in the average price after issues or returns to or from production, because the average price is the result of total cost of inventory divided by the units on hand.

The value of the inventory on hand at 21 February is R1 265,70.

\section*{3 Summary}

In this study unit, you learnt how to value inventory on hand and issues to production using the weighted average method.

\section*{Self-assessment Activity}

\section*{QUESTION 1}

Use the same information given in Question 1 of the previous self-assessment activity.

\section*{REQUIRED}

If the weighted average method of inventory valuation was used, at what unit cost would the issue on 15 November be made? (Show all your calculations.)

\section*{QUESTION 2}

Use the same information given in Question 2 of the previous self-assessment activity.

\section*{REQUIRED}

What is the total value of the closing balance on 8 October when the weighted average method of inventory valuation is used?

Comprehensive Self-assessment Activity

\section*{QUESTION 3}

The following transactions took place in a manufacturing company during the month of September for materials item number 555:
\begin{tabular}{llc} 
01/09 & Opening inventory & 1000 units @ R7,00 per unit \\
\(05 / 09\) & Purchased & 2500 units @ R7,05 per unit \\
\(07 / 09\) & Issued to production & 1400 units \\
\(10 / 09\) & Purchased & 1400 units @ R7,15 per unit \\
\(11 / 09\) & Issued to production & 200 units \\
\(13 / 09\) & Issued to production & \\
\(17 / 09\) & Returned from production - from the & 100 units \\
& issue of 7 September & 400 units for R3 200 \\
\(21 / 09\) & Received an invoice & R80 \\
& Freight charges & 200 units \\
\(22 / 09\) & Returned to supplier (invoice of 10/09) & \(?\)
\end{tabular}

\section*{REQUIRED}
a. If the company uses the FIFO method of inventory valuation, what is the value of item 555 (which the auditors should have found on hand)?
b. If the weighted average method of inventory valuation was used, at what unit cost would the issue on 11 September have been made?

Note: Show your workings. Round off to three decimal places.

\section*{QUESTION 1}

Weighted average method
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date & \multicolumn{3}{|c|}{Receipts} & \multicolumn{3}{|c|}{Issues} & \multicolumn{3}{|c|}{Balance} \\
\hline & Quantity & Price & Amount & Quantity & @ average price & Amount & Quantity & Average price calc & Amount \\
\hline Nov & & R & R & & R & R & & R & R \\
\hline 01 & & & & & & & 500 & 5,50 & 2750 \\
\hline 02 & 2500 & 5,80 & 14500 & & & & \[
\begin{array}{r}
500 \\
2500 \\
\hline 3000
\end{array}
\] & 5,75 & \[
\begin{array}{r}
2750 \\
14500 \\
\hline 17250
\end{array}
\] \\
\hline 06 & & & & 1000 & 5,75 & 5750 & 2000 & 5,75 & 11500 \\
\hline 10 & 3000 & 6,00 & 18000 & & & & \[
\begin{aligned}
& 2000 \\
& 3000 \\
& \hline 5000
\end{aligned}
\] & 5,90 & \[
\begin{array}{r}
11500 \\
18000 \\
\hline 29500
\end{array}
\] \\
\hline 15 & & & & 500 & 5,90 & 2950 & 4500 & 5,90 & 26550 \\
\hline
\end{tabular}

The 500 units will be issued at \(\mathrm{R} 5,90\) per unit on 15 November.

\section*{QUESTION 2}

Weighted average method
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date & \multicolumn{3}{|c|}{Receipts} & \multicolumn{3}{|c|}{Issues} & \multicolumn{3}{|c|}{Balance} \\
\hline & Quantity & Price & Amount & Quantity & @ average price & Amount & Quantity & Average price calc & Amount \\
\hline Oct & & R & R & & R & R & & R & R \\
\hline 01 & & & & & & & 50 & 6,30 & 315 \\
\hline 03 & 1000 & 5,25 & 5250 & & & & \(\begin{array}{r}50 \\ 1000 \\ \hline 1050\end{array}\) & 5,30 & \[
\begin{array}{r}
315 \\
5250 \\
\hline 5565
\end{array}
\] \\
\hline 05 & & & & 1000 & 5,30 & 5300 & 50 & 5,30 & 265 \\
\hline 06 & 500 & 5,50 & 2750 & & & & \(\begin{array}{r}50 \\ 500 \\ \hline 550\end{array}\) & 5,482 & \[
\begin{array}{r}
265 \\
2750 \\
\hline 3015
\end{array}
\] \\
\hline 07 & & & & (20) & \((5,30)\) & (106) & \[
\begin{array}{r}
550 \\
20 \\
\hline 570
\end{array}
\] & 5,475 & \[
\begin{array}{r}
3015 \\
\quad 106 \\
\hline 3121
\end{array}
\] \\
\hline 08 & & & & 400 & 5,475 & 2,190 & 170 & 5,476 & 931 \\
\hline
\end{tabular}

The closing balance on 8 October is R931.

Solution to Comprehensive Self-assessment Activity

\section*{QUESTION 3}
a. FIFO method
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date & \multicolumn{3}{|c|}{Receipts} & \multicolumn{3}{|c|}{Issues} & \multicolumn{3}{|c|}{Balance} \\
\hline Sep & Quantity & Price
\[
\mathbf{R}
\] & Amount R & Quantity & Price R & Amount R & Quantity & Price R & Amount R \\
\hline 01 & & & & & & & 1000 & 7,00 & 7000 \\
\hline 05 & 2500 & 7,05 & 17625 & & & & \[
\begin{aligned}
& 1000 \\
& 2500
\end{aligned}
\] & \[
\begin{aligned}
& 7,00 \\
& 7,05
\end{aligned}
\] & \[
\begin{array}{r}
7000 \\
17625
\end{array}
\] \\
\hline 07 & & & & 600 & 7,00 & 4200 & \[
\begin{array}{r}
400 \\
2500
\end{array}
\] & \[
\begin{aligned}
& 7,00 \\
& 7,05
\end{aligned}
\] & \[
\begin{array}{r}
2800 \\
17625
\end{array}
\] \\
\hline 10 & 1400 & 7,15 & 10010 & & & & \[
\begin{array}{r}
400 \\
2500 \\
1400
\end{array}
\] & \[
\begin{aligned}
& 7,00 \\
& 7,05 \\
& 7,15
\end{aligned}
\] & \[
\begin{array}{r}
2800 \\
17625 \\
10010
\end{array}
\] \\
\hline 11 & & & & \[
\begin{aligned}
& 400 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 7,00 \\
& 7,05
\end{aligned}
\] & \[
\begin{array}{r}
2800 \\
705
\end{array}
\] & \[
\begin{aligned}
& 2400 \\
& 1400
\end{aligned}
\] & \[
\begin{aligned}
& 7,05 \\
& 7,15
\end{aligned}
\] & \[
\begin{aligned}
& 16920 \\
& 10010
\end{aligned}
\] \\
\hline 13 & & & & 2400 & 7,05 & 16920 & 1400 & 7,15 & 10010 \\
\hline 17 & & & & (100) & \((7,00)\) & (700) & \[
\begin{array}{r}
100 \\
1400
\end{array}
\] & \[
\begin{aligned}
& 7,00 \\
& 7,15
\end{aligned}
\] & \[
\begin{array}{r}
700 \\
10010
\end{array}
\] \\
\hline 21 & 400 & 8,20 & 3280 & & & & \[
\begin{array}{r}
100 \\
1400 \\
400
\end{array}
\] & \[
\begin{aligned}
& 7,00 \\
& 7,15 \\
& 8,20 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
700 \\
10010 \\
3280
\end{array}
\] \\
\hline 22 & (200) & \((7,15)\) & (1 430) & & & & (1) \(\begin{array}{r}100 \\ 1200 \\ 400\end{array}\) & \[
\begin{aligned}
& 7,00 \\
& 7,15 \\
& 8,20
\end{aligned}
\] & \[
\begin{array}{r}
700 \\
8580 \\
3280
\end{array}
\] \\
\hline 25 & & & & & & & 1700 & & 12560 \\
\hline
\end{tabular}
(1) \(1400-200=1200\) left from the 10 September consignment.

The value of the inventory on hand at 25 September is R12 560 .
b. Weighted average method
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date & \multicolumn{3}{|c|}{Receipts} & \multicolumn{3}{|c|}{Issues} & \multicolumn{3}{|c|}{Balance} \\
\hline & Quantity & Price & Amount & Quantity & average price & Amount & Quantity & Average price calc & Amount \\
\hline Sep & & R & R & & R & R & & R & R \\
\hline 01 & & & & & & & 1000 & 7,00 & 7 000,00 \\
\hline 05 & 2500 & 7,05 & 17625 & & & & \[
\begin{aligned}
& 1000 \\
& \frac{2500}{3500}
\end{aligned}
\] & 7,036 & \[
\begin{array}{|r}
\hline 7000,00 \\
17625,00 \\
\hline 24625,00
\end{array}
\] \\
\hline 07 & & & & 600 & 7,036 & 4 221,60 & 2900 & 7,036 & 20 403,40 \\
\hline 10 & 1400 & 7,15 & 10010 & & & & \[
\begin{aligned}
& 2990 \\
& 1400 \\
& \hline 4300
\end{aligned}
\] & 7,073 & \[
\begin{aligned}
& \hline 20403,40 \\
& 10010,00 \\
& \hline 30413,40
\end{aligned}
\] \\
\hline 11 & & & & 500 & 7,073 & 3 536,50 & 3800 & 7,073 & 26 876,90 \\
\hline
\end{tabular}

The issue on the 11 September would be made at R7,073 per unit.

\title{
Valuing completed inventories: the variable/direct costing method versus the traditional absorption costing method
}

\section*{LEARNING OUTCOMES}

After studying this topic, you should be able to:
- identify the differences between the direct and absorption costing method
- draft the income statements according to both the direct and absorption costing method by using different inventory valuation methods
- reconcile the difference between the direct and absorption costing methods' net profits
- identify which method is most appropriate in different circumstances


STUDY UNIT
Study unit 9
Study unit 10

\section*{TITLE}

The direct costing method versus the absorption costing method Reconciling differences between net profits

\section*{Introduction}

In this topic we are going to discuss two different methods of cost determination: the direct costing method and the traditional absorption costing method. The differences between the two methods in terms of presentation formats and cost determination will be explained. In this topic, we shall be extending the concepts of topic 3 on the FIFO method vs weighted average (WAM) method of inventory valuation to manufactured inventory.

We will then proceed to draft a statement of comprehensive income for both costing methods and reconcile any differences between the net profits. We will conclude this topic by discussing the uses, and the advantages and disadvantages of both costing methods.

\section*{The direct costing method versus the absorption costing method}

\section*{In this study unit}


\section*{1 Introduction}

In this study unit we are going to define both the absorption costing and direct costing method. For both methods, we will demonstrate how the Statement of Comprehensive Income is presented and we will also explain how to use each method to value closing inventory.

\section*{2 Allocating manufacturing cost}

In order to calculate the manufacturing cost per unit, the most important objective of product costing is to allocate the total manufacturing cost incurred during a certain period to the total number of units manufactured during that period. In a traditional absorption costing method the manufacturing cost per unit is calculated simply by dividing the total manufacturing cost for a certain period by the number of units manufactured during the period in question.

For example:
Total manufacturing cost for 10000 units \(=\quad\) R50 000,00
\(\therefore\) Cost per unit
\[
=\quad \mathrm{R} 5,00
\]

When the unit cost is known, it becomes easier to allocate the total manufacturing cost between units that are still in inventory and the units that have been sold. We need this information to be able to calculate the net profit of the enterprise for the period, which is one of the most important goals of cost accounting.

Two methods of cost determination have been developed, based on different schools of thought. These two methods are: the direct/variable costing method and the absorption/ full costing method. Each of the two costing methods has different applications. For Financial Accounting purposes or IFRS, the absorption costing method is prescribed, but for various decision-making purposes the direct costing method may provide more useful information.

\section*{3 Different costing concepts}

\section*{DIRECT COSTING METHOD (OR VARIABLE / MARGINAL)}

Only variable manufacturing costs, namely direct materials, direct labour and variable manufacturing overheads, are taken into account when inventory is valued Variable selling and distribution costs are added to arrive at the total variable cost. All variable costs are therefore accounted for to arrive at marginal income. Variable non-manufacturing costs, as well as ALL fixed costs, will be treated as period costs.

\section*{ABSORPTION COSTING METHOD}

The absorption costing method includes both variable and fixed manufacturing costs in the product cost. It excludes all non-manufacturing costs, which are treated as period costs.

\section*{PRODUCT COST (DIRECT COSTING SYSTEM)}

Product cost is the variable cost incurred in the manufacturing of a product.

\section*{PRODUCT COST (ABSORPTION COSTING SYSTEM)}

Product cost is the variable plus the fixed costs incurred in the manufacturing of a product.

NOTE

In topic 1 we mentioned that there would be a variation in the basic definition of "product cost" when we come to topic 4 . The product cost will depend on the costing system (direct or absorption) and, therefore, on the costs to be included in the valuation of inventory.

When the absorption costing method is used, budgeted fixed manufacturing costs are recovered on the basis of the budgeted number of units manufactured during the period or budgeted total production hours. You will remember (refer to study unit 6, in the section on overheads) that this is referred to as the "fixed production overhead allocation rate"

The product therefore "absorbs" both variable and fixed manufacturing costs. The larger the number of units manufactured, the lower the absorption unit cost, because the same amount of total fixed manufacturing costs are recovered by a larger number of products.

The following diagram compares the cost flows of manufacturing cost for the direct and absorption costing methods:

\section*{DIRECT COSTING METHOD}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Direct material \\
Direct labour \\
Variable manufacturing \\
overheads
\end{tabular}
\end{tabular}\(\longrightarrow\)\begin{tabular}{l} 
Included in cost of all \\
goods produced
\end{tabular}\(\longrightarrow\)\begin{tabular}{l} 
Only debited against \\
income when goods \\
are sold
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Fixed manufacturing \\
overheads
\end{tabular} & \begin{tabular}{l} 
Debited immediately \\
against income for the \\
accounting period un- \\
der review
\end{tabular} \\
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ABSORPTION COSTING METHOD} \\
\hline Direct material Direct labour Variable manufacturing overheads Fixed manufacturing overheads & Included in cost of all goods produced & Only debited against income when goods are sold \\
\hline
\end{tabular}

\section*{CONTRIBUTION}

Amount for which product is sold less all variable costs.

You will remember from study unit 3 (cost-volume-profit analysis) that, when contribution is determined, all fixed costs (manufacturing and non-manufacturing) are written off against income as period costs for the period in which they are incurred. However, variable selling and distribution costs are also deducted to arrive at contribution.

For example, let us say the selling price per unit is R50, the variable manufacturing cost per unit is \(\mathbf{R 2 7}\) and the variable selling cost per unit is \(\mathbf{R 8}\); in this case, the contribution would be R15. However, the R8 is not applied when inventory is valued.

\section*{NOTE}
(1) We only allocate FIXED MANUFACTURING costs to products in the absorption costing method. Fixed selling, distribution and administrative costs are NEVER allocated to products. They are expensed in the same way as for the direct costing method.

For the direct costing method, variable selling and distribution costs are only DEDUCTED to arrive at the contribution figure. They are NEVER included in the valuation of inventory, because they are only incurred once the product is sold!

\section*{4 Presentation formats of the different statements of comprehensive income}

When applying either costing method, you should note that each has very specific formats in which the statement of comprehensive income should be presented. You will forfeit marks for using the incorrect format.
a.

Direct costing method
Sales
Less: Variable cost of sales

\(=\) net profit before tax
b.

Absorption costing method
Sales
Less: Manufacturing cost of sales

\(=\) net profit before tax

\section*{NOTE}

VERY IMPORTANT: When there is neither opening nor closing inventory on hand, statements of comprehensive income drafted according to the direct and absorption costing methods will result in the same net profit. If there is inventory on hand, the difference in net profit shown in income statements drafted according to the two methods can be reconciled by taking into account the differences between opening and closing inventory values (according to the two methods). This will be explained further in study unit 10.

We will now illustrate the application of the different formats by means of an example.

\section*{Activity 9.1}

\section*{Statement of comprehensive income}

ABC Ltd. manufactures a single product. The particulars for February 20X1 are as follows:

Units manufactured and sold 18750
Selling price per unit R 100
Manufacturing cost:
- Variable R468750
- Fixed R187500

Selling and administrative cost:
- Variable selling cost (R5,00 per unit) R 93750
- Fixed selling cost R 50000
- Fixed administration cost R 12500

\section*{REQUIRED}
a. Draft the statement of comprehensive income for the month ended 28 February 20X1 according to the:
i. direct costing method
ii. absorption costing method
b. Do the same as in a. above, but assume that only 15000 of the 18750 units were sold during February 20X1.

\section*{Solution to Activity 9.1}
a. Scenario 1: no opening or closing inventory
i. Direct costing method

\section*{ABC LTD}

Contribution statement of comprehensive income for the month ended 28 February 20X1
\begin{tabular}{lr} 
R \\
Sales (18 \(750 \times 100)\) & 1875000 \\
Less: \(V\) Variable cost & 562500 \\
Variable manufacturing cost & 468750 \\
Variable selling cost & \begin{tabular}{r}
133750 \\
\hline Contribution \\
Less: Fixed cost \\
\(\quad\) Manufacturing \\
Selling \\
Administration \\
Net profit before tax
\end{tabular} \\
\hline
\end{tabular}
ii. Absorption costing method

\section*{ABC LTD}

Statement of comprehensive income for the month ended 28 February 20X1
\begin{tabular}{lr} 
R \\
Sales (18 \(750 \times 100\) ) & 1875000 \\
Less: Manufacturing cost of sales & 656250 \\
\hline Variable & 468750 \\
Fixed & 187500 \\
\hline Gross profit & 1218750 \\
Less: Selling and administrative cost & \begin{tabular}{r}
93750 \\
Variable selling \\
Fixed selling \\
Administration
\end{tabular} \\
Net profit before tax & 125000 \\
\hline
\end{tabular}

NOTE
(1) According to both costing methods, the net profit is R1 062 500. This is because there was neither opening, nor closing inventory on hand.
(2) It is very important that you apply the different formats correctly.

\section*{b. Scenario 2: closing inventory}
i. Direct costing method

\section*{ABC LTD}

Contribution statement of comprehensive income for the month ended 28 February 20X1

\section*{R}

Sales (15000 x R100) 1500000
Less: Variable cost of sales 450000
Opening inventory
Variable manufacturing cost
Less: Closing inventory (3 750 (2) \(\times\) R25 (1) )
Variable manufacturing cost Variable selling cost (15 \(000 \times\) R5)
\(\stackrel{-}{-}\)
93750
375000
75000
Contribution
1050000
Less: Fixed costs
250000
Manufacturing
187500
Selling
50000
Administration
Net profit before tax
800000
(1) Total variable manufacturing cost

Total units manufactured
\(=\underline{R 468750}\)
18750
\(=\mathrm{R} 25\) variable manufacturing cost per unit
(2) Opening inventory + production sales \(=\) closing inventory (in units)
\(0+18750-15000=3750\)

\section*{ii. Absorption costing method}

\section*{ABC LTD \\ Statement of comprehensive income for the month ended 28 February 20X1}
\begin{tabular}{|c|c|}
\hline & R \\
\hline Sales (15000 x R100) & 1500000 \\
\hline Less: Manufacturing cost of sales & 525000 \\
\hline Opening inventory & - \\
\hline Manufacturing cost - variable & 468750 \\
\hline - fixed & 187500 \\
\hline & 656250 \\
\hline Less: Closing inventory (3750(from (i)) x R35 (3) & 131250 \\
\hline Gross profit & 975000 \\
\hline Less: Selling and administrative cost & 137500 \\
\hline - Variable selling (15000 0 R5) & 75000 \\
\hline - Fixed selling & 50000 \\
\hline - Administration & 12500 \\
\hline Net profit before tax & 837500 \\
\hline (3) Total manufacturing cost & \\
\hline Total units manufactured & \\
\hline \(=\underline{\mathrm{R} 656250}\) & \\
\hline 18750 & \\
\hline \(=\) R35 manufacturing cost per unit & \\
\hline
\end{tabular}

NOTE

Note that the net profits as calculated by the two costing methods differ. This is because there was inventory on hand and, in the case of the absorption costing method, fixed manufacturing costs are included in the value of the closing inventory and deferred to the balance sheet until sold.

When the quantity (units) of inventory on hand increases, the direct costing method will show a lower net profit than the absorption costing method. This is because the absorption costing method will incorporate a portion of the fixed manufacturing cost (since it is a debit on the balance sheet) for the period in the cost of inventory on hand. The cost of closing inventory is held back for future periods; in other words, it includes a portion of fixed manufacturing cost.

\section*{5 Impact of the weighted average method and the FIFO method on both costing methods}

Now that you understand the difference in formats, we will use the next two examples to illustrate what happens to profit if we change the inventory valuation method. In topic 3 we worked with purchased inventory, or raw materials. In this study unit, we will now apply the same concepts to manufactured inventory. We will now treat the manufacturing cost per unit the same as the purchase price. You will remember from
topic 3 that, if we use FIFO, the oldest inventory is issued first from the store at the price at which it was acquired. In this study unit, this means that the oldest manufactured inventory is sold first. If we use the weighted average method, a new average price is calculated every time that new inventory is acquired. In this study unit, issues or sales are then at the new average price per manufactured unit.

\section*{Activity 9.2}

Different inventory valuation method: the weighted average method
The following information was obtained from the accounting records of XYZ Ltd. for the year ended 31 December 20X0 and from the budget for 20X1:
\begin{tabular}{lcr} 
& \begin{tabular}{c} 
Actual \\
\(\mathbf{2 0 X 0}\) \\
Units
\end{tabular} & \begin{tabular}{c} 
Budgeted \\
\(\mathbf{2 0 X 1}\) \\
Units
\end{tabular} \\
Inventory at the beginning of the year & \(\mathbf{N i l}\) & 7000 \\
Production for the year & 168000 & 154000 \\
Sales for the year & 161000 & 140000 \\
& & \\
Fixed cost: & \(\mathbf{R}\) & \(\mathbf{R}\) \\
Manufacturing & 252000 & 336000 \\
Sales and administration & 252000 & 252000 \\
Variable cost per unit: & 8,40 & 11,20 \\
\(\quad\) Manufacturing & 2,80 & 2,80 \\
Selling cost & 28,00 & 35,00
\end{tabular}

The enterprise uses the weighted average method of inventory valuation. Refer to topic 3 if you need to revise this method and how it is applied.

\section*{REQUIRED}

Draft the budgeted statements of comprehensive income for the year ending 31 December 20X1 according to:
a. the direct costing method; and
b. the absorption costing method in order that the differences between the two approaches are clearly illustrated.

Show the calculations to the nearest rand.
You may assume that:
i. the 20X1 budgeted opening inventory was correctly valued at the 20X0 actual closing values; and
ii. in 20X0, the actual number of units produced and actual fixed manufacturing cost were equal to budget, resulting in the budgeted fixed overhead allocation rate being the same as that based on the actual figures provided above.

Solution to Activity 9.2
a. Weighted average method: direct costing

\section*{XYZ LTD}

Budgeted contribution statement of comprehensive income for the year ended 31 December 20X1
\begin{tabular}{|c|c|}
\hline & R \\
\hline Sales (140 \(000 \times \mathrm{R} 35\) ) & 4900000 \\
\hline Less: Variable cost of sales & 1942957 \\
\hline Opening inventory ( \(7000 \times \mathrm{R} 8,40\) ) & 58800 \\
\hline Variable manufacturing cost (154 \(000 \times \mathrm{R} 11,20\) ) & 1724800 \\
\hline Cost of goods available for sale & 1783600 \\
\hline Less: Closing inventory & 232 643(1) \\
\hline Variable manufacturing cost of sales & 1550957 \\
\hline Variable selling cost (140 \(000 \times\) R2,80) & 392000 \\
\hline Contribution & 2957043 \\
\hline Less: Fixed cost & 588000 \\
\hline Manufacturing & 336000 \\
\hline Selling and administrative & 252000 \\
\hline Net profit before tax & 2369043 \\
\hline
\end{tabular}
\begin{tabular}{lr} 
& \multicolumn{1}{c}{ Units } \\
(1) Opening inventory \((168000-161000)=\) given & 7000 \\
Budgeted production for the year & \(\frac{154000}{161000}\) \\
Units available for sale & \(\underline{140000}\) \\
Less: Budgeted sales for the year & \(\underline{\underline{21000}}\) \\
Budgeted closing inventory &
\end{tabular}

Calculation of the value of 21000 units in the closing inventory:
\(\frac{\text { Units of closing inventory }}{\text { Units available for sale }} \quad x \quad \frac{\text { variable cost of goods available for sale }}{1}\)
\(=\frac{21000}{161000}\)
\(x \quad \frac{R 1783600}{1}\)
= R232 643

NOTE
(1) Can you see that the variable manufacturing cost of the opening inventory is INCLUDED in the figure used to calculate the weighted average cost per unit?
(2) Do you think it is prudent to budget for such an increase in inventory on hand

\section*{b. Weighted average method: absorption costing method}

XYZ LTD
Budgeted statement of comprehensive income for the year ended 31 December 20X1
\begin{tabular}{|c|c|}
\hline & R \\
\hline Sales (140 \(000 \times \mathrm{R} 35\) ) & 4900000 \\
\hline Less: Manufacturing cost of sales & 1852261 \\
\hline Opening inventory & 69 300 1 1 \\
\hline Manufacturing cost: & \\
\hline Variable (154 \(000 \times \mathrm{R} 11,20\) ) & 1724800 \\
\hline Fixed & 336000 \\
\hline Cost of goods available for sale & 2130100 \\
\hline Less: Closing inventory & 277 839 (2) \\
\hline Gross profit & 3047739 \\
\hline Less: Selling and administrative cost & 644000 \\
\hline Variable (140 \(000 \times \mathrm{R} 2,80\) ) & 392000 \\
\hline Fixed & 252000 \\
\hline Net profit before tax & 2403739 \\
\hline (1) Calculation of the value of opening inventory: & \\
\hline Manufacturing cost for 20X0: & R \\
\hline Variable (168 \(000 \times \mathrm{R8}, 40\) ) & 1411200 \\
\hline Fixed & 252000 \\
\hline Cost of manufacturing 168000 units & \(\underline{\underline{1663200}}\) \\
\hline
\end{tabular}

Calculation of the value of the 7000 units in opening inventory:
\begin{tabular}{|c|c|}
\hline Units of closing inventory x & manufacturing cost \\
\hline Units manufactured & 1 \\
\hline \(=7000 \mathrm{x}\) & R1 663200 \\
\hline 168000 & \\
\hline \multicolumn{2}{|l|}{\(=\) R69 300 value of opening inventory (20X0)} \\
\hline or & R \\
\hline Variable cost per unit & 8,40 \\
\hline \multirow[t]{2}{*}{Fixed cost per unit R252 000/ 168000} & 1,50 \\
\hline & 9,90 \\
\hline Number of units (7000 \(\times\) R9,90) & R69 300 \\
\hline
\end{tabular}
(2) Calculation of the value of closing inventory:

Calculation of the value of the 21000 units in the closing inventory:
\(\frac{\text { Units of closing inventory }}{\text { Units available for sale }} \quad x \quad \frac{\text { value of goods available for sale }}{1}\)
\[
\begin{aligned}
& =\frac{21000}{161000}(7000+154000) \quad x \quad \frac{R 2130100}{1} \\
& =R 277839 \text { value of closing inventory }
\end{aligned}
\]

NOTE
(1) The closing inventory for the previous period is the opening inventory for the current period.
(2) The number of units in inventory remains the same regardless of costing method or inventory valuation method.

\section*{Activity 9.3}

Different inventory valuation methods: FIFO method
We use the same information and "REQUIRED" as in Activity 9.2, but now the company uses the FIFO method of inventory valuation.

\section*{Solution to Activity 9.3}

\section*{a. FIFO: direct costing}

XYZ LTD
Budgeted contribution statement of comprehensive income for the year ended 31 December 20X1
\begin{tabular}{|c|c|}
\hline & R \\
\hline Sales (140 \(000 \times \mathrm{R} 35\) ) & 4900000 \\
\hline Less: Variable cost of sales & 1942957 \\
\hline Opening inventory ( \(7000 \times \mathrm{R} 8,40\) ) & 58800 \\
\hline Variable manufacturing cost (154 \(000 \times \mathrm{R} 11,20\) ) & 1724800 \\
\hline Cost of goods available for sale & 1783600 \\
\hline Less: Closing inventory & 235 200 1 \\
\hline Variable manufacturing cost of sales & 1548400 \\
\hline Variable selling cost (140 \(000 \times \mathrm{R} 2,80\) ) & 392000 \\
\hline Contribution & 2959600 \\
\hline Less: Fixed cost & 588000 \\
\hline Manufacturing & 336000 \\
\hline Selling and administrative & 252000 \\
\hline Net profit before tax & 2371600 \\
\hline (1) R11,20 \(\times 21000\) & \\
\hline \(=\mathrm{R} 235200\) & \\
\hline
\end{tabular}

\section*{b. FIFO: absorption costing method}

\section*{XYZ LTD}

\section*{Budgeted statement of comprehensive income for the year ended 31 December 20X1}
\begin{tabular}{|c|c|}
\hline Sales (140 \(000 \times \mathrm{R} 35\) ) & 4900000 \\
\hline Less: Manufacturing cost of sales & 1852261 \\
\hline Opening inventory from (a) & 69300 \\
\hline Manufacturing cost: & \\
\hline Variable (154 \(000 \times \mathrm{R} 11,20\) ) & 1724800 \\
\hline Fixed & 336000 \\
\hline Cost of goods available for sale & 2130100 \\
\hline Less: Closing inventory & 281018 (1) \\
\hline Gross profit & 3050918 \\
\hline Less: Selling and administrative cost & 644000 \\
\hline Variable (140 \(000 \times \mathrm{R} 2,80\) ) & 392000 \\
\hline Fixed & 252000 \\
\hline Net profit before tax & 2406918 \\
\hline
\end{tabular}
(1) Calculation of the value of closing inventory:
\[
\begin{aligned}
& =\frac{21000}{154000} \\
& =R 281018
\end{aligned}
\]

NOTE

Did you see that the closing inventory units were only valued based on the 20X1 production costs? The cost of the opening inventory was carried to cost of sales first.

\section*{6 Summary}

In this study unit, you learnt about the absorption and direct costing methods. You also learnt how to draft a statement of comprehensive income for both costing methods based on different inventory valuation approaches. In the next study unit we are going to reconcile the difference between net profits.

Refer to the end of study unit 10, where you will find additional self-assessment activities on these costing methods and how they work.

\section*{Reconciling differences between net profits}


\section*{1}

\section*{Introduction}

As illustrated in study unit 9 , there is a difference between the net profits of the different costing methods (direct and absorption). Not only does the format of the two methods differ, but the valuation of inventory is also calculated differently. In the case of the absorption costing method, fixed costs are brought into calculation whereas, in the case of the direct costing method, only variable costs are taken into calculation (ie when the inventory is valued). Furthermore, whether the organisation uses the FIFO or weighted average method for valuing production inventories also has an influence on the profit.

Students are required to be able to reconcile the difference in profits. As explained above, the difference is in the inventory values. In this study unit we are going to reconcile the difference in inventory values seen in the activities set in study unit 9 . Once you realise the difficulties associated with these different costing methods, you will be in a better position to appreciate the advantages and disadvantages of each method.

\section*{2 Reconciling profits using that were determined using different bases}

The difference in the profits between the direct and absorption method is attributable to the amount of fixed production costs deferred to the statement of financial position as part of the closing inventory value. The activities that follow will demonstrate how we do this.

NOTE

No reconciliation of Activity 9.1 (a) is required. There were neither opening, nor closing inventory on hand and therefore net profits did not differ (all manufacturing costs were counted as cost of sales for the period).

\section*{Activity 10.1 (see Activity 9.1 (b))}

Net profit according to:
Direct costing method R

Absorption costing method
800000
Difference
Difference to be reconciled
37500

Opening inventory according to:
Direct costing method 0
Absorption costing method
Difference

Closing inventory according to:

Direct costing method
 93750

Absorption costing method \(\underline{131250}\)
Difference
37500
Reconciliation in rand value
Opening inventory difference 0
Closing inventory difference \(\quad 37500\)
Difference in profits \(\quad \underline{\underline{37500}}\)
Reconciliation in units
Fixed cost in opening inventory ( 0 units)
Fixed cost in closing inventory (R187 500/18 750) x 3750 units) 37500
Difference

NOTE

Can you see that inventory levels increased (closing units vs opening units) during the period, resulting in a higher net profit reflected for the absorption costing method?

\section*{Activity 10.2 (see Activity 9.2)}
R
Net profit according to:
Direct costing method ..... 2369043
Absorption costing method 2403739
Difference to be reconciled ..... 34696
Opening inventory according to:
Direct costing method ..... 58800
Absorption costing method ..... 69300
Difference ..... 10500
Closing inventory according to:
Direct costing method ..... 232643
Absorption costing method ..... 277839Difference45196Reconciliation in rand value:Opening inventory difference10500
Closing difference ..... 45196Difference in profits34696
R
Reconciliation in units:
Fixed cost in opening inventory (7 \(000 \times \mathrm{R} 1,50\) ) ..... 10500Fixed cost in closing inventory\((\mathrm{R} 10500+\mathrm{R} 336000) /(7000+154000)=\mathrm{R} 2,1522\) per unit21000 units \(\times\) R2,1522 per unit \(=\quad 45196\)
Difference ..... 34696

\section*{NOTE}

Can you see that inventory levels increased (closing units vs opening units), resulting in a higher net profit for the absorption costing method?

\section*{Activity 10.3 (see Activity 9.3)}
\begin{tabular}{|c|c|}
\hline & R \\
\hline \multicolumn{2}{|l|}{Net profit according to:} \\
\hline Direct costing method & 2371600 \\
\hline Absorption costing method & 2406918 \\
\hline Difference to be reconciled & 35318 \\
\hline \multicolumn{2}{|l|}{Opening inventory according to:} \\
\hline Direct costing method & 58800 \\
\hline Absorption costing method & 69300 \\
\hline Difference & 10500 \\
\hline \multicolumn{2}{|l|}{Closing inventory according to:} \\
\hline Direct costing method & 235200 \\
\hline Absorption costing method & 281018 \\
\hline Difference & 45818 \\
\hline \multicolumn{2}{|l|}{Reconciliation in rand value:} \\
\hline Opening inventory difference & 10500 \\
\hline Closing inventory difference & 45818 \\
\hline Difference in profits & 35318 \\
\hline \multicolumn{2}{|l|}{Reconciliation in units:} \\
\hline Fixed cost in opening inventory (7000 units x R1,50) & 10500 \\
\hline \multicolumn{2}{|l|}{Fixed cost in closing inventory} \\
\hline R336 000/R154 \(000=\) R2,1818 (1) & \\
\hline 21000 units \(\times\) R2,1818 = & 45818 \\
\hline Difference & 35318 \\
\hline
\end{tabular}

NOTE
(1) The unit increase in inventory was the same as in Activity 10.2, but with an even further increase in net profit. Using the FIFO method, the closing inventory PER UNIT was valued at R2,1818; using the weighted average method, EACH UNIT was valued at R2,1522. The net profit was therefore even higher.
(2) Under inflationary conditions (rising prices), FIFO method will result in a higher unit cost than the weighted average method.
(3) As you can see from the activities above, the net profit reconciliation is a simple calculation. Note that net profit reconciliation is a fairly regular examination question and usually means that you can get approximately three easy marks.

\section*{3 Advantages, disadvantages and uses of the direct costing method}

The direct costing method has certain advantages and disadvantages. In the following section we will look at its advantages first and then at its disadvantages. We will also look into its uses, which are based on its advantages.

\subsection*{3.1 Advantages}
- Operating results can be presented in a readily understandable form.
- Operating results calculated according to the direct costing method are of particular importance to management especially in terms of:
- the effect of changes of output volume and product mix on the organisation's profitability;
- the calculation and adjustment of special order selling prices; and
- he significance of fixed cost as a percentage of total cost.
- The direct costing method helps to overcome the problem of allocating fixed costs and limits or eliminates the dangers attached to the over or under allocation of fixed overheads to certain products.

\subsection*{3.2 Disadvantages}
- The revenue authorities and IFRS do not recognise the valuation of work in process and finished goods according to the direct costing method.
- The danger of over costing or under costing products in terms of overheads is undoubtedly reduced, but there is nevertheless the risk that people might try to compare the relative profitability of groups of products that are not really comparable. Suppose, for example, product A is manufactured mainly by means of manual labour and product B requires the use of expensive machinery; this means that product A will require far fewer fixed overheads than product B . If the profitability of these two groups of products were to be compared on the basis of their contributions, serious errors could result.

\subsection*{3.3 Uses}

In practice, the direct costing method is used mainly for the following purposes:
- In general, the direct costing method should not be regarded as an independent costing method, but merely as a method of presenting additional cost data. It can be successfully used in conjunction with absorption and standard costing methods. If a variety of products are manufactured and/or semi-variable costs make up an important part of total cost, extreme caution is needed if the direct costing method is to be used to determine selling prices. In such cases, direct costing should be used as a guideline and not as the basis for pricing.
- Presenting cost data to management in an understandable manner.This enables management to make better decisions on issues such as the expansion or reduction of output, the utilisation of idle capacity, etcetera.
- Setting selling prices under current or expected market conditions for organisations classified as price setters. After factors such as the sales policy, the marginal cost of each product group and the prices of alternative products have been taken into account, the person responsible for setting the prices is able to decide what contribution each product group should be making to the total contribution. The selling prices of the various product groups are then calculated. You will learn more about this in third year. This subject is closely linked with strategic decision-making.
- Determining prices for special or one-off orders. You will learn more about this in part 4 - Relevant costing.

\section*{4 Advantages, disadvantages and uses of the absorption costing method}

The absorption costing method has advantages and disadvantages. In the following section we will firstly look at its advantages and then at its disadvantages. We will also look into its uses (which are based on its advantages).

\subsection*{4.1 Advantages}
- The valuation of work in process and finished goods by means of the absorption costing method is accepted by the accounting profession and revenue authorities.
- Recognises the importance of fixed cost in price determination and decision-making.
- It prevents the reporting of fictitious losses. In an organisation which relies on seasonal sales and builds up production out of season to meet the demand, the direct costing method would lead to all fixed manufacturing overheads being debited against profits. Because there are little or no sales at certain times of the year, losses would be reported out of season and large profits in season. In contrast, if the absorption costing method were applied, the same organisation would defer fixed manufacturing overheads to the balance sheet by including them in the closing inventory valuation. These overheads will only be recorded as an expense during the period in which the goods are sold. Under these circumstances, the absorption costing method offers a more logical method of calculating profits.

\subsection*{4.2 Disadvantages}
- Fixed cost is not considered a relevant cost for short-term decision-making purposes because it is already committed; therefore the absorption costing method is seldom used in short-term decision-making.
- There is a danger attached to the over costing or under costing of fixed overheads if an incorrect or unrelated cost driver allocation base is used (refer to topic 5 on activity based costing).

\subsection*{4.3 Uses}

In practice, the absorption costing method is used mainly for the following purposes:
- As discussed before, the absorption costing method is the mandated method for financial accounting purposes under IFRS.
- For organisations with substantial fixed costs, the absorption costing method is the preferred accounting method.

\section*{Activity 10.4}

STR Ltd. is a manufacturing enterprise listed on the JSE. The board of directors has to decide what costing method the company will use for their annual financial statements. Please advise STR Ltd. on an appropriate costing method.

\section*{Solution to Activity 10.4}

The absorption costing method should be used. Note that the absorption costing method is the only acceptable costing method for IFRS.

\section*{Activity 10.5}

MNO Ltd. is a manufacturing enterprise. "In-house" financial statements are compiled every three months to evaluate performance and plan for future endeavours. MNO's management accountant wants your advice on which costing method should be used.

\section*{Solution to Activity 10.5}

The direct costing method, because only variable costs are taken into consideration as far as product cost is concerned. For decision-making purposes, only variable costs are (usually) taken into account, which is why the direct costing method is to be recommended in this case. You will learn more about relevant costs for decision-making in topic 11.

\section*{5 Summary}

In this study unit, you learnt how to reconcile the profits between the two methods. This can be summarised as follows:
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Inventory levels stay the \\
same
\end{tabular} & Direct costing net profit = & Absorption costing net profit \\
\hline Inventory levels increase & Direct costing net profit < & Absorption costing net profit (1) \\
\hline Inventory levels decrease & Direct costing net profit > & Absorption costing net profit (2) \\
\hline
\end{tabular}

NOTE

The abovementioned table is based on the assumption that prices are increasing (inflationary environment).

The differences arise because of the fixed production costs component included in inventory valuations that are based on absorption costing principles.
(1) Fixed cost deferred to balance sheet, because more fixed cost is carried in inventory.
(2) Fixed cost deferred from balance sheet, because the fixed cost carried in inventory is taken to the income statement.

You also learnt about the advantages and disadvantages of using both methods and the best method to use in different circumstances.

\section*{REFLECT}

After studying the theory above, can you answer the following questions?
- List the advantages of the direct costing method.
- List the disadvantages of the absorption costing method.
- Describe the uses for the direct and absorption costing methods.

\section*{QUESTION 1}

FRAMES LTD

The following information was extracted from the accounting records of FRAMES Ltd. for the year ended 31 August 20X0 and their 20X1 budget:
\begin{tabular}{lrr} 
& \begin{tabular}{c} 
20X0 \\
Actual
\end{tabular} & \begin{tabular}{c} 
20X1 \\
Budget
\end{tabular} \\
Total manufacturing cost per unit & \(\mathrm{R} 15,15\) & \(? ? ?\) \\
Completed units beginning of the year & 4000 & 8000 \\
Manufactured for the year & 35000 & \(? ? ?\) \\
Sales for the year (units) & \(? ? ?\) & 42000 \\
Fixed costs & & \\
\(\quad\) Production & \(? ? ?\) & R325 000 \\
\(\quad\) Selling and administration & \(R 10,20\) & \(R 158000\) \\
Variable cost per unit & \(R 1,25\) & \(R 11,00\) \\
\(\quad\) Production & \(R 1,40\)
\end{tabular}

The company applies the FIFO method as its inventory valuation method.

\section*{FRAMES LTD}

\section*{Budgeted statement of comprehensive income for the year ended 31 August 20X1}
\begin{tabular}{|c|c|}
\hline & R \\
\hline Sales & 1050000 \\
\hline Less: Cost of sales & 802144 \\
\hline Opening inventory & 121200 \\
\hline Production costs & 721000 \\
\hline Less: Closing inventory & (40 056) \\
\hline Gross profit & 247856 \\
\hline Less: Selling and administrative costs & (216 800) \\
\hline Net profit before tax & 31056 \\
\hline
\end{tabular}

\section*{REQUIRED}
a. What is the method of cost determination used in the statement of comprehensive income above (ie the direct or absorption costing method)?
b. Calculate the budgeted number of units to be manufactured during the financial year 20X1.
c. Calculate the budgeted number of units on hand at 31 August 20X1.
d. Draft the budgeted statement of comprehensive income for the year ended 31 August 20X1 using the direct costing method.
e. Reconcile the difference in net profit before tax between the income statement given, and the income statement in d.

You may assume that:
i. The 20X1 budgeted opening inventory was correctly valued at the 20X0 actual closing values.
ii. In 20X0, the actual number of units produced and actual fixed manufacturing cost were equal to budget, resulting in the budgeted fixed overhead allocation rate being the same as that based on the actual figures provided above.

\section*{QUESTION 2}

\section*{MALUMI (PTY) LTD}

The following information is available for Malumi (Pty) Ltd, the manufacturer of a popular fashion accessory, for the months March, April and May 20X1:

\section*{March 20X1}
\begin{tabular}{lr} 
Opening inventory (units) & Nil \\
Production (units) & 81000 \\
Sales (units) & \(?\) \\
April 20X1 & 9000 \\
\begin{tabular}{l} 
Opening inventory (units) \\
Opening inventory value based on direct costing principles (FIFO) \\
Opening inventory value based on absorption costing principles \\
(FIFO)
\end{tabular} & R166 500 \\
\hline
\end{tabular}

\section*{Additional information}
- Fixed manufacturing costs remained the same as in March 2011.
- Variable manufacturing costs per unit remained the same as in March 2011.
- Production units increased by \(10 \%\) and sales units by \(5 \%\) from March 2011 figures.

\section*{May 20X1}

Production costs R2 171500
- variable (increased by R3 per unit from April 20X1 figures)
- fixed

R 405515
\(\begin{array}{lr}\text { Sales (units) } & 118500 \\ \text { Selling price per unit (May only) } & \text { R30 }\end{array}\)
Additional information: March May 20X1
Variable sales commission per unit R 1,50

When applying the absorption costing method, you may assume (for this activity only) that the company bases the fixed cost allocation (recovery) rate in each period on the actual fixed costs and the actual production of the period. (A budgeted annual recovery rate is not used.)

\section*{REQUIRED}
a. Calculate the closing inventory (in units) at 31 May 20X1.
b. Draft the statement of comprehensive income for the month ended 31 May 20X1 according to the direct costing method, using the weighted average method.
c. Draft the statement of comprehensive income for the month ended 31 May 20X1 according to the direct costing method, using the FIFO method.
d. Draft the statement of comprehensive income for the month ended 31 May 20X1 according to the absorption costing method, using the weighted average method.
e. Draft the statement of comprehensive income for the month ended 31 May 20X1 according to the absorption costing method, using the FIFO method.

\section*{Solution to Self-assessment Activity}

\section*{QUESTION 1}
a. The absorption costing method.(We calculated gross profit.)
b. Because we used FIFO, all the closing inventory will be valued at 20X1 production cost only. Therefore:
Production cost \(=(\) units \()(\) variable cost per unit \()+\) fixed costs
Let units be ( \(x\) )
\[
\begin{aligned}
721000 & =(x)(11)+(325000) \\
396000 & =11 x \\
x & =36000 \text { units }
\end{aligned}
\]
c. Flow of goods format
\begin{tabular}{lrrr} 
& FIFO & Sold & Closing \\
& 8000 & \((8000)\) & \\
Opening inventory & 80000 & \((34000)\) & 2000 \\
Units manufactured & \(36000)\) & 42000 & \\
Sold & \((42000\) & - & 2000 \\
\hline Closing inventory (from this year's production) & 2000 & &
\end{tabular}

OR:
Total sold 42000
Available for sale \((8000+36000) \quad 44000\)
Closing inventory remaining 2000

\section*{d. Direct costing method: FIFO}

FRAMES LTD
Budgeted contribution statement of comprehensive income for the year ended 31 December 20X1
\begin{tabular}{|c|c|}
\hline & R \\
\hline Sales (42000 x R25) & 1050000 \\
\hline Less: Variable cost & 514400 \\
\hline Opening inventory (8000 \(\times\) R10,20) & 81600 \\
\hline Variable manufacturing cost (36000 \(\times\) R11) & 396000 \\
\hline Goods available for sale & 477600 \\
\hline Less: Closing inventory (2 \(000 \times \mathrm{R} 11\) ) & 22000 \\
\hline Variable selling cost (42000 \(\times\) R1,40) & \[
\begin{array}{r}
455600 \\
58800
\end{array}
\] \\
\hline Contribution & 535600 \\
\hline Less: Fixed cost & 483000 \\
\hline Manufacturing & 325000 \\
\hline Administrative & 158000 \\
\hline Net profit before tax & 52600 \\
\hline
\end{tabular}

\section*{NOTE}

FIFO is applied, which means that we only use current period costs to value inventory.

\section*{e. Reconciliation of net profits}Net profit according to:
Direct costing method52600
Absorption costing method ..... 31056
Difference to be reconciled ..... 21544
Opening inventory according to:
Direct costing method ..... 81600
Absorption costing method ..... 121200
Difference39600
Closing inventory according to:
Direct costing method ..... 22000
Absorption costing method ..... 40056
Difference ..... 18056
R
Reconciliation in rand value:
Opening inventory difference ..... 39600
Closing inventory difference ..... 18056
Difference in profits ..... 21544
Reconciliation in units:
Fixed costs in opening inventory (R15,15-R10,20) x 8000 ..... 39600
Closing inventory (R325 000/36 000) x 2000 ..... 18056
Difference ..... 21544

NOTE
(1) Did you notice that, when the closing inventory declined compared with the opening inventory, the absorption costing method net profit declined compared with the direct costing method net profit, because fixed costs are expensed from the statement of financial position and entered on the statement of comprehensive income?
(2) From the above, it is clear that calculating the number of units can be very important. Note that you will not always be given this figure. Remember that, if you get stuck, to continue working, because marks are often awarded for applying principles correctly. In this activity, the production units needed to be calculated. If you struggled to calculate this figure, make a reasonable assumption so that you can go on. In every question there are easy marks as well as difficult marks. It is very important to gain these easy marks, because this can mean the difference between passing and failing.

\section*{QUESTION 2}

\section*{MALUMI (PTY) LTD}
a. Closing inventory for the month ended 31 May 20X1:
\begin{tabular}{lccc} 
& \multicolumn{2}{c}{\begin{tabular}{c} 
March \\
units
\end{tabular}} & \begin{tabular}{c} 
April \\
units
\end{tabular} \\
\cline { 2 - 4 } Opening inventory & - & \begin{tabular}{c} 
May \\
units
\end{tabular} \\
Plus: Production & 81000 & \(891000(1)\) & 22500 \\
Available for sale & 81000 & 98100 & 101000 (6) \\
Less: Sales & \((72000)(7)\) & \((75600)(8)\) & \((118500)(1)\) \\
\hline Closing inventory & 9000 & 22500 & 5000 \\
\hline
\end{tabular}

\section*{b. MALUMI (PTY) LTD}

Contribution statement of comprehensive income for the month ended 31 May 20X1 (direct costs), using the weighted average method:
\begin{tabular}{|c|c|}
\hline & R \\
\hline Sales (118500 x R30) & 3555000 \\
\hline Less: Variable manufacturing cost of sales & (2 482 983) \\
\hline Opening inventory (22 \(500 \times \mathrm{R} 18,50\) (4) & 416250 \\
\hline Variable manufacturing cost (101 \(000 \times \mathrm{R} 21,50\) (5) & 2171500 \\
\hline Goods available for sale & 2587750 \\
\hline Less: Closing inventory (5000 / \(123500 \times 2587\) 750) & (104 767) \\
\hline Less: Variable sales costs
\[
(118500 \times R 1,50)
\] & (177 750) \\
\hline Contribution & 894267 \\
\hline Less: Fixed cost & (405 515) \\
\hline Manufacturing (given) & 405515 \\
\hline Sales and administration costs & - \\
\hline Net profit before tax & 488752 \\
\hline
\end{tabular}

Notes for (a) and b):
(1) Given
(2) \(81000 \times 110 \%=89100\) units
(3) Opening inventory April \(=\) closing inventory March
(4) Since variable manufacturing cost per unit was the same in March and April, and March had no opening inventory, April's closing inventory will have the same perunit value independent of whether the FIFO or weighted average method is being used.

Variable manufacturing cost per unit (April) = value of opening inventory / opening inventory units
\(=\) R166 \(500 / 9000\)
= R18,50
(5) Variable manufacturing cost per unit (May) \(=\) variable manufacturing cost per unit (April) + R3 (given)
\(=\) R18,50 + R3
\(=\mathrm{R} 21,50\)
(6) Manufactured (units) for May
\(=\) variable manufacturing costs/ variable manufacturing costs per unit
\(=\mathrm{R} 2171\) 500/R21,50
= 101000
(7) Balancing figure
(8) \(72000 \times 105 \%=75600\) units
c. MALUMI (PTY) LTD

Contribution statement of comprehensive income for the month ended 31 May 20X1 (direct costing method), using FIFO
\begin{tabular}{|c|c|}
\hline & R \\
\hline Sales (118500 x R30) & 3555000 \\
\hline Less: Variable manufacturing cost of sales & (2 480 250) \\
\hline Opening inventory (22 \(500 \times \mathrm{R} 18,50\) (from b)) & 416250 \\
\hline Variable production cost (given) & 2171500 \\
\hline Goods available for sale & 2587750 \\
\hline Less: Closing inventory (5000 x R21,50 (from b)) & (107 500) \\
\hline Less: Variable sales cost (118 \(500 \times \mathrm{R} 1,50\) ) & (177 750) \\
\hline Contribution & 897000 \\
\hline Less: Fixed costs & (405 515) \\
\hline Manufacturing cost & (405 515) \\
\hline Selling and administration cost & - \\
\hline Net profit before tax & 491485 \\
\hline
\end{tabular}

\section*{d. MALUMI (PTY) LTD}

Statement of comprehensive income for the month ended 31 May 20X1 (absorption costing method), using the weighted average method
\begin{tabular}{|c|c|}
\hline & R \\
\hline Sales (118 \(500 \times \mathrm{R} 30\) ) & 3555000 \\
\hline Less: Cost of sales & (2965 611) \\
\hline Opening inventory & 513727 (1) \\
\hline Variable production cost (from b) & 2171500 \\
\hline Fixed production cost (given) & 405515 \\
\hline Goods available for sale & 3090742 \\
\hline Less: Closing inventory (5 000/123 \(500 \times \mathrm{R} 3090\) 742) & (125 131) \\
\hline Gross profit & 589389 \\
\hline Less: Variable selling costs (118500 \(\times\) R1,50) & (177 500) \\
\hline Net profit before tax & 411639 \\
\hline
\end{tabular}

Notes for (d):
(1) Fixed manufacturing cost included in April opening inventory of 9000 units.
\(=\) R209 000 - R166 500
\(=\) R42 500

But, in March, 81000 units were manufactured.
Thus \(81000 / 9000 \times\) R42 \(500=\) R382 500
The above means that the fixed portion of manufacturing cost to be included in the valuation of May opening inventory of 22500 units is:
(R42 \(500+R 382\) 500) \(\times 22500 / 98100=R 97477\)
\(=\) opening inventory for May: value according to direct method plus fixed portion
\(=\) R416 \(250+\) R97 477
\(=\) R513 727

\section*{e. MALUMI (PTY) LTD}

Statement of comprehensive income for the month ended 31 May 20X1 (absorption costing method), using FIFO

R
Sales (118 \(500 \times \mathrm{R} 30\) )
3555000
Less: Cost of sales
Opening inventory
(2 962 281)
512841 (1)
Variable manufacturing cost (given)
Fixed manufacturing cost (given)
Goods available for sale
Less: Closing inventory (5 000 / \(101000 \times\) R2 577 015②)
2171500 405515

3089856 (127575)

Gross profit 592719
Less: Selling and administration costs
Variable selling(118 \(500 \times\) R1,50)
Fixed
Net profit before tax
\begin{tabular}{c}
\begin{tabular}{c}
592719 \\
\((177750)\)
\end{tabular} \\
\hline \begin{tabular}{r}
177750 \\
- \\
\hline \hline 414969 \\
\hline
\end{tabular}
\end{tabular}

NOTE

Inventory levels decreased from 22500 to 5000 units. Did you notice that the absorption costing net profit was lower than the direct costing method because of the fixed cost carried from the balance sheet to the statement of comprehensive income?

\footnotetext{
(1) Fixed manufacturing costs included in April opening inventory of 9000 units = R209 000 - R166 500
\[
=\text { R42 } 500
\]

But, in March 20X1, 81000 units were manufactured.
Thus: \(81000 / 9000 \times\) R42 \(500=\) R382 500
Total manufacturing costs April \(=(\) R18,50 x 89100 units) (variable) + R382 500 (fixed) \(=R 1648350+R 382500=R 2030850\)

Closing inventory April (FIFO) \(=22500\) / \(89100 \times\) R2 030850 \(=\) R512 841 rounded
(2) R2 \(171500+\mathrm{R} 405515=\mathrm{R} 2577015\)
}

\title{
Valuing inventories using more advanced techniques
}

\section*{PURPOSE}

In part 2, we shall discuss other further issues concerning the treatment of manufacturing overheads in an activity-based costing (ABC) system. We shall also introduce you to different costing systems, the application of which depends on the particular manufacturing environment.


\section*{The activity-based costing (ABC) system}

\section*{LEARNING OUTCOMES}

After studying this topic, you should be able to:
- identify and describe the differences between activity-based costing (ABC) and the traditional costing method
- identify those environments which are suitable to the implementation of an ABC system
- design and implement an ABC system with a view to costing products

\section*{STUDY UNIT}

Study unit 11
Study unit 12

\section*{TITLE}

Comparing \(A B C\) and the traditional costing method ABC system design and application


\section*{Introduction}

In topic 2, you learnt about the three elements of product costs:
- material
- labour
- manufacturing overheads

You have also learnt how to allocate manufacturing overheads to cost objects by using volume-based allocation bases such as units manufactured, labour hours etcetera. ABC is an alternative method of allocating overhead costs in specific scenarios. In this topic, we are going to look at the differences between \(A B C\) and traditional costing methods, how to design an \(A B C\) system, and how to calculate product cost using \(A B C\).

The word SYSTEM refers to the design and implementation of a specific method in a company. The word METHOD refers to the way in which that specific system works. For instance:

Eish (Pty) Ltd. started out manufacturing ice, but added a range of flavoured filtered water to their product range. Because they diversified the product range, the accountant decided to design and implement a different costing system in the company, using the ABC method instead of the traditional costing method previously used.

\section*{Comparing ABC and the traditional costing method}


\section*{1 Introduction}

Activity-based costing (ABC) originated in the late 1980s in response to the increase in overhead costs, especially manufacturing support costs; this, in itself, was a result of the increasingly complex manufacturing environment. Volume-based measures of allocating production overheads were deemed to be a crude way of allocating overheads owing to their inadequate treatment of cause-effect relationships.

\section*{2 The emergence of a more complex business environment}

Figure 11.1 on the next page illustrates some of the factors that emerged to complicate the business environment.

All these factors caused overhead costs to increase, irrespective of the volume of goods produced, and the more complex manufacturing environment made the traditional costing method ineffective. A greater emphasis on quality, lower inventory levels and technology, along with a more diverse range of products provided to companies and an increase in overheads all led to the emergence of \(A B C\).

\section*{TRADITIONAL COSTING}

In the traditional costing method, fixed production overhead cost is allocated to products by linking it to only one volume-driven allocation base (eg labour hours or machine hours). In this method, fixed production overhead cost is assumed to be the most significant cause for the production cost (refer to topic 2 ).

The traditional costing method, however, has certain shortcomings, the most significant being that it is a very crude way in which to allocate support overheads. The need for more accurate product costs in an increasingly competitive market has forced many organisations to re-evaluate their costing procedures.


Source: Author (2012)
FIGURE 11.1: Factors that contributed to the complex manufacturing environment.

\section*{ABC}

ABC - a more accurate system - was designed to improve the allocation of overheads. ABC assumes that activities cause or drive the cost and that products are created by activities. The allocation of costs is therefore based on the utilisation of activities. The purpose of \(A B C\) is to allocate cost based on the cause of the cost.

\section*{3 Optimal environment for the ABC method}

As you can see, \(A B C\) is very different from the traditional costing method, and certain situations are particularly appropriate for the use of \(A B C\). The following are probable indicators:
- Organisations with larger amounts of overhead costs not driven by production volume
- Organisations with a diverse range of products
- Intense global competition, with pressure on prices and quality
- Low information costs that are already computerised

\section*{Activity 11.1}

Company A manufactures two products of 80000 and 60000 units respectively. A combination of the two products is sold to four local customers. Orders are only accepted in thousands.

Company B manufactures 10 products, which are available in four variations each, resulting in 40 product codes. This is sold to 93 customers in quantities ranging from 200 units to 5000 units, locally and abroad.

Both companies manufacture and sell approximately the same total volume of units.

\section*{REQUIRED}

Which company do you think requires more support for its production activities and why?

\section*{Solution to Activity 11.1}

Company B clearly has more support activities than Company A. Company B has more products that are different, more variations in products, more product codes etcetera.

NOTE

It is very important to remember that variable cost (ie direct materials, labour and direct expenses) is treated the same in both methods. The only difference is the allocation method for overheads.

\section*{4 Comparison of the two-stage allocation process (between traditional and ABC)}

Both methods (traditional and \(A B C\) ) use a two-stage allocation process.
In the first stage, the traditional costing method allocates overheads to production and service departments and then re-allocates service department costs to the production departments (refer to topic 2 ). The ABC method pools overheads to each major activity (rather than departments).

The second stage of the two-stage allocation process allocates costs from production departments (traditional method) or cost pools (ABC) to products or other chosen cost objects. The traditional costing method allocates overheads to products based on a small number of second-stage allocation bases (ie units or hours), resulting in the overhead allocation rate. In ABC, the term "cost driver rate" is used rather than "overhead allocation rate". A much wider allocation base or drivers are used owing to technological development. For example, the number of times that material requisitions is processed and issued by stores or the number of logins on a computer system can easily be monitored.

\section*{Traditional costing method}


Activity based costing method


Source: Author (2012)
FIGURE 11.2: Illustrates of the two-stage allocation process for the traditional and \(A B C\) methods.

\section*{5 Differences between ABC and traditional costing}

With ABC:
- Non-manufacturing (ie customer support costs), as well as manufacturing costs, may be assigned to products for decision-making purposes (not for GAAP inventory valuation).
- A number of overhead activity cost pools are used, each of which is allocated to products and other cost objects using ABC's own unique measure of activity or driver.
- The allocation bases differ from those used in the traditional costing method.
- The activity rates may be based on the level of activity at normal capacity rather than on the budgeted level of activity.

\section*{6 Advantages of the ABC method}
- More accurate price decisions if costs are used to set prices.
- Cost cutting (eliminate activities which do not add value).
- Activity-based budgeting can be used in conjunction with ABC.
- Performance measurement can be carried out in more detail owing to the extensive research required to implement \(A B C\).
- The business process can be redesigned if inadequacies are identified in ABC research.

\section*{7 Disadvantages of the ABC method}
- Expensive to implement because it involves mapping all the business processes in the organisation.
- Expensive to maintain because it requires far more record-keeping and is only possible because of the advent of complex and extensive computer packages.
- Specialised knowledge needed to implement this costing method.
- ABC needs a greater deal of care; cost drivers can be identified incorrectly.
- If overhead cost is a low percentage of total cost, ABC may not differ significantly from traditional costing.
- The cost of implementation and running may exceed the benefits of improved costing information.

\section*{8 Summary}

In this study unit, you learnt about ABC and the circumstances that lead to the development of this costing method. You also learnt to identify the differences between the ABC method and the traditional costing method. In the next study unit, we are going to design and implement an \(A B C\) system.

Self-assessment Activity

Say whether the following statements about \(A B C\) are true or false:
a. ABC is more suitable for companies with larger amounts of indirect costs.
b. \(A B C\) is less expensive than the traditional costing method.
c. In \(A B C\), only manufacturing costs can be assigned to products.
d. Total overhead costs using the traditional costing method do not equal total overhead costs using the ABC costing method.
e. Overhead rate is the same irrespective of which method is used.

After studying the theory above, can you answer the following questions?
a. List the advantages of the \(A B C\) method.
b. List the disadvantages of the \(A B C\) method.
c. Describe the optimal environment for implementing the \(A B C\) method.

\section*{Solution to Self-assessment Activity}
a. True
b. False ( \(A B C\) is more expensive owing to the higher cost of implementation and maintenance.)
c. False (Non-manufacturing costs can also be assigned to products.)
d. False (The total overhead costs allocated to all cost objects are the same for both methods; it is only the allocation method that is different.) ABC may ultimately lead to a more effective cost structure by eliminating non-value adding activities (by applying activity-based management [ABM]).
e. False (Different overhead rates are calculated for each method.)

\section*{ABC system design and application}


\section*{1 Introduction}

In the previous study unit, we discussed the advantages and disadvantages of the ABC method and the environment that is most suitable for its application. We learnt how \(A B C\) is used to allocate overheads more accurately, and we also identified the differences between the traditional costing and the ABC method.

In this study unit, we are going to design an \(A B C\) system. Since overheads are part of product cost, we are going to calculate product cost using ABC and compare the answer with that obtained using the traditional costing method.

\section*{2 Designing an ABC system}

To design an \(A B C\) system, we follow four steps:
- Identify activities.
- Identify cost drivers.
- Create cost pools for each activity.
- Trace activities to cost object.

We will discuss each of these steps in turn.

\subsection*{2.1 Identifying activities}

To identify an activity, the definition of "activity" will first be explained

\section*{ACTIVITY}

An activity is a task, action, or unit of work that is carried out in the organisation.

For example, the purchasing of materials might be identified as a separate activity; completing a quality inspection of the finished product might also be identified as a separate activity.

Activities are identified by carrying out an extensive activity analysis. Identifying an activity for costing purposes should be done after all activities are pooled together or eliminated (on the basis of costs versus benefits). The final selection of activities should represent the operations of the organisation, from start of operations to product delivery to the customer. This choice involves a fair amount of judgement and it is important that the accountant have a thorough understanding of the processes involved in his/her employer's business.

The following factors must be taken into account when selecting the final list of activities that will be cost:
- Total cost of the activity, which should not be insignificant.
- Is there a driver that can provide a satisfactory explanation for the costing of this activity?

ABC classifies activities along a cost hierarchy that consists of the following:
1. Unit-level activities (lowest level). These are performed each time a unit of the product or service is produced (eg direct labour).
2. Batch-related activities. These are performed each time a batch of goods is produced (eg setting up machines for a specific production run of a product).
3. Product-sustaining activities. These are performed to enable the production and sale of a specific product (eg maintenance of machines used to manufacture this product).
4. Facility-sustaining activities. These are performed to support the facility's general manufacturing process (eg verifying orders, issuing material requisitions).

\subsection*{2.2 Identifying activity cost drivers}

Factors that cause different activity costs are known as "cost drivers". The cost drivers used at this stage are also called "activity cost drivers".

The following factors should be considered when selecting suitable cost drivers:
- A cost driver should provide a good explanation of the activity costs.
- It should be easily measurable.
- Data must be easily obtainable.
- Must relate to specific product, service or customer.
- Each unit of the cost driver should be homogenous (ie the same).

Cost drivers consist of two categories:
- Transaction drivers
- Duration drivers

\section*{TRANSACTION DRIVERS}

Transaction drivers count the number of times that an activity is performed. They are the least expensive to determine, but they are also likely to be the least accurate.

Example: set-ups undertaken (getting a machine ready for production, ie adjusting the speed, loading materials), number of inspections performed, number of purchase orders processed or number of customer orders processed.

\section*{DURATION DRIVERS}

Duration drivers represent the length of time required to perform an activity.

Example: set-up hours or inspection hours.
Some examples illustrating the link between the production activity, the cost driver and the activity level are as follows:
\begin{tabular}{|l|l|l|}
\hline ACTIVITIES & COST DRIVERS & \begin{tabular}{l} 
ACTIVITY LEVEL \\
CLASSIFICATION
\end{tabular} \\
\hline Direct labour hours & Direct labour hours & Unit level \\
\hline Set-ups & Number of set-ups & Batch level \\
\hline Maintenance & Maintenance hours & Product-sustaining \\
\hline
\end{tabular}

NOTE

For the purposes of MAC2601, the focus is on matching appropriate cost-drivers to appropriate cost pools rather than on identifying the activity level. You will learn more about classifying activity levels in your later MAC modules.

\subsection*{2.3 Cost pool creation and resource cost drivers (first-stage allocation)}

After the activities are identified, the cost of resources consumed (eg salaries, electricity, etc) over a period is allocated to a cost pool for each activity. Some resources of costs will be directly attributable to specific cost pools, and others not. Those that are not directly attributable (shared resources) should be assigned to pools based on cause-and-effect resource drivers (eg decide how to allocate electricity to different cost pools based on kilowatts used by machines in each cost pool). Arbitrary allocations should not be used.

\subsection*{2.4 Tracing activity costs to a cost object (second-stage allocation)}

The rates used to allocate costs from cost pools to cost objects are calculated as follows:
Activity cost rate \(=\frac{\text { activity cost cost pool cost }}{\text { cost driver volume }}\)

For example: if the total budgeted costs in the cost pool for set-ups is R300 000 for the period and the budgeted number of set-ups for all products that the organisation manufactures is 300 , then the cost is as follows:
\[
\begin{aligned}
\text { Activity cost rate } & =\frac{\mathrm{R} 300000}{300} \\
& =\mathrm{R} 1000 \text { per set-up }
\end{aligned}
\]

If a specific product is budgeted to require 21 set-ups during the budget period, 21 x R1 \(000=\) R21 000 would be allocated to this product's (cost object's) budgeted manufacturing overhead for product costing purposes.

In the following activity, you will learn how to allocate overhead cost to a cost object using \(A B C\).

\section*{Activity 12.1}

\section*{DESIGNING AN ABC SYSTEM}

An analysis of the Materials Department of Melemi (Pty) Ltd's monthly records reveals the following:
\begin{tabular}{lc} 
& R \\
Salary: manager & 24000 \\
Salaries: three purchasing clerks & 48000 \\
Salaries: five receiving clerks & 60000 \\
Miscellaneous expenses (rent, electricity, telephone) & 50000
\end{tabular}

A time-event study indicated that time and costs are incurred as follows:
Manager's time allocation:
- Purchasing orders 40\%
- Verifying orders 15\%
- Receiving materials 45\%

Receiving clerk's time allocation:
- Verifying order requirements 30\%
- Receiving materials 70\%

Miscellaneous cost allocation
- Purchasing section 20\%
- Receiving section 80\%

The following major activities were identified in the Materials Department:
\begin{tabular}{lll} 
Activity & Cost drivers & Cost driver monthly quantities \\
Purchasing orders & Number of orders & 200 orders \\
Verifying orders & Number of orders & 200 orders \\
Materials receiving & \begin{tabular}{l} 
Monetary value of \\
materials
\end{tabular} & R 600000
\end{tabular}

\section*{REQUIRED}

Assume that a specific job (job A) requires two purchase orders for direct materials, for the amounts of R20 000 and R12 000 respectively.

Determine the amount of overhead support cost in respect of materials management that would be allocated to job \(A\) in each of the following circumstances:
a. Apply the traditional costing method. (Assume the allocation base is the value of materials ordered in a month.)
b. Set up and apply the ABC method

Solution to Activity 12.1
a. Traditional costing method allocation

R
Salaries:
\begin{tabular}{lr} 
Purchasing clerks & 48000 \\
Receiving clerks & 60000 \\
Purchasing manager & 24000 \\
Miscellaneous expenses & 50000 \\
& \(\underline{182000}\) \\
Value of materials received & \(\underline{\mathbf{6 0 0} 000}\) \\
Allocation rate & \(\underline{\underline{\mathbf{R O M 0 3}}}\)
\end{tabular}

Allocate to job \(A=(20000+12000) \times \mathrm{R} 0,303=\mathrm{R} 9696\)
b. ABC method allocation
i. Allocating resource cost to activity cost pools (first-stage allocation)

Salaries:
Purchasing clerks
Receiving clerks
( \(60000 \times 30 \%\) )
( \(60000 \times 70 \%\) )
Purchasing manager
(24 \(000 \times 40 \%\) )
(24000×15\%)
(24 \(000 \times 45 \%\) )
Miscellaneous expenses
(50 \(000 \times 20 \%\) )
(50 \(000 \times 80 \%\) )
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Purchasing \\
orders
\end{tabular} & \begin{tabular}{c} 
Verifying \\
orders
\end{tabular} & \begin{tabular}{c} 
Materials \\
receiving
\end{tabular} \\
\hline \(\mathbf{R}\) & \(\mathbf{R}\) & \(\mathbf{R}\) \\
\hline & & \\
\hline 48000 & & \\
\hline & 18000 & \\
\hline & & 42000 \\
\hline & & \\
\hline 9600 & & \\
\hline & & 10800 \\
\hline & & \\
\hline 10000 & & \\
\hline \(\mathbf{6 7 6 0 0}\) & \(\mathbf{2 1 6 0 0}\) & \(\mathbf{9 2 8 0 0}\) \\
\hline \hline
\end{tabular}

NOTE
(1) Taking into consideration the additional information given, three activities were identified. The total cost per activity must first be calculated. Ideally, the cost of each activity would be the actual cost recorded per activity. If that is not available, costs have to be allocated to cost pools based on resource cost drivers.
(2) The resources consumed by the Materials Department were the employees' salaries and certain other overheads (eg rent and electricity).
(3) Resource cost drivers were identified in the time-event study to allocate costs from the general ledger accounts to the activity cost pool accounts.
(4) Since no further information was given relating to the purchasing clerks, you may assume they spend \(100 \%\) of their time on purchasing activities.
(5) Now you can see why setting up an ABC system can be very time-consuming and expensive. In the ABC system, the cost per activity within the Materials Department has to be calculated.
(6) In an ABC question, it is important to look for the activity, and whether the cost was given, or if it should first be allocated to the cost pool.

\section*{ii. Determining activity rate}

Now we have the total cost per activity cost pool. The next step would be to calculate the cost per activity. This is done by using cost drivers. In this question, the cost drivers were given, but this may not always be the case. If the cost drivers are not given, apply the theory explained in study unit 2.

Total activity cost
Cost driver quantities
Cost per activity
\begin{tabular}{|r|r|r|}
\hline \begin{tabular}{r} 
Purchasing \\
orders
\end{tabular} & \begin{tabular}{r} 
Verifying \\
orders
\end{tabular} & \begin{tabular}{r} 
Materials \\
receiving
\end{tabular} \\
\hline R67 600 & R21 600 & R92 800 \\
\hline 200 & 200 & R600 000 \\
\hline R 338 & R 108 & R 0,155 \\
\hline
\end{tabular}
iii. Allocating costs to cost object (job A in this case)

We can now move on to the next step, since we have the cost per activity. The overhead cost per purchase order is now calculated using the unit cost per activity, thus implementing \(A B C\).

Activity costs:
Purchase orders x 1
Verifying orders x 1
Materials receiving
(R20 \(000 \times 0,155\) )
(R12 \(000 \times 0,155\) )
Total
\begin{tabular}{|r|r|}
\hline \begin{tabular}{c} 
Purchase \\
order 1
\end{tabular} & \begin{tabular}{r} 
Purchase \\
order 2
\end{tabular} \\
\hline & \\
\hline R338 & R338 \\
\hline R108 & R108 \\
\hline R3 100 & \\
\hline & R1 860 \\
\hline R3 546 & R2 306 \\
\hline
\end{tabular}

Summary of material management cost allocated to job A:

Traditional
R9 696

ABC
R5 852 (R3 \(546+\mathrm{R} 2\) 306)

NOTE
(1) Can you see that the ABC method allocated fewer support overhead costs to job A? However, be careful. The total cost incurred by the Materials Department was still R182 000, as calculated in a. This means that the traditional costing method under costed the other jobs.
(2) \(A B C\) is an allocation method. Implementing \(A B C\) on its own does not reduce overhead costs (thus leading to higher profits). In both methods, the total cost is still

R182 000. To achieve a reduction in cost, ABC must be combined with a process called activity-based management (ABM), which you will learn about in MAC3701, which deals with the application of management accounting techniques.
(3) ABC on its own (in the appropriate environment) can lead to more accurate costing; this, in turn, can be used to achieve better pricing across the range of the company's products/services, resulting in higher profits.

\section*{3 Product costing with ABC}

In the previous activity, we have only allocated one overhead support cost by means of \(A B C\). In the next activity, we are going to illustrate the application of ABC where there is disparate or differing use of support services between products, and where there is more than one type of support overhead cost.

\section*{Activity 12.2}

\section*{PRODUCT COSTING WITH ABC}

Dogs Ltd. manufactures two products (fluffy stuffed animals), namely "Old" and "Dirty", using an automated manufacturing process. The company manufactures 75000 units of "Old" and 525000 units of "Dirty" per year.

Economic order quantity calculations determined that the most economical option would be 1000 and 3000 units per production run (batch) for "Old" and "Dirty" respectively. Set-ups are done for every batch and each set-up takes 24 minutes for "Old" and 15 minutes for "Dirty".
Total direct manufacturing costs for the coming financial year are as follows:

\section*{R}

Direct Material
- Old
1988000
- Dirty
5112000

The budgeted manufacturing overheads for the coming financial year are as follows:
\begin{tabular}{lr} 
& \multicolumn{1}{c}{ R } \\
Material purchase and storage & 520000 \\
Setting up of machines & 3705000 \\
Processing & 2125000 \\
Maintenance & 150000 \\
Total & \(\underline{\underline{6500000}}\)
\end{tabular}

The products are manufactured by machines only. It takes three machine hours to manufacture a batch of 1000 "Old" units and two machine hours for every batch of 3000 "Dirty" units. An analysis of the manufacturing process revealed the following:

Activity
Material purchase and storage

Setting up of machines
Processing
Maintenance (routine inspection of machines)

\section*{Cost driver}

Number of orders placed: 50 orders for "Old" and 75 orders for "Dirty" per year: (transaction driver)

Setting up hours (duration driver)
Machine hours (duration driver) Inspection hours (Inspection is done after every 25 hours of machine time and takes 36 minutes for "Old" and 12 minutes for "Dirty".) (duration driver)

Dogs Ltd. currently allocates all manufacturing overheads according to machine hours.

\section*{REQUIRED}
a. Allocate the total overheads using the traditional costing method.
b. Set up an ABC system and allocate total overheads.
c. Calculate the product cost per unit for "Dirty" and "Old" by applying both methods and then compare the results.

\section*{NOTE}

In this activity, manufacturing overheads first need to be allocated to the two products, "Old" and "Dirty". The purpose of ABC is to allocate these overheads more accurately (ie based on activities). In the traditional costing method, overheads are still allocated to the two products, and are simply based on (in this case) machine hours

\section*{Solution to Activity 12.2}
a. Allocating overheads using the traditional costing method
\(\frac{\text { total overhead cost }}{\text { budgeted production hours }}=\)\begin{tabular}{llll} 
R6 500000 \\
\hline 75000 & \(31000 \quad 525000\) & 23000
\end{tabular}
\(=R 11304,35 /\) hour
( \(=225\) machine hours budgeted to manufacture "Old" and 350 hours budgeted for "Dirty")

Thus "Old" overhead = R11 304,35 x 225 hours \(=\) R2 543478
Thus "Dirty" overhead \(=\) R11 304,35 \(\times 350\) hours \(=\) R3 956522
Total overheads R6 500000

As you can see, the overhead per machine hour is calculated first, and then the overhead for the two products ("Old" and "Dirty"). Once again, the use of machine hours for allocating the manufacturing overheads was an in-house decision. Note that, in any examination question, this decision will be given to you.
b. Setting up an \(A B C\) system

COST DRIVER RATES
\begin{tabular}{l|r|r|r|r|}
\cline { 2 - 5 } & \begin{tabular}{c} 
Material \\
purchase and \\
storage
\end{tabular} & Setting up & Production & Maintenance \\
\hline \begin{tabular}{l} 
Amount \\
Orders \((50+75)\) \\
Set-up hours \\
\((75000 / 1000 \times 24 / 60)\) \\
\(+(525000 / 3000 \times 15 / 60)\)
\end{tabular} & R520 000 & R3 705000 & R2 125000 & R150 000 \\
\hline \begin{tabular}{l} 
Machine hours \\
\((75 \times 3)+(175 \times 2)\) \\
Maintenance hours calc (1) \\
\((5,4+2,8)\) \\
Cost driver rate
\end{tabular} & & & & \\
\cline { 2 - 5 }
\end{tabular}

Calc (1) Number of inspection hours
\begin{tabular}{lcl} 
& `Old" & `Dirty" \\
Total machine hours & 225 & 350 \\
Inspections & 25 & 25 \\
Number of inspections & \(9(225 / 25)\) & \(14(320 / 25)\) \\
Inspection hours & \(5,4(9 \times 36 / 60)\) & \(2,8(14 \times 12 / 60)\)
\end{tabular}

NOTE

Can you see that we use the same machines hours as those used in the traditional costing method? Manufacturing activities and support activities, using machines hours as drivers, would use the same allocation base (ie machine hours) as that used in the traditional costing method.

\section*{ALLOCATION OF OVERHEADS}

R
"Old"
\begin{tabular}{lrr} 
Material purchase and storage & \((50 \times 4160)\) & 208000 \\
Setting up of machines & \((30 \times 50237,29)\) & 1507119 \\
Production & \((225 \times 3695,65)\) & 831522 \\
Quality control & \((5,4 \times 18,292,69)\) & \(\underline{98780}\) \\
Total & & \(\underline{\mathbf{2 6 4 5 4 2 1}}\)
\end{tabular}

\section*{R}
"Dirty"
Material purchase and storage \(\quad(75 \times 4160) 312000\)
Setting up of machines \(\quad(43,75 \times 50237,29) \quad 2197881\)
Production
\((350 \times 3695,65)\)
1293478
Quality control
\((2,8 \times 18292,69)\)
51220
Total
3854579
Grand total
\(\overline{6500000}\)

We can see how the R6 500000 is allocated differently, depending on the costing method used.
\begin{tabular}{llll} 
ABC: & "Old" R 2645421 & and & "Dirty" R 3 854579 \\
Traditional costing: & "Old" R 2543478 & and & "Dirty" R 3 956522
\end{tabular}
"Old" consumes more of the support activities relative to its volume and should therefore carry more of the overhead support cost.

In this question, the total manufacturing overheads were given to you, and these were then broken down into activities. In some instances the total overheads will be given to you, as in this question - the R6 500000 but not the breakdown of the activities. In other questions, period and manufacturing costs may be given, so you would need to be able to distinguish between the two. In this question, the cost drivers were also given so that, as in question b., the cost per activity could be calculated. (This was done in the table above.) Using the cost per activity, the overheads were then allocated based on usage of activities and not on an "inhouse" decision (because this was deemed to be more accurate).
c. Calculating the product cost per unit for "Dirty" and "Old" using ABC
\begin{tabular}{|c|c|c|}
\hline "Old" & ABC & Traditional \\
\hline Direct material (1988 000/75 000) & R26,51 & R26,51 \\
\hline Manufacturing overheads (2 645 421/75 000) & R35,27 & R33,91 \\
\hline Total product cost & R61,78 & R60,42 \\
\hline \multicolumn{3}{|l|}{'Dirty"} \\
\hline Direct material (5112000/525 000) & R9,74 & R9,74 \\
\hline Manufacturing overheads (3 854 579/525 000) & R7,34 & R7,54 \\
\hline Total product cost & R17,08 & R17,28 \\
\hline
\end{tabular}

As you can see, the total product cost would differ, depending on the costing method used. However, note that the variable costs are not different; it is only the manufacturing overheads that are different.

NOTE
(1) Determining a product's cost is very important, because this may influence the product's price. ABC can therefore be very helpful in calculating the product cost more accurately.
(2) Do not forget: \(A B C\) is not useful in all scenarios. Before implementing \(A B C\), there needs to be a large percentage of support costs which are not volume (unit) driven AND a difference in the way in which the range of products consumes the support activities.

\section*{4 Summary}

In this study unit, you learnt how to design and implement an ABC system, even though this method requires more research and more resources. You also learnt how to apply the ABC method to cost products. As you can see, using ABC may make a big difference to overheads and thus product cost, which is why many organisations regard it as a worthwhile costing method.

\section*{QUESTION 1: OVERHEAD COST PER UNIT WITH ABC}

Colourful Stuff (Pty) Ltd. manufactures three products and uses the ABC method. The names of the three products are Pink, Blue and Yellow. The company uses the same machinery to manufacture all three products. Pink and Blue tend to put a lot of pressure on the assembly machine and therefore the technician needs to inspect the machine frequently.

Manufacturing overheads for the month of October 2010 were as follows:
\begin{tabular}{lr} 
& R \\
Assembly & 750000 \\
Compression & 840000 \\
Indirect labour (technician salary) & \(\underline{12000}\) \\
Total & \(\underline{\underline{1602000}}\)
\end{tabular}

\section*{Additional information}

The following information for October 2010 was obtained from the manufacturing department:
\begin{tabular}{lcc} 
Machine & \begin{tabular}{c} 
Number of \\
set-ups
\end{tabular} & \begin{tabular}{c} 
Number of \\
technician \\
inspections
\end{tabular} \\
Assembly & 10 & 5 \\
Compression & 8 & - \\
TOTAL & \(\mathbf{1 8}\) & \(=\frac{5}{}\)
\end{tabular}

The following information also relates to October production:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Product} & \multirow[t]{2}{*}{Units manufactured} & \multicolumn{2}{|l|}{Number of set-ups required} & \multirow[t]{2}{*}{Number of technician inspections required} \\
\hline & & Assembly & Compression & \\
\hline Pink & 8000 & 3 & 3 & 2 \\
\hline Blue & 5000 & 5 & 4 & 2 \\
\hline Yellow & 3000 & 2 & 1 & 1 \\
\hline TOTAL & 16000 & 10 & 8 & 5 \\
\hline
\end{tabular}

Management determined that the number of set-ups of the relevant machine is an appropriate cost driver for the activities of assembly and compression; management also determined that the number of technician inspections is an appropriate cost driver for the inspection activity. All activity costs were deemed substantial in size and justified separate treatment. The technician's only task is to inspect the assembly machine.

\section*{REQUIRED}

Calculate the following (round off all amounts to two decimal places):
a. The activity cost rates to be used for:
- Assembly
- Compression
- Inspection
b. The overhead costs per unit for each of the products.

\section*{QUESTION 2: ABC VERSUS TRADITIONAL}

ABC Ltd. has a single manufacturing process of which the following overhead cost estimates are available for the period ending 31 December 20X2:

\section*{R}

Raw materials receiving and inspection cost
18720
Electricity
23400
Materials handling cost
16380
58500
Three products, namely \(\mathrm{A}, \mathrm{B}\) and C , are manufactured by labourers. The raw material arrives in bundles and is then processed further using electrical drills, which are operated by hand. The labourers are paid a wage of R50 per hour.

The following estimates are applicable for the period ending 31 December 20X2:

Units manufactured
Raw material received (total bundles)
Data per manufactured unit:
Direct material \(\left(\mathrm{m}^{2}\right)\)
Direct material (R)
Direct labour (minutes of drilling)
Number of electric drilling jobs
\begin{tabular}{|r|r|r|}
\hline Product A & Product B & Product C \\
\hline 2200 & 1650 & 880 \\
\hline 11,00 & 6,00 & 18,00 \\
\hline & & \\
\hline 4,00 & 6,00 & 3,00 \\
\hline 6,50 & 3,90 & 7,80 \\
\hline 24,00 & 40,00 & 60,00 \\
\hline 7,00 & 4,00 & 3,00 \\
\hline
\end{tabular}

Overheads are currently allocated to products by means of a rate based on labour hours.
An activity-based investigation identified the following cost drivers:

\section*{Activity cost pool}

Material receiving and inspection Electricity
Material handling

\section*{Cost drivers}

Number of material bundles
Number of drilling jobs
\(\mathrm{m}^{2}\) handled

\section*{REQUIRED}
a. Prepare a summary for the budgeted product cost per unit for each product ( \(A, B\) and C) for the period ending 31 December 20X2, where the unit cost for each of the cost elements is set out:
i in terms of the current method of overhead allocation
ii by using the identified cost drivers and on the basis of ABC principles
Round off each figure to two decimal places.
b. Explain the process of an \(A B C\) costing system.

\section*{QUESTION 1}
a. Calculating activity rates
\begin{tabular}{|c|c|c|c|}
\hline Activity & Activity costs & \begin{tabular}{c} 
Cost driver \\
volumes
\end{tabular} & \begin{tabular}{c} 
Activity rates \\
\\
\end{tabular}\(\quad \mathbf{R}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Assembly & 75000010 set-ups & \[
\begin{aligned}
& 750000 \text { / } 10 \\
& =\text { R75 } 000 \text { per set-up }
\end{aligned}
\] \\
\hline Compressing & 8400008 set-ups & \[
\begin{aligned}
& 840000 / 8 \\
& =\text { R105 }^{8} 000 \text { per set- }
\end{aligned}
\] \\
\hline Inspection & 120005 inspections & \[
\begin{aligned}
& 12000 / 5 \\
& =\text { R2 } 400 \text { per inspec- } \\
& \text { tion }
\end{aligned}
\] \\
\hline
\end{tabular}
b. Calculating the overhead costs per unit manufactured for each product
\begin{tabular}{|c|c|c|c|}
\hline Activity & Pink & Blue & Yellow \\
\hline Assembly & ```
3 set-ups x R75 000
per set-up
= R225 000
``` & ```
5 set-ups x R75 000
per set-up
= R375 000
``` & ```
2 set-ups x R75 000
per set-up
= R150 000
``` \\
\hline Compressing & ```
3 set-ups x R105 000
per set-up
= R315 000
``` & ```
4 set-ups x R105 000
per set-up
= R420 000
``` & ```
1 set-up x R105 000
per set-up
= R105 000
``` \\
\hline Inspection & 2 inspections \(x\) R2 400 per inspection
\[
\text { = R4 } 800
\] & 2 inspections \(x\) R2 400 per inspection
\[
=\text { R4 } 800
\] & \[
\begin{aligned}
& 1 \text { inspection } \times \text { R2 } 400 \\
& \text { per inspection } \\
& =\text { R2 } 400
\end{aligned}
\] \\
\hline Total & R544 800 & R799 800 & R257 400 \\
\hline Number of units manufactured & 8000 & 5000 & 3000 \\
\hline Overhead costs per unit & R68,10 & R159,96 & R85,80 \\
\hline
\end{tabular}

NOTE

Did you notice the difference in the overhead costs per unit for each product?

\section*{QUESTION 2}
a.
- Current overhead allocation rate
\begin{tabular}{ll} 
Labour hours & \(=(2200 \times 24 / 60)+(1650 \times 40 / 60)+(880 \times 60 / 60)\) \\
& \(=2860\) \\
Overheads & \(=R 58500(\) given \()\) \\
Rate & \(=(58500 / 2860)\) \\
& \(=\) R20,45 per hour
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\hline Product & \begin{tabular}{r}
\(\mathbf{A}\) \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{l}
\(\mathbf{B}\) \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{l}
\(\mathbf{C}\) \\
\(\mathbf{R}\)
\end{tabular} \\
\hline & \multicolumn{4}{|c|}{} \\
\hline & 6,50 & 3,90 & 7,80 \\
Direct material (given) & 20,00 & 33,33 & 50,00 \\
Direct labour (1) & 8,18 & 13,63 & 20,45 \\
Overheads (2) & 34,68 & 50,86 & 78,25 \\
Total product cost & &
\end{tabular}
(1) \(A=24 / 60 \times R 50\)
\(\begin{aligned} & =R 20 \\ B & =40 / 60 \times R 50\end{aligned}\)
\(=\) R33,33
C \(=60 / 60 \times\) R50
\(=R 50,00\)
(2) \(\mathrm{A}=24 / 60 \times \mathrm{R} 20,45\)
\(B=40 / 60 \times \mathrm{R} 20,45\)
\(=\mathrm{R} 13,63\)
\(\mathrm{C}=60 / 60 \times \mathrm{R} 20,45\)
\(=\mathrm{R} 20,45\)
- ABC

The first step is to calculate the overhead cost for the appropriate cost driver of each cost pool.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{i. Material receiving and inspection
Bundles}} & = R18720 \\
\hline & & \(=35(11+6+18)\) \\
\hline & Cost per bundle & \(=\mathrm{R} 534,86\) (R18 720 / 35) \\
\hline ii. & Electricity & = R23 400 \\
\hline & Number of drilling jobs & \(=24640\) ((2200 \(\left.\left.{ }^{\text {7 }}\right)+(1650 \times 4)+(880 \times 3)\right)\) \\
\hline & Cost per drill job & \(=\mathrm{R} 0,95\) (23 400 / 24 640) \\
\hline & Material handling & = R16 380 \\
\hline & Square meters & \(=21340\) ( \(2200 \times 4)+(1650 \times 6)+(880 \times 3)\) \\
\hline & Cost per m \({ }^{2}\) & \(=\mathrm{R} 0,77\) ( \(\mathrm{R} 16380 / 21340\) ) \\
\hline
\end{tabular}

Then calculate the overhead rates for each product for every cost pool.
i. Material receiving and inspection costs:
((R534,86 x 11) / 2 200))
((R534,86 x 6) / 1 650))
((R534,86 x 18) / 880))
\begin{tabular}{|l|l|l|}
\hline \(\mathbf{A}\) & \(\mathbf{B}\) & \(\mathbf{C}\) \\
\hline \(\mathbf{R}\) & \(\mathbf{R}\) & \(\mathbf{R}\) \\
\hline
\end{tabular}
ii. Electricity costs
\begin{tabular}{llll}
\((0,95 \times 7)\) & 6,65 & & \\
\((0,95 \times 4)\) & & 3,80 & \\
\((0,95 \times 3)\) & & & 2,85
\end{tabular}
iii. Material handling cost
\begin{tabular}{llll}
\((0,77 \times 4)\) & 3,08 & & \\
\((0,77 \times 6)\) & & 4,62 & \\
\((0,77 \times 3)\) & & & 2,31
\end{tabular}
iv. Primary cost (as per traditional costing method)
\begin{tabular}{lrrr} 
Direct material & 6,50 & 3,90 & 7,80 \\
Labour cost & 20,00 & 33,33 & 50,00 \\
\hline Total cost & 38,90 & 47,60 & 73,90 \\
\hline \hline Per traditional cost & 34,68 & 50,86 & 78,25
\end{tabular}
b. ABC recognises that various activities rather than units produced or machine hours cause the variation in cost. Products absorb the cost caused by activities required by their production. Different products require different levels of production and support activities. Cost drivers are the activities or events which are the most material indicators of the cost of the activity. A cost pool is a cost group which is influenced by the communal cost driver. To calculate a product's cost with the help of ABC, an allocation rate is calculated for each cost pool, based on appropriate cost drivers. The allocation rate is then used to allocate overhead costs to products. This method of allocating overheads to products can influence the product cost substantially.

\section*{The job costing system}

\section*{LEARNING OUTCOMES}

After studying this topic, you should be able to:
- identify when a job costing system is appropriate
- record costs in a job costing system
- calculate the profit or loss per job

STUDY UNIT
Study unit 13

\section*{TITLE}

The job costing system

\section*{Introduction}

In the previous topics you learnt that direct manufacturing costs are traced to, and indirect manufacturing cost allocated to, cost objects. In this topic, specific jobs will be the cost objects. You will learn how to accumulate costs for each job and how to calculate the profit for each.


\section*{studyunit 13}

\section*{The job costing system}


\section*{1 Introduction}

In this study unit, we will discuss how to select between the job and process/product costing systems.We will then illustrate the accounting entries and, finally, we will explain how to calculate the profit for each job.

\section*{2 Costing systems}

\section*{PRODUCT COSTING SYSTEM}

A product costing system represents a specific method according to which the manufacturing cost of a single product, job or group of products or jobs is accumulated, processed and recorded.

Product costing systems were primarily developed with the purpose of calculating the unit cost of a product or job. It is important to know the unit cost of a product because of the following reasons:
- If the unit cost of a product or products is known, the value of the inventory, the cost of sales and the net profit can be determined.
- We need to know the unit cost of a product when preparing a budget, because budgets are compiled using expected cost at various production levels.It is therefore important to calculate the unit cost of products accurately.
- Unit costs are also used to set selling prices or quotes in certain circumstances.

When unit costs are calculated, it is necessary to distinguish between the various costs which apply in specific situations. There are two groups of production costing systems which make this distinction easier: job-oriented systems and process-oriented systems.

The product and the manufacturing process determine the choice of the costing system. The costing system used in printing a batch of advertising posters designed to a client's specification (each poster design is unique and another print run might never be required again) will necessarily differ from the system used for the manufacture of a constant range of flavoured drinks (these are similar products that are manufactured year after year).

When posters are printed, the cost of each client's order (printing of these posters) is accumulated by means of a job system. In the manufacture of flavoured drinks, for example, the cost of each process (process cost) is accumulated, because all orders for the same product are batched together in a production run. You will learn about process costing in topic 7.

The decision whether to use a job or process costing system depends on the following questions regarding the market, the production process and the product:
\begin{tabular}{|l|l|c|c|}
\hline & & \multicolumn{1}{c|}{ JOB } & PROCESS \\
\hline The market & \begin{tabular}{l} 
Is this a special assignment or job \\
for a particular client, or is it \\
intended for the market in gen- \\
eral?
\end{tabular} & Particular client & General market \\
\hline \begin{tabular}{l} 
The \\
production
\end{tabular} & \begin{tabular}{l} 
Is it a specialised or a continuous \\
process?
\end{tabular} & \begin{tabular}{c} 
Specialised \\
(once off)
\end{tabular} & Continuous \\
\hline The product & \begin{tabular}{l} 
Is it a specialised product or \\
unique product?
\end{tabular} & Unique & \begin{tabular}{l} 
Homogeneous \\
(all alike)
\end{tabular} \\
\hline
\end{tabular}

\section*{3 Description of job costing}

JOB COSTING
This method of calculating the cost per unit (unit costing) is used where goods are manufactured according to a client's specifications, that is, where heterogeneous (different) products are manufactured using the same production facilities.

A common example of a business where job costing is applied is at a garage, where repairs are carried out on different vehicles and where the cost of the repairs to each vehicle (job) is calculated separately.
Job costing is not confined to manufacturing organisations; service organisations such as banks and consultants also use this system. In service organisations, costs are accumulated per activity; in consultancies, they are accumulated per project.

\section*{4 The flow of documents in a job costing system}
- A requisition is prepared as the basis for the issue of a production order.
- A production order (eg a job card is opened when a specific client's posters have to be printed) initiates the work that has to be done on a job. The resources utilised are recorded on three documents: a material requisition, a direct labour time card and an overheads allocation statement.
- The production costs are accumulated in the accounts department on the job card.
- The job card forms the basis for calculating the unit costs, and for valuing the closing inventory and the cost of goods sold.

\section*{5 Manufacturing cost flow through ledger accounts using the job costing system}

The costs (direct material, direct labour and manufacturing overheads) are accumulated separately for every job (which may be either a single product or a small group of identical products or a specific service).

When a job costing system is used, the accounting system must be adjusted to make provision for recording the cost per job. A separate ledger account must be opened for each job, against which the cost of that specific job is debited. This ensures that all the costs incurred for a specific job will be accumulated.

All the ledger accounts for all the different jobs are usually grouped in a subsidiary
ledger, known as the cost ledger, and this is represented in the general ledger by means of a central control account (the work-in-process account [WIP]). The WIP control account is merely a summary of everything recorded in the separate job accounts in the cost ledger.

See figure 13.5 for a diagram of how the costs are accumulated.


FIGURE 13.1: Flow of costs in a job costing system

\section*{Activity 13.1}

Khetiwe Printers issued the following material:
\begin{tabular}{lr} 
& \(\mathbf{R}\) \\
To job A & 100 \\
To job B & 300 \\
To job C & 400
\end{tabular}

R

To job A 100
To job B 300
To job C 400
REQUIRED
Record the issuing of material in the general ledger (as well as the cost ledger) of Khetiwe Printers.

\section*{Solution to Activity 13.1}

\section*{GENERAL LEDGER}
\begin{tabular}{c|cc|l}
\multicolumn{2}{c}{ Material control account } \\
& \(\mathbf{R}\) & \multicolumn{2}{c}{ WIP control account } \\
& 800 & 800 &
\end{tabular}

\section*{COST LEDGER}


\section*{NOTE}
(1) The sum of the individual jobs in the cost ledger is equal to the balance in the general ledger WIP account.
(2) A similar process is followed for direct labour and overhead costs. A more comprehensive activity follows next.

\section*{Activity 13.2}

Masenya Printers uses a job costing system. The following information is available for the first month of trading:
- Material purchases 42600
- Material was requested as follows:

Direct material:
```

Job 1 16950

```
Job 2 17 360
Indirect material 4360
- The following is an extract from the wages paid:

Direct labour paid for:
Job 1 (249 hours) 12450
Job 2 (273 hours) 13650
Indirect labour 2800
- Overheads are allocated on the basis of direct labour hours. The budgeted average manufacturing overheads amount to R27 000 per month, and the estimated average normal capacity is 600 direct labour hours per month.
- Job 1 ( 300 units) was completed during the month, and 200 units were sold during the first month of trading for R130,00 per unit. Job 2 is still in process at the end of the month.
- The following actual expenses were debited to the overheads control account:
\begin{tabular}{lc} 
& R \\
Electricity and water & 3130 \\
Depreciation - equipment & 8200 \\
Factory rental & 8000
\end{tabular}

\section*{REQUIRED}
a. Calculate the total cost of job 1 and the cost of WIP (incomplete work) on job 2 at the end of the first month of trading. T -accounts are not required.
b. Calculate the profit or loss on the sale of 200 units of job 1.
c. Calculate the over or under recovery of production overheads for the month.

\section*{Solution to Activity 13.2}

\section*{a. Total cost of jobs}
\begin{tabular}{lll} 
& Job 1 & Job 2 \\
& \multicolumn{1}{c}{ R } & \(\mathbf{R}\) \\
& 16950 & 17360 \\
Direct material & 12450 & 13650 \\
Direct labour & \(\underline{11205}{ }^{(1)}\) & \(12285^{(2)}\) \\
Overheads & \(\underline{40605}\) & \\
\hline Cost of job 1 transferred to finished goods \\
Cost of WIP job 2 & \(\underline{\underline{43295}}\)
\end{tabular}

\section*{Explanatory notes}
(1) Overheads are allocated on the basis of direct labour hours. The budgeted manufacturing overheads amount to R27 000 per month and the estimated normal capacity is 600 labour hours per month.During June 249 labour hours were spent on job 1.
Budgeted rate per hour: R27 000/600 hours \(=\) R45 per direct hour Thus: R45 per hour x 249 hours \(=\) R11 205
(2) During June 273 labour hours were spent on job 2.
Thus: R45 per hour x 273 hours \(=\) R12 285
b. Profit or loss on job 1

\section*{R}
Sales (200 units x R130) 26000
Less: Cost of units sold \(\quad \underline{27070}{ }^{(1)}\)
Net loss on the sale of 200 units \(\underline{\underline{(1070)}}\)
(1) R40 605/300 units \(\times 200\) units \(=\mathrm{R} 27070\)
c. Over or under recovery of production overheads for the month
R
Actual overheads incurred
\((R 4360+R 2800+R 3130+R 8200+R 8000)\)
26490
Allocated to WIP (R11 \(205+\) R12 285) 23490
Under recovery \(\quad 3000\)

\section*{6 Summary}

In this study unit, you have learnt the following about the job costing system:
- When to use the job costing system - it depends on the market, the production and the product.
- Where to use job costing -job costing can be used in manufacturing enterprises, service enterprises and consultancies
- The flow of the documents in a job-costing system - different documents are used in job costing systems.
- The flow of manufacturing costs through the ledger accounts when a job costing system is used - how costs are recorded and how profit is calculated.

Self-assessment Activity
a. Identify three factors you would consider when deciding whether to use a job or process costing system.
b. Describe briefly how the costing ledger is linked to the general ledger.
c. List two examples of products or services for which a job costing system could be used.

\section*{QUESTION 1}

Elco Manufacturing Ltd. manufactures machinery according to client specifications. On 1 May the incomplete work consisted of one job, job 5. The recorded costs on this incomplete job amounted to R13 000.

The following information is available for May:
- Material amounting to R7 500 was in inventory at the beginning of the month. Additional material to the amount of R38 200 was purchased. A single material account is used for both direct and indirect material.
- Material was issued as follows:

\section*{R}
\begin{tabular}{lr} 
Job 5 & 15800 \\
Job 6 & 13400 \\
Job 7 & 9100 \\
Indirect material consumed & 2100
\end{tabular}
- Labour-related costs:
Job \(5 \quad 16000\)

Job 6 12 000
Job \(7 \quad 9000\)
Indirect labour and supervision 5500
- Other manufacturing overheads for May:

Depreciation on machinery and equipment 6000
Water and electricity 3000
Sundry overheads 3900
Overheads are allocated to jobs on the basis of direct labour costs. The budgeted overheads recovery rate is R0,50 for every R1 of direct labour cost.
- Jobs 5 and 7 were completed during the month and invoiced to the clients concerned at R65 600 and R27 200 respectively.

\section*{REQUIRED}
a. Calculate the profit and loss for May for each job and for Elco as a whole and indicate the inventory value of each at the end of the month.
b. Assume that there was an amount of R2 000 in under applied overheads at the end of May. Draft a journal entry showing how these under applied overheads would normally be dealt with in the company's books at the end of the period.

\section*{QUESTION 2}

BMX Ltd. uses a job costing system to accumulate costs for their tailor-made range of products. The normal average capacity is 5000 labour hours per month and the budgeted average manufacturing overheads are R175000 per month. Overheads are allocated on the basis of labour hours.

In July an order was received (job 103) to manufacture 250 units of item X. The costing section carried out the following calculation of the estimated direct costs of completing this job:
\begin{tabular}{ll} 
Material per item \(X\) & R131,50 \\
Labour per item \(X\) & 7,5 hours @ R15 per hour
\end{tabular}

The following relevant actual information is available for July:
- All the material required to complete job 103 was issued at R140,00 per item X.
- However, only 200 units of item X were completed and transferred to completed goods.
- A total of 1600 hours were worked on job 103 in order to complete the 200 units of item X .
- Manufacturing overheads for the month amounted to R192 000.
- In the course of the month, 5600 labour hours were worked at R16 per hour.

The job costing system operates as follows:
- Units completed on any order are booked to completed inventory at estimated cost as and when they are completed.
- Inefficiencies (actual costs > estimated costs) in the production of the completed units are written off as period costs only when transfer to completed inventory has occurred.
- WIP for incomplete units is carried at actual cost.

\section*{REQUIRED}
a. Calculate the estimated total absorption cost for job 103 and the cost per unit of item X.
b. Prepare the WIP account for job 103 in July.
c. Calculate the total over or under applied manufacturing overheads for BMX Ltd. in July.

\section*{QUESTION 1}
a. Calculating the profit or loss for May for each job
\begin{tabular}{|c|c|c|c|c|}
\hline & Job 5 & Job 6 & Job 7 & Total \\
\hline WIP 1 May & R & R & R & R \\
\hline Direct material consumed: & 13000 & & & 13000 \\
\hline & 15800 & 13400 & 9100 & 38300 \\
\hline Opening inventory & & & & 7500 \\
\hline Plus: Purchases & & & & 38200 \\
\hline & & & & 45700 \\
\hline Less: Indirect material & & & & 2100 \\
\hline & & & & 43600 \\
\hline Less: Closing inventory & & & & 5300 \\
\hline Direct labour & 16000 & 12000 & 9000 & 37000 \\
\hline Allocation of overheads @ R0,50 & 8000 & 6000 & 4500 & \({ }^{(1)}(18500)\) \\
\hline Total overheads & & & & \({ }^{(1)} 20500\) \\
\hline Indirect material & & & & 2100 \\
\hline Indirect labour & & & & 5500 \\
\hline Depreciation & & & & 6000 \\
\hline Water and electricity & & & & 3000 \\
\hline Sundry overheads & & & & 3900 \\
\hline & 52800 & 31400 & 22600 & 106800 \\
\hline Less: Closing inventory of incomplete work & & 31400 & & 31400 \\
\hline Cost of sales & 52800 & - & 22600 & 75400 \\
\hline Sales & 65600 & - & 27200 & 92800 \\
\hline Gross profit & 12800 & - & 4600 & 17400 \\
\hline
\end{tabular}

Inventory value:
Raw material
R 5300
WIP
R31 400
b. Journal entry
\begin{tabular}{ccc} 
& Debit & Credit \\
Cost of sales (manufacturing overheads under applied) & 2000 & \\
Manufacturing overheads & & 2000
\end{tabular}

NOTE
(1) Actual overheads incurred of R20 500, less allocated to jobs of R18 500, leaves R2 000 under applied.

\section*{QUESTION 2}

\section*{a. Estimated (quoted) total cost for job 103}


\section*{COST LEDGER}

Job 103
\begin{tabular}{lrlr} 
Material & 35000 & Completed goods & 101300 \\
Labour & 25600 & Production inefficiencies & 8300 \\
Overheads & 56000 & Closing inventory & 7000 \\
& 116600 & & 116600 \\
Opening inventory & 7000 & &
\end{tabular}

\section*{Calculations}
(1) Budgeted overheads recovery rate \(=\mathrm{R} 175000 \div 5000\) labour hours \(=\mathrm{R} 35\)
(2) Did you notice that all the material was issued from the stores for the whole order of 250 units of item X, even though only 200 units were completed? The closing WIP consists of the material component only at the actual cost \(=50 \times \mathrm{R} 140=\mathrm{R} 7000\).
(3) On average eight hours (1600 200) was spent on each unit of item \(X\) instead of the budgeted 7,5 hours.
(4) 200 completed units \(\times\) R506,50 estimated cost \(=\) R101 300
(5) Total actual cost R116 600, less closing inventory of R7 000, less allocated to completed goods R101 \(300=\) R8 300. See note below!
(6) Actual labour cost was R16 per hour, whilst the estimated cost was R 15 per hour.

\section*{NOTE}

Did you notice that the company paid more for the material and labour than was estimated? They also spent 1600 hours finishing the 200 units instead of the 1500 estimated ( \(200 \times 7,5\) ). These made up the production inefficiencies that were calculated in . In Topic 10 - Standard costing, you will learn how to account for these inefficiencies or variances.
c. Total overheads over or under applied

Actual overheads - overheads applied
\(=\) R192 \(000-\) [5 600 hours \(\times\) R35]
\(=\mathrm{R} 192000-\mathrm{R} 196000\)
\(=\) R4 000 over applied

\section*{The process costing system}

\section*{LEARNING OUTCOMES}

After studying this topic, you should be able to:
- describe the uses of a process costing system
- calculate unit costs in a system with a single manufacturing process and in a system with two or more consecutive manufacturing processes, assuming all units are completed
- calculate completed units and the equivalent units for work-in-process (WIP)
- calculate the normal and abnormal losses for a specific period, depending on the wastage point
- prepare a Quantity Statement, Production Cost Statement and Cost Allocation Statement, all of which include losses, based on the weighted average method and on the first-in-first-out (FIFO) method of inventory valuation
- record and allocate process costs in the general ledger


\section*{STUDY UNIT}

Study unit 14
Study unit 15
Study unit 16
Study unit 17
Study unit 18

\section*{TITLE}

The process costing system - all units completed
Work-in-process, equivalent units and the quantity statement
Losses
Production cost statements
Allocation statements

\section*{Introduction}

In the previous topic (topic 6, dealing with the job costing system), you learnt that an organisation could make use of a job costing system or a process costing system to calculate and account for the unit cost of a product or group of products. You also learnt how to account for the cost of jobs and their profits. In this topic, we will look in detail at the other side of the scale: process costing. In this case, the accounting focus shifts from specialised or unique jobs or products (topic 6) to similar or identical products produced in large quantities.

The application of process costing techniques will be discussed within the contexts of completed and partially completed production output and you will learn how to account for material, labour and manufacturing overhead costs, and for different types of losses that could be incurred in a manufacturing process.

\section*{The process costing system - all units completed}

In this study unit


\section*{1}

\section*{Introduction}

The nature of certain products is such that these products must be manufactured in a process. A manufacturing process mainly consists of physical inputs (material or partially completed units), working on those inputs, ie converting them using labour and overheads (eg electricity and machine time) and the fully or partially completed units, or physical output. The conversion process takes place over time.

Examples of such products might include chemicals (eg household or vehicle cleaning agents), fuel, certain medicines, beverages and certain food products (eg flour or canned foods). Larger items, such as computers and motor vehicles, are assembled from individual components in a sequence of processes.

Consider the challenges the following organisation may experience in costing its product, this being a breakfast cereal measured in units of 1 kg each and produced in a single production process:

Material cost incurred in the period
\begin{tabular}{ll} 
Oats & R100 000 \\
Fruit & R230 000 \\
Nuts & R340 000 \\
Other & R200 000 \\
R \begin{tabular}{l} 
ect labour costs for the period
\end{tabular} & R 80000 \\
anufacturing overheads & R120 000
\end{tabular}

Raw materials are added at the beginning of the process. Conversion of the raw materials into the cereal takes place evenly throughout the process.

At the end of the previous period, the organisation had a mixture of 15000 kg of product that was still in the process of being converted into the final product. This mixture was \(60 \%\) complete as far as its conversion was concerned, and information about the cost of material, labour and manufacturing overheads already incurred was available from the accountant.

In the current period, the organisation put 250000 kg of ingredients into the process.
As the organisation dries the fruit used in production of the cereal, the mass of the fruit decreases, which results in the final output for 1 kg of input only being 900 g on average. In the current period, the organisation also experienced a power outage, which led to some of the product being spoilt.
In the current period, 180000 kg of cereal was fully completed. However, by the end of this period, another 30000 kg of product mix was still in the process of being converted into the final product. (The level of completion was \(20 \%\).)

Process costing will help us to obtain some of the answers that are needed in the above scenario. We will divide this topic into five study units in order to gradually lead you into the intricacies of process costing.

In this study unit, we will start off by discussing the following:
- when a process costing system is used and for which purposes
- how to calculate the cost per unit manufactured in:
- a single process
- consecutive processes (assuming all units are completed)
- how costs that accumulate in respect of a process should be recorded in the organisation's general ledger

For production in consecutive processes, we will confine our discussion to the following:
- basic concepts of production by means of consecutive processes
- basic unit cost calculations for completed units only
- basic general ledger entries

\section*{NOTE}

In this topic, we will assume the following:
- All overheads incurred are manufacturing overheads.
- The conversion process takes place evenly (uniformly) over the production timespan.
- The actual overheads incurred agree to the allocated overheads (ie there are no over applied or under applied manufacturing overheads).
- The terms
- finished goods, finished products or finished units and
- completed goods, completed products or completed units
are used interchangeably.

\section*{Uses of process costing}

An organisation needs to know what the cost is to manufacture units in a process in order to
- determine appropriate selling prices for the units (where the organisation itself can set the price); and
- accurately report profits made as these units are sold.

Accurate determination of product cost is also required to enable an organisation to value WIP and unsold completed units at the end of the period in terms of International Financial Reporting Standards (IFRS) - specifically IAS 2.

\section*{PROCESS COSTING SYSTEM}

A process costing system is a costing system used to obtain, record and report cost data in industries where large quantities of similar products pass through a single process or consecutive processes in the course of production.

A pure process costing system is different from other costing systems such as the job costing system (see topic 6), because the different units of the product (eg litres of chemicals) cannot be distinguished from each other in the process. This is because these units are
- identical, and
- produced in bulk.

For example, when different ingredients are properly mixed in a large container in order to manufacture dog shampoo, each one of the many litres of the dog shampoo will be exactly the same and we will not be able to single out a specific item (litre of dog shampoo) from the mixture.

In more complex manufacturing environments, where products such as computers and motor vehicles are manufactured, a costing system that combines process costing and job costing may be applicable.

Similar models (products) are manufactured in batches (or production runs). In different consecutive processes, material is added and conversion takes place that enables the models to be distinguished from each other. Each batch still consists of identical units produced in bulk. This is called batch or operation costing.

In the final instance, this could also be combined with job costing methods (eg right at the end of the motor vehicle assembly process when an individual motor vehicle is fitted with optional extras according to client specifications).

In MAC2601, we will only focus on simple production processes.

NOTE

In this topic, the term PRODUCTION is sometimes used to refer to the mass or mixture of completed or partially completed units in/from a manufacturing process (in addition to the use of the term for the physical activity of manufacturing). We can also refer to these units as "production output".

\section*{3 Production by means of a single process}

Figures 14.1a and 14.1b illustrate the conversion of inputs (material) into outputs in a single manufacturing process.


\section*{Source: Author, 2012}

FIGURE 14.1a: Diagrammatic representation of a single manufacturing process for a specific product

Raw material


Conversion process


Source: Author, 2012
FIGURE 14.1b: Graphic representation of a single manufacturing process for a specific product

The correct quantity of material is issued from material stores to the plant when required for production. For costing purposes, we therefore say that the process is \(100 \%\) complete for material as soon as the material is issued - the product carries \(100 \%\) of the material cost.

\section*{NOTE}

In practice, the material may be added at the plant or in the factory at any specific point in or evenly during the same process. This will have an impact on the valuation of incomplete units. However, for the purposes of this module, MAC2601, material will always be added at the starting point in the process.

Conversion begins once the material has been received. At this stage, the conversion process is \(0 \%\) complete. We indicate the end of the conversion process as \(100 \%\) because - at this point in time - the manufacturing process is complete. The final product (eg a liquid bathroom cleaner) is now ready to be sold to the customer.

\subsection*{3.1 Unit cost calculations in a system with a single process}

In order to determine the value of inventory in a process costing system, the average cost per unit of the final product has to be calculated. The inventory may consist of both work-in-process (also called WIP or incomplete work) and finished products. This study unit assumes that all units started were completed, whereas study unit 15 will deal with WIP as well. Study units 14 and 15 assume that no losses occurred in the process. (We discuss losses in study unit 16.)

To calculate the average cost per unit (from now on referred to as the "cost per unit" or "unit cost"), it is important to obtain the following data from the process costing system:
- total manufacturing cost for a specific period (accumulated cost at the end of the process)
- number of units produced in the specific period (units in existence at the end of the process)

In the absence of any incomplete units (WIP) at both the beginning and the end of the specific period, the cost per unit will be calculated by dividing the total manufacturing cost for the specific period by the number of units produced in this specific period.

\section*{Activity 14.1}

Calculating unit cost in a system with a single manufacturing process
Fizzy Zoeler (Pty) Ltd. manufactures a popular fizzy drink in a single process and makes use of a process costing system.

Management obtained the following cost and unit data for March 20X5 (assume there was no opening or closing WIP):
\begin{tabular}{lr} 
& R \\
Material & 150000 \\
Labour & 60000 \\
Overheads & \(\underline{75000}\) \\
Total manufacturing cost & \(\underline{\underline{285000}}\) \\
Number of units produced & 57000
\end{tabular}

\section*{REQUIRED}

Calculate the cost per unit for March 20X5.

\section*{Solution to Activity 14.1}

Using the method provided in the introduction above, the cost per unit will be calculated by dividing the total manufacturing cost for March 20X5 by the number of units produced in March 20X5, since there was no opening or closing WIP.

\section*{Step 1}

Determine the total manufacturing cost for March 20X5.
R285 000 (given)

\section*{Step 2}

Determine the number of units produced in March 20X5.
57000 units (given)

\section*{Step 3}

Apply the formula to calculate the cost per unit for the period.
Cost per unit for the period = total manufacturing cost for the period/ number of units produced during the period
\(=\) R285 000 / 57000 units
\(=R 5\) per unit

\section*{NOTE}

We describe each of the above steps only to explain the calculation. If this was an assignment or examination question, the eventual calculation (highlighted in the solution above) would be sufficient and you would not have to provide a written description for each of the steps.

\section*{4 Production by means of consecutive processes}

As we said earlier on, certain products may be manufactured in two or more consecutive processes. An example of such a product would be ground filter coffee, where process one is the roasting of the coffee beans, process two the milling (grinding) of the coffee beans and process three the packaging of the ground coffee (filling and sealing of the foil bags).


Source: Author, 2012
FIGURE 14.2: Diagrammatic representation of three consecutive manufacturing processes as applied in the production of packets of ground coffee.

Let us now consider a few important concepts relating to figure 14.2:
- In a process costing system, material, labour and overhead cost data has to be obtained, recorded and reported (as with other costing systems).
- Material has to be added at the beginning of process 1 , otherwise the process cannot start.
- The output of one process automatically becomes the input of the following process.
- Additional material (eg foil bags, or even flavouring) could also be issued to production at specific intervals in, or continuously throughout, some of the processes.
- Conversion takes place evenly throughout each of the processes and conversion costs therefore accumulate as the product moves on through the processes.
- The unit costs accumulate as the product moves through the processes and, eventually, the unit costs of the final product can be calculated.

NOTE

In topic 2, you learnt that it is the allocated overheads that should be included in product costs, and therefore in the valuation of inventory. You have also learnt that the difference between actual and allocated overheads (ie over applied or under applied overheads) should be treated as a period cost, and therefore excluded from the value of inventory.
This principle also applies to process costing: it is the allocated overheads in the production account that will be allocated to products manufactured in the process/es and not the actual overheads incurred (paid in cash or accrued).

Conversion taking place "evenly throughout the process" refers to the activity of converting process inputs into outputs and does not mean that the cash outflows involved take place evenly throughout the process. For instance, salaries and wages are only paid at the end of the month or week, even though workers are continuously busy converting products (from 0\%-100\%). Similarly, overheads will accumulate in the process account (ie be allocated to products) independent of whether these costs are eventually under or over recovered.

Also note that, when we refer to labour costs and overheads being "incurred" in the same way, we are actually saying (for the purposes of this topic) that the labour and overhead activities take place in the same way (usually evenly throughout the process). Should you come across a MAC2601 question indicating that labour costs and overheads, or conversion costs, are "incurred evenly throughout the process", this will also refer to the relevant activities taking place evenly throughout the process (and not the actual cash flows or accruals).

\subsection*{4.1 Unit cost calculations in a system with two or more consecutive processes}

The next activity illustrates how to calculate unit cost in multiple processes.

\section*{Activity 14.2}

Calculating unit cost in a system with two or more consecutive processes
Petrolco Ltd. manufactures aeroplane fuel in four consecutive processes and uses a process costing system.

The following cost and unit data has been obtained for June 20X6 (assume there was no opening or closing WIP):
\begin{tabular}{lcccc} 
& Process 1 & Process 2 & Process 3 & Process 4 \\
& \(\mathbf{R}\) & \(\mathbf{R}\) & \(\mathbf{R}\) & \(\mathbf{R}\) \\
Material added & 12000 & - & - & 14000 \\
Labour cost & 29000 & 16000 & 15000 & 2000 \\
Overheads allocated & 9000 & 20000 & 6000 & 7000
\end{tabular}

Output at the end of each of the processes consisted of 250 kilolitres ( \(k \ell\) ) of production.

\section*{NOTE}

Did you notice that we assume that no litres were spilled during the four processes? We will deal with spillage in study unit 16.

\section*{REQUIRED}

Calculate the cost per kilolitre after completion of each of the processes.

\section*{Solution to Activity 14.2}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Process \\
1 \\
R
\end{tabular} & \begin{tabular}{l}
Process \\
2 \\
R
\end{tabular} & \begin{tabular}{l}
Process \\
3 \\
R
\end{tabular} & \[
\begin{gathered}
\text { Process } \\
4 \\
R
\end{gathered}
\] & \begin{tabular}{l}
Finished products \\
- total R
\end{tabular} \\
\hline Cost of previous processes & - & 45000 & 48600 & 107000 & \\
\hline Material & 12000 & - & - & 14000 & 26000 \\
\hline Labour & 29000 & 16000 & 15000 & 2000 & 62000 \\
\hline Overheads & 9000 & 20000 & 6000 & 7000 & 42000 \\
\hline Total manufacturing cost & 50000 & 86000 & 107000 & 130000 & 130000 \\
\hline Kilolitres produced & 250 & 250 & 250 & 250 & 250 \\
\hline Cost per kilolitre & R200 & R344 & R428 & R520 & R520 \\
\hline
\end{tabular}

NOTE

Did you notice that, in processes 2 and 3, only conversion activities occurred? Material was not added in all the processes. This is quite common.

The cost per kilolitre was calculated by dividing the total manufacturing cost accumulated up to the end of a process by the output at the end of the specific process ("kilolitres produced"). You will note that the cost per kilolitre of the final product can be calculated as the total manufacturing cost up to the end of process 4 (because this is the final process), divided by the final output (output after process 4 has been completed). This renders the same cost per kilolitre as arrived at when calculating the cost per kilolitre at the end of process 4 (R520).

Also note from the example that cost per unit will increase as the product passes through the processes. If the reporting period ended just as the units have passed through process 2 , the inventory would be valued at R344 per kilolitre (R344/k \(\ell\) ). However, if the period ended just as the units have passed through process 3, the valuation would be done at R428 per kilolitre.

\section*{NOTE}

Please note that in a MAC2601 exam you may write in an abbreviated form as used above. This might save valuable time. (R344/k \(\ell\) instead of R344 per kilolitre.)

\section*{5 Recording process cost flows in the general ledger}

The following general ledger accounts can be used to record cost in a process costing system in the absence of any WIP at both the beginning and the end of the specific period and where no losses/spillage occurred:
- Material
- Labour
- Overheads
- A production account for each process
- Finished products

\section*{Activity 14.3}

Recording cost in a process costing system

\section*{REQUIRED}
a. With reference to the information provided in Activity 14.2 (section 4) and the additional information below, illustrate how the cost flow will be recorded in Petrolco Ltd's general ledger:
\begin{tabular}{lc} 
& R \\
Opening balance - material & 10000 \\
Material purchases & 18000
\end{tabular}
b. What is the value of inventory in the statement of financial position at 30 June 20X6?
c. Calculate the cost per unit of a completed kilolitre in terms of its cost components.

\section*{Solution to Activity 14.3}

\section*{a. PETROLCO LIMITED}

General ledger for the month ended 30 June 20X6
\begin{tabular}{|c|c|c|c|}
\hline Dr & \multicolumn{3}{|c|}{Cr} \\
\hline \multicolumn{4}{|c|}{Material} \\
\hline & R & & R \\
\hline Opening balance & 10000 & Process 1 & 12000 \\
\hline Bank/Creditors* & 18000 & Process 4 & 14000 \\
\hline & & Closing balance & 2000 \\
\hline & 28000 & & 28000 \\
\hline Opening balance (following period) & 2000 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Dr & \multicolumn{3}{|c|}{Cr} \\
\hline \multicolumn{4}{|c|}{Labour} \\
\hline \multirow{6}{*}{Bank/Creditors*} & R & & R \\
\hline & 62000 & Process 1 & 29000 \\
\hline & & Process 2 & 16000 \\
\hline & & Process 3 & 15000 \\
\hline & & Process 4 & 2000 \\
\hline & 62000 & & 62000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Dr & \multicolumn{3}{|c|}{Cr} \\
\hline \multicolumn{4}{|c|}{Overheads} \\
\hline \multirow{6}{*}{Bank/Creditors*} & R & & R \\
\hline & 42000 & Process 1 & 9000 \\
\hline & & Process 2 & 20000 \\
\hline & & Process 3 & 6000 \\
\hline & & Process 4 & 7000 \\
\hline & 42000 & & 42000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Dr} & \multicolumn{2}{|l|}{Cr} \\
\hline \multicolumn{4}{|c|}{Process 1: production account} \\
\hline \multirow{5}{*}{Material Labour Overheads} & R & & R \\
\hline & 12000 & Process 2 & 50000 \\
\hline & 29000 & & \\
\hline & 9000 & & \\
\hline & 50000 & & 50000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Dr} & \multicolumn{2}{|c|}{Cr} \\
\hline \multicolumn{4}{|c|}{Process 2: production account} \\
\hline & R & \multirow{5}{*}{Process 3} & R \\
\hline Process 1 & 50000 & & 86000 \\
\hline Labour & 16000 & & \\
\hline \multirow[t]{2}{*}{Overheads} & 20000 & & \\
\hline & 86000 & & 86000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Dr} & \multicolumn{2}{|c|}{Cr} \\
\hline \multicolumn{4}{|c|}{Process 3: production account} \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Process 2 \\
Labour \\
Overheads
\end{tabular}} & R & \multirow{5}{*}{Process 4} & \multirow[t]{4}{*}{\begin{tabular}{l}
R \\
107000
\end{tabular}} \\
\hline & 86000 & & \\
\hline & 15000 & & \\
\hline & 6000 & & \\
\hline & 107000 & & 107000 \\
\hline
\end{tabular}
\begin{tabular}{|lr|rc|}
\hline \multicolumn{2}{|c|}{Dr} & \multicolumn{2}{c|}{Cr} \\
\hline \multicolumn{2}{|c|}{ Process 4: production account } \\
\hline & R & & R \\
Process 3 & 107000 & Finished products & 130000 \\
Material & 14000 & & \\
Labour & 2000 & \\
Overheads & 7000 & \\
& \(\mathbf{1 3 0 0 0 0}\) & & \(\mathbf{1 3 0 0 0 0}\) \\
\hline
\end{tabular}
\begin{tabular}{|cc|cc|}
\hline \multicolumn{3}{|c|}{Dr} & \multicolumn{2}{c|}{Cr} \\
\hline \multicolumn{3}{|c|}{ Finished products } \\
\hline Process 4 & 130000 & & R \\
& & & \\
& & & \\
& & & \\
\hline
\end{tabular}

\footnotetext{
* This depends on whether the goods and/or services are acquired on a cash or credit basis.
}
b. Inventory

Raw material 2000
Finished products
130000 \(\overline{132000}\)
c. Cost components

\section*{R}
\begin{tabular}{lll} 
Material & \((26000 / 250)\) & 104 \\
Labour & \((62000 / 250)\) & 248 \\
Overheads & \((42000 / 250)\) & 168 \\
& & \(\underline{\underline{520}}\)
\end{tabular}

\section*{6 Reporting process cost flows}

There are three types of basic process cost reports:
- Quantity statement (also called the production statement)
- Production cost statement
- Cost allocation statement (also called the allocation statement)

Although different formats of the above process cost reports are in use, we use standard formats for the purposes of MAC2601. These formats and the information contained in the different statements are discussed in study units 15 to 18 .

\section*{7 Summary}

In this study unit, you learnt the following:
- A process costing system is used to obtain, record and report cost data where mass production of identical products is applicable.
- Products may be manufactured in a single process or in a number of consecutive processes.
- In a process costing system, the unit cost has to be calculated (refer to Activity 14.1 and Activity 14.2 in this study unit) after each process.
- Process costs are recorded in the general ledger and reported in a quantity statement, production cost statement and cost allocation statement.

In the next study unit, you are going to learn how to calculate equivalent units in a process costing system, and how to prepare quantity statements using different methods of inventory valuation.

\section*{NOTE}

Although we introduced you to the basic concept of consecutive processes, we will only use one process for illustration purposes in the remainder of this topic. You will learn to apply the concepts covered in study units 15 to 18 to consecutive processes in MAC3701, which deals with the application of management accounting techniques.

For the purposes of MAC2601, you will only be expected to know the following regarding consecutive processes:
- basic concepts of production by means of consecutive processes (as discussed in this study unit)
- how to perform basic unit cost calculations in a system with two or more consecutive processes (as illustrated in this study unit) for completed units only
- how to record basic process cost flows regarding consecutive processes in the general ledger (as illustrated in this study unit)

\section*{Self-assessment Activity}

Cleancor (Pty) Ltd. manufactures a household cleaning agent in two consecutive processes, namely mixing and heating the chemicals (process MH ) and then packaging the cleaning liquid (process \(P\) ).

The following data was obtained from the process costing system and relates to the year ended 31 May 20X4:
\begin{tabular}{lrr} 
& Process MH & Process P \\
Material bought and issued & R35 600 & R24 800 \\
Conversion cost & R48 200 & R18600 \\
Units completed (litres) & 20000 & 20000
\end{tabular}

There was no opening or closing inventory of material or WIP. 15000 litres of the finished product were sold during the year.

\section*{REQUIRED}
a. Calculate the total manufacturing cost per litre of the final product.
b. Record the process cost flows for the year in the general ledger of Cleancor (Pty) Ltd.
c. Name the three process cost reports that Cleancor (Pty) Ltd. will use to report the process cost flows for the year.

\section*{Solution to Self-assessment Activity}

\section*{a. Total manufacturing cost per litre}
Process MH Process \(\mathbf{P} \quad\)\begin{tabular}{c} 
Finished \\
products -
\end{tabular} total
\begin{tabular}{lrrr} 
& \multicolumn{1}{c}{} & \(\mathbf{R}\) & \(\mathbf{R}\) \\
& R \\
Costs of previous processes & - & 83800 & \\
Material & 35600 & 24800 & 60400 \\
Conversion costs & 48200 & 18600 & 66800 \\
\cline { 2 - 4 } Total manufacturing costs & 83800 & 127200 & 127200 \\
\hline & & & \\
Number of litres produced & 20000 & 20000 & 20000 \\
Cost per litre & R4,19 & R6,36 & R6,36
\end{tabular}

\section*{b. General ledger entries \\ CLEANCOR (PTY) LTD}

General ledger for the year ended 31 May 20X4

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Dr} & \multicolumn{2}{|l|}{Cr} \\
\hline \multicolumn{4}{|c|}{Conversion costs} \\
\hline Bank/Creditors
\[
(48200+18600)
\] & \[
\begin{gathered}
R \\
66800
\end{gathered}
\] & \begin{tabular}{l}
Process MH \\
Process P
\end{tabular} & \[
\begin{gathered}
R \\
48200 \\
18600
\end{gathered}
\] \\
\hline & 66800 & & 66800 \\
\hline
\end{tabular}

\begin{tabular}{|lc|cc|}
\hline \multicolumn{2}{|c|}{Dr} & Cr \\
\hline \multicolumn{2}{|c|}{ Process P: Production account } \\
\hline \multicolumn{4}{|c|}{R} \\
\(\begin{array}{l}\text { Process MH } \\
\text { Material } \\
\text { Conversion } \\
\text { cost }\end{array}\) & 83800 & Finished & R \\
& & 18600 & products
\end{tabular}\()\)
\begin{tabular}{|c|c|c|c|}
\hline Dr & \multicolumn{3}{|c|}{Cr} \\
\hline \multicolumn{4}{|c|}{Finished products} \\
\hline \multirow{3}{*}{Process P} & \multirow[t]{3}{*}{\[
\begin{gathered}
R \\
127200
\end{gathered}
\]} & \multirow{5}{*}{Cost of sales (15 \(000 \times 6,36\) ) Closing balance} & R \\
\hline & & & 95400 \\
\hline & & & 31800 \\
\hline & 127200 & & 127200 \\
\hline Opening balance & 31800 & & \\
\hline
\end{tabular}
\begin{tabular}{|lc|cc|}
\hline \multicolumn{2}{|c|}{Dr} & Cr \\
\hline \multicolumn{4}{|c|}{ Cost of sales } \\
\hline \begin{tabular}{l} 
Finished \\
products
\end{tabular} & R & & R \\
& 95400 & & \\
& & & \\
\hline
\end{tabular}
c. Process cost reports
i Quantity statement
ii Production cost statement
iii Cost allocation statement

NOTE
- Do not forget to include the cost of previous processes in the total manufacturing cost when two or more consecutive processes exist.
- If there was no opening and no closing inventory of material, the plant used all material purchased during the year in production.
- In process costing exercises or questions, it could save time to combine labour and overhead information into conversion cost for the purposes of calculating unit cost (if they are incurred in the same way). In the general ledger, labour and overheads will still be accounted for separately for control purposes, especially where a standard
costing system is employed - see topic 10. However, this question did not provide enough information to separate labour and overheads in the general ledger.
- Cost of sales is calculated as the cost per unit (as calculated in a.), multiplied by the number of units sold - in this activity R6,36 x \(15000=\) R95 400.
- The closing inventory of finished products as at year-end automatically becomes the opening inventory of finished products for the next financial year.

\section*{Enrichment activity 14.4}

If you want to learn more about real-life manufacturing processes, you can search the internet for videos about manufacturing processes. To do this search, we suggest you type in phrases such as the following:
- "Video on how glass bottles are made"
- "Video on how pencils are made"

\section*{Additional reading}

Please refer to the list of sources for additional reading at the end of study unit 18.

\section*{Work-in-process, equivalent units and the quantity statement}


\section*{1 Introduction}

In study unit 14, we said that you need to know what the total manufacturing cost for and the number of units manufactured in a specific period are in order to calculate the average cost per unit. In study unit 14, we only focused on completed units.

In this study unit, you are going to learn how to calculate unit cost for work-in-process. You will also learn how to prepare quantity statements, with the focus on how to calculate the equivalent units that are to be included in a quantity statement. Note that we are going to demonstrate both the weighted average and the FIFO method of inventory valuation for goods manufactured in continuous processes.

\section*{2 Work-in-process (WIP)}

A manufacturing process continues over different reporting periods (eg months or years). For example, the manufacturing process of wine often stretches over a number
of years, as the wine ages to perfection in barrels. Other products usually have shorter processing times. However, it is possible that, at the end of a specific period, some of the units in the process will not be fully completed. As mentioned in study unit 14, these incomplete units at the end of a specific period are referred to as work-in-process (WIP).

To calculate the total manufacturing cost for a period is usually straightforward. The calculation of the number of units manufactured is somewhat more difficult for the following reasons:
- Processing of some units (WIP) may have already begun before the beginning of the current period. This means that only a portion of the work still has to be done in the current or a future period to fully complete these units.
- Some units (independent of the period in which the work on these units were started) may still be incomplete at the end of the current period, which means that some work will still have to be done on these units in the future.

We cannot simply take all the costs for the current period and apply these only to the fully completed units to calculate the average cost per unit, because this will overstate the average cost per unit. The incomplete units (WIP) will, to some extent, also have consumed resources (in the form of materials and conversion). We will therefore have to take into account the partially completed units.

Let us look at two simplified examples:
a. If I have a bottle completely filled with water and another that is filled up halfway with water, this is the same as having 1,5 bottles of water. This is straightforward, but if we think about which logical calculations we have automatically performed to arrive at the 1,5 bottles of water, we will arrive at the following:
\begin{tabular}{ll}
1 bottle \(\times 100 \%=\) & 1 bottle \\
1 bottle \(\times 50 \%=\) & 0,5 bottles \\
Total: & 1,5 bottles
\end{tabular}

The next example applies the same principle, and so does the rest of this topic.
b. If an organisation spends R1 000000 and produces 50000 units in a period, the cost per unit will be \(1000000 / 50000=\) R20.

If, however, the organisation has only fully completed 40000 units by the end of the current period, but did half of the work needed for completion of another 10000 units, the following will apply:
- The total amount spent will be less than R1 000000 (let us assume R900 000), because less work was done in the current period.
- The remaining \(50 \%\) of the work on the 10000 units will be performed in the following period and the costs of this remaining work (R1 \(000000-\mathrm{R} 900000=\) R100 000) will be incurred in the following period.
- The production of 10000 units that are \(50 \%\) complete are equivalent to \(10000 \times 50 \%=5000\) units being fully completed (based on the principle illustrated in the first example)!
- The calculation of cost per unit in the current period will now be 900000 / (40 \(000+50 \%\) of 10000 ). We will, therefore, arrive at 900000 / 45000 \(=\) R20 per unit. The cost to manufacture one unit of output remained the same as previously.

\section*{3 Calculation of equivalent units for WIP}

We account for the partially completed units by converting them into a comparable number of fully completed units called "equivalent units". In order to do this, we have to assume that the cost for 100 units which are \(60 \%\) complete are equivalent to the cost for 60 units which are \(100 \%\) complete, and that the cost for 40 units which are \(30 \%\) complete are equivalent to the cost for 12 units which are \(100 \%\) complete, etcetera. The number of incomplete units (by physical counting) is thus multiplied by the stage (percentage) of completion to arrive at the equivalent units.

For example, if a unit costs R40 per unit to manufacture, it is \(60 \%\) complete and there are 200 WIP units, the value of the WIP will be:
\(200 \times(60 \% \times R 40)=R 4800\),
or, in terms of equivalent units:
(200 x 60\%) \(\times\) R40 \(=\) R4 800 .

NOTE
The incomplete units are physical units (you can count them!), while the equivalent units are a concept (to account for the cost)!

The stage of completion has to be separately determined for each cost element (raw material, labour and overheads - or raw material and conversion cost - as well as prior process cost).

\subsection*{3.1 Raw materials}

As stated previously, for the purposes of this module, raw materials will always be added at the beginning of a process. In other words, the materials will always be added to a process when the process is \(0 \%\) complete.

If material is added at the beginning of the process, any incomplete units will still be \(100 \%\) complete in terms of the cost of material as soon as they have entered the process. Thus, the percentage of completion in terms of material cost will be \(100 \%\), independent of how far into the process these incomplete units are.

\subsection*{3.2 Labour and overheads (conversion)}

As indicated before, it can often save time to combine labour and overhead information into conversion costs for the purposes of calculating unit cost in a process costing system. This will, however, only be possible if labour costs and overheads are incurred in the same way (usually evenly throughout the process). In addition, some questions do not provide enough information to treat labour and overheads separately. In the general ledger, labour and overheads would still be accounted for separately for control purposes (especially where a standard costing system is used).

For the purposes of this module, conversion will always take place evenly throughout the process.

On the one hand, this will mean that if \(30 \%\) of the conversion work on the units in the process has been done, the process will be \(\mathbf{3 0 \%}\) complete or, if \(65 \%\) of the conversion work has been done, the process will be \(65 \%\) complete, etcetera.

On the other hand, if we know that the process is \(20 \%\) complete and that conversion takes place evenly throughout the process, we should also know that:
- up to this point, a corresponding \(20 \%\) of the conversion work would have been performed on the units involved, and
- these WIP units should each carry \(20 \%\) of the relevant conversion cost per unit.

\subsection*{3.3 Prior process}

In order to start moving through the next process in a set of sequential processes, a physical unit of production needs to be fully completed as far as all prior processes are concerned.

This implies that, when a unit reaches the second process of a set of processes, it should be \(100 \%\) complete in terms of process 1 and \(0 \%\) complete in terms of process 2. Similarly, when a unit reaches the third process of a set of processes, it should be 100\% complete in terms of both process 1 and process 2 and \(0 \%\) complete in terms of process 3.

Only in later modules will you be required to prepare quantity statements, production cost statements and cost allocation statements for scenarios involving consecutive processes.

NOTE

After studying this topic, you should be able to prepare quantity statements, production cost statements and cost allocation statements for single-process scenarios.

\section*{Activity 15.1}

\section*{Calculating equivalent units}

Jumpy Juice (Pty) Ltd. manufactures fruit juice in a single process and makes use of a process costing system.

The following information has been obtained for March 20X8:
\begin{tabular}{lr} 
Opening WIP & 70000 units \\
Conversion & \(75 \%\) complete \\
New units started/put into production & 230000 units \\
Closing WIP & 50000 units \\
Conversion & \(20 \%\) complete
\end{tabular}

Material is added at the beginning of the process and conversion takes place evenly throughout the process.

\section*{REQUIRED}

Calculate the following:
a. the equivalent units included in opening WIP (separately for material and conversion cost)
b. the production work required to complete the opening inventory (in terms of equivalent units)
c. the units completed
d. the equivalent units included in the closing WIP

\section*{Solution to Activity 15.1}
a. Material: \(70000 \times 100 \%=70000\) units

Conversion cost: \(70000 \times 75 \%=52500\) units
b. Material: \(70000 \times(100 \%-100 \%)=0\) units

Conversion cost: \(70000 \times(100 \%-75 \%)=17500\) units
or
\(70000-52500=17500\) units
c. Units completed and transferred to the finished goods store
\(=\) Opening WIP + units put into production - closing WIP
\(=70000+230000-50000\)
\(=250000\) units
These units have been completed and are thus fully completed in terms of both material and conversion cost.
d. Material: \(50000 \times 100 \%=50000\) units

Conversion cost: 50000 units \(\times 20 \%=10000\) units

NOTE

Did you see that WIP accounted for material at \(100 \%\), even though the stage of completion varied from \(75 \%\) to \(20 \%\) ? That is because the material is added at the beginning of the process. All units would therefore be \(100 \%\) complete as far as their material component is concerned.

\section*{4 Inventory valuation methods}

Like other types of inventory, opening and closing WIP can be valued using different inventory valuation methods. For the purposes of MAC2601, the following two methods of inventory valuation may be used in determining the value of complete or incomplete units in a process costing system:
- Weighted average method - a "pool" of all units is created and each of these units is then valued at the same average amount per unit for that period.
- First-in-first-out (FIFO) method - units may have different values, depending on the production period that they come from. The oldest inventory is deemed to be completed first.

These two methods were explained in more detail in topic 3 , study units 7 and 8 . Please refer back to the relevant sections if you are unsure of the underlying principles.

The main difference between the weighted average method and the FIFO method lies in the treatment of units completed and transferred to finished goods and is as follows:

\section*{VALUATION OF INCOMPLETE UNITS}

FIFO method: Units completed in the current period and transferred to the finished goods store are split between those completed from the opening WIP and those that were started (and completed) in the current period.

Weighted average method: Units completed in the current period and transferred to the finished goods store are not split between those completed from the opening WIP and those that were started (and completed) in the current period. In other words, all units that were completed in the current period are treated exactly the same, regardless of whether they come from the opening WIP or the units started in the current period.

NOTE

In this module process costs are calculated based on actual material and labour costs and allocated overheads for the current and prior period(s). In later modules, you will learn how to integrate a process costing system with a standard costing system. (Standard costing is covered later on in MAC2601.)

\section*{5 Quantity statement}

\section*{QUANTITY STATEMENT}

A quantity statement is a summary of the flow of physical units in a process costing system. A quantity statement will therefore include information about the number of units placed into the system and what happened to them, but no information about cost or rand values.

The typical quantity statement will include columns for the following:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Physical units } & \multicolumn{3}{|c|}{ Equivalent units } \\
\hline 1 & 2 \\
\begin{tabular}{c} 
Input \\
(units)
\end{tabular} & Details & \begin{tabular}{c}
3 \\
Output \\
(units)
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Raw material
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c} 
Conversion cost
\end{tabular}} \\
\cline { 4 - 7 } & & & Units & \(\%\) & Units & \(\%\) \\
\hline
\end{tabular}

We will now discuss the contents of each column:

\section*{1. Column 1: Input (physical units)}

Input includes:
- opening WIP that is already part of this process
- units entering this process in the current period, either as new units started/put into production (first or only process) or units transferred in from a prior process

The quantities of these two different types of input units are included in the input column of the quantity statement.

The total of all the input units is also shown.
2. Column 2: Details (description of the type of input or output)

In MAC2601, the following descriptions are often used in a quantity statement:
- Opening WIP

The incomplete units in process at the beginning of a period.
- Put into production (or new units started)

These are the new units that entered into the process in a specific period, that is, the units of which the production was only started in the current period.
- Completed and transferred (split further between completed from opening inventory and completed from current production when the FIFO method of inventory valuation is used)
These are the units that went through a full production process and that can now be transferred to the finished goods store or to the next process, if applicable. (Remember: there can be more than one process!)
- Losses
(Will be discussed and added to the quantity statement - in study unit 16.)
- Closing WIP

The incomplete units in process at the end of a period.

\section*{3. Column 3: Output (physical units)}

In this column, we account for what happened to all the inputs, that is, we indicate how many units were completed and how many are still in the process at the end of the current period (closing WIP: further processing of these units will continue in the following period).

The total of all the output units is also shown.

\section*{NOTE}

It is important to remember that this column's total should agree to the total of the input column.

\section*{4. Column 4: Equivalent units for material cost}

This column is split into two sub-columns, of which one will indicate equivalent units for material for each of the quantities in the output column, and the other the percentages used to calculate each of these equivalent unit quantities.
5. Column 5: Equivalent units for conversion cost (or separate equivalent unit columns for labour and overheads, as applicable)
The information provided in a question could make it necessary (or may allow for) labour and overheads to be combined into conversion cost if they are incurred in the same way (usually evenly throughout the process). If they are incurred at different stages, you should treat them separately.

Just like the equivalent unit column for material, the equivalent unit column for conversion cost should be split into two sub-columns, one for the equivalent units for conversion cost (for each of the quantities in the output column) and the other for the percentages used to calculate these equivalent unit quantities.

If labour and overheads need to be treated separately owing to the specific content of a question, two separate columns should be created for labour and overheads, and each of these columns should be split into two sub-columns to indicate the number of equivalent units and the associated percentages.

Below is an illustration of the layout based on the different valuation methods.

Framework of a quantity statement based on the WEIGHTED AVERAGE method of inventory valuation

JKL Limited
Quantity statement for the period ended... (weighted average method)


Framework of a quantity statement based on the FIFO method of inventory valuation

JKL Limited
Quantity statement for the period ended... (FIFO method)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Physical units} & \multicolumn{2}{|r|}{Equivalent units} \\
\hline 1 & 2 & 3 & 4 & 5 \\
\hline Input (units) & Details & Output (units) & Raw material Units \% & Conversion cost Units \% \\
\hline & \begin{tabular}{l}
Input \\
Opening WIP \\
Put into production
\end{tabular} & & & \\
\hline & \begin{tabular}{l}
Output \\
Completed from: \\
Opening inventory \\
Current production \\
Completed and transferred Closing WIP
\end{tabular} & & & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{NOTE}
- Did you notice the block in columns 3 to 5 ? This is to prevent you from double counting the output units. We will use this device initially to enforce the format of the quantity statement, but we will not be using it permanently.
- Did you see that, when the FIFO method is used, we identify separately the units completed from opening WIP and those completed from new units put into production in this period?

\section*{6 Guidelines for equivalent unit columns in the quantity statement}

In this section, we discuss the "rules" that can be applied to arrive at appropriate percentages in the equivalent unit columns of a quantity statement.

NOTE

NB: Equivalent units are only calculated for OUTPUT, because this is what we want to cost.

To illustrate the rules, we will apply the following example:

Chuck's Car Air Fresheners (Pty) Ltd. has provided the following information for March 20X3:

WIP (cost: R2 300) 200 units
- 30\% complete with regard to conversion cost

New units put into process in the current month 860 units
Units completed in the current month 900 units
Closing WIP 160 units
\(-25 \%\) complete with regard to conversion cost
Material costs for March 20X3 R8 900
Conversion costs for March 20X3 R4 500

Raw material is added at the beginning of the process and conversion takes place evenly throughout the process. The organisation uses the FIFO method of inventory valuation.

NOTE

The wording "Units completed IN the current month" in the example above is not the same as "Units completed FROM current production"! Always read every question carefully. If you get this wrong, the rest of your calculations will be wrong!

\subsection*{6.1 Equivalent units: units completed from opening WIP}

When the FIFO method of inventory valuation is used, we have to split units completed and transferred to finished goods between:
- units completed from opening WIP, and
- units that were put into production and completed in the current period (units completed from current production).

We therefore separate the units completed and transferred to the finished goods store according to when production of these units started - in a prior period (units completed from opening WIP) or the current period (units completed from current production).

The percentages to use in order to calculate equivalent units for "Units completed from opening WIP" is determined by calculating how much work still had to be done on the opening WIP units in the current period to complete it, that is, which part of the work has not yet been done in prior periods.

Since material is added at the beginning of the process, the material for the opening WIP would have already been added in a prior period, resulting in no material having to be added to these units in the current period. Consequently, equivalent units for material will be zero.

Since conversion takes place evenly throughout the process, we need to determine how far the process has been completed in the previous period and deduct this percentage from 100\%.

Rule 15.1

Percentages to use in the equivalent unit columns:
Units completed from opening WIP (FIFO only): 100\% less \% of completion (opening WIP)

Applying rule 15.1 to the example in section 6 above:
We will have 200 units of opening WIP in the output column of our quantity statement. Because these units are \(100 \%\) complete in terms of material and \(30 \%\) complete in terms of conversion cost, the equivalent units would be calculated as follows:

Material: \((100 \%-100 \%) \times 200\) units \(=0 \% \times 200\) units \(=0\) equivalent units
Conversion cost: \((100 \%-30 \%) \times 200\) units \(=70 \% \times 200\) units \(=140\) equivalent units
The above means that:
- no material was added to the 200 units in the current period (all relevant materials had already been added at the start of production of these units in a prior period); and
- \(70 \%\) of the conversion work on these 200 units were done in the current period. (30\% of the conversion work had already been done in a prior period.)

\subsection*{6.2 Equivalent units: completed, current production and completed, transferred units}

When the FIFO method of inventory valuation is used, we will usually have a balancing figure in our quantity statement for the number of units completed from current production. These units should always be included in the equivalent unit columns at \(100 \%\), because they have been fully completed.

For FIFO, the number of units completed and transferred will thus be a subtotal of the equivalent units of units completed from opening WIP and the units completed from current production.

When the weighted average method of inventory valuation is used, we will not have a separate line in our quantity statement for the units completed from current production all completed units will be combined into one line called "Units completed and transferred". These units should always be included in the equivalent unit columns at \(100 \%\), because they, too, have been fully completed.

\section*{Rule 15.2}

Percentages to use in the equivalent unit columns:
"Current production" (FIFO) or "Completed and transferred" (weighted average): material \(100 \%\); conversion cost \(100 \%\).

Applying rule 15.2 to the example in section 6 above:
In the output column of our FIFO quantity statement, we will have 900 units for units completed and transferred.

The balancing figure between the units completed and transferred (900 units) and the units completed from opening stock ( 200 units) will be the units completed from current production ( \(900-200=700\) ).

These 700 units and their equivalent units can now be added to our quantity statement as follows:

Chuck's Car Air Fresheners (Pty) Ltd
Quantity statement for the period ended 31 March 20X3 (FIFO method)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{2}{|r|}{Equivalent units} \\
\hline 1 & 2 & 3 & 4 & 5 \\
\hline Input (units) & Details & Output (units) & Raw material Units \% & Conversion cost Units \% \\
\hline \multicolumn{5}{|c|}{Input} \\
\hline 200 & \multicolumn{4}{|l|}{Opening WIP} \\
\hline 860 & \multicolumn{4}{|l|}{Put into production} \\
\hline & \multicolumn{4}{|l|}{Output} \\
\hline & \multicolumn{4}{|l|}{Completed from:} \\
\hline & Opening inventory & 200 & 0 & 14070 \\
\hline & Current production & 700 & 700100 & 700100 \\
\hline & \multirow[t]{3}{*}{Completed and transferred Closing WIP} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { (1) } 900 \\
160
\end{array}
\]} & (2) 700 & (3) 840 \\
\hline & & & & \\
\hline 1060 & & 1060 & & \\
\hline
\end{tabular}

\section*{NOTE}
- The totals of the equivalent columns (2) and (3)) are not equal to the total of the output column (1)), because the equivalent column units are pro rated for costing purposes.
- The 900 subtotal in the output column has been given in the example; however, the subtotals of 700 equivalent units for material and 840 equivalent units for conversion cost should be calculated as the sum of the units completed from opening inventory and the units completed from current production:
\[
\begin{aligned}
& 0+700=700 \text { for material } \\
& 140+700=840 \text { for conversion cost }
\end{aligned}
\]
- The sections of the quantity statement that we still have to complete are indicated in dark grey. We will only be able to complete these sections after applying rule 15.3 below.

If the organisation used the weighted average method instead of the FIFO method, we would have had 900 units in the output column for units completed and transferred, without any breakdown of these units into units completed from opening stock and units completed from current production.

These 900 completed units and their equivalent units for material and for conversion cost will appear as follows in a weighted-average method quantity statement:

Chuck's Car Air Fresheners (Pty) Ltd
Quantity statement for the period ended 31 March 20X3 (weighted average method)


When you use the weighted average method, the equivalent units (2) and (3)) will always agree to the output units on this line (1). As before, the sections in dark grey will still have to be completed before our quantity statement is complete.

NOTE

Regarding FIFO: in practice, most manufacturing processes are continuous. Machines are not stopped on the day of the month that the opening WIP has been completed. Also, it is stated in section 2 - Work-in-process - that there is no distinction between units. For these reasons, the weighted average method of inventory valuation is better; however, we teach the FIFO method as well for the following reasons:
- Because of the requirements of the South African Institute of Chartered Accountants (SAICA) and the requirements of the Chartered Institute of Management Accountants (CIMA).
- Because it might suit some products better (if the product is manufactured over a long period and the costs vary).

Also, companies nowadays try to keep inventory to a minimum. The difference between values determined according to the FIFO and weighted average methods should, therefore, be minimal simply because the bulk of the units will be from current production.

\subsection*{6.3 Equivalent units: closing WIP}

The method of inventory valuation does not influence the equivalent units of closing WIP. These equivalent units are arrived at by simply multiplying the percentage of completion of the closing WIP by the relevant number in the output column.

Rule 15.3

Percentages to use in the equivalent unit columns:
Closing WIP: \% of completion at end of period

Applying rule 15.3 to the example in section 6 above:
We will have 160 units of closing WIP in the output column of our quantity statement. Since these units are \(100 \%\) complete in terms of material and \(25 \%\) complete in terms of conversion cost, the equivalent units will be calculated as follows:

Material: 100\% x 160 units \(=160\) equivalent units
Conversion cost: \(\mathbf{2 5 \%} \times 160\) units \(=40\) equivalent units

NOTE

For completeness' sake, the FIFO and weighted average quantity statements for Chuck's Car Air Fresheners (Pty) Ltd, as fully completed, have been provided below. You will also see that there are no rand amounts in the quantity statements.

Chuck's Car Air Fresheners (Pty) Ltd
Quantity statement for the period ended 31 March 20X3 (FIFO method)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{2}{|r|}{Equivalent units} \\
\hline 1 & 2 & 3 & 4 & 5 \\
\hline Input (units) & Details & Output (units) & Raw material Units \% & Conversion cost Units \\
\hline & Input & & & \\
\hline 200 & Opening WIP & & & \\
\hline 860 & Put into production & & & \\
\hline & Output & & & \\
\hline & Completed from: & & & \\
\hline & Opening inventory & 200 & 0 & 14070 \\
\hline & Current production & 700 & 700100 & 700100 \\
\hline & Completed and transferred & 900 & 700 & 840 \\
\hline & Closing WIP & 160 & 160100 & \(40 \quad 25\) \\
\hline 1060 & & 1060 & 860 & 880 \\
\hline
\end{tabular}

Chuck's Car Air Fresheners (Pty) Ltd
Quantity statement for the period ended 31 March 20X3 (weighted average method)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline 1 & \multirow[t]{2}{*}{Details 2} & 3 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
4 \\
Raw material
\end{tabular}}} & \multicolumn{2}{|l|}{5} \\
\hline Input (units) & & Output (units) & & & \begin{tabular}{l}
Conve \\
Units
\end{tabular} & \[
\begin{gathered}
\text { cost } \\
\%
\end{gathered}
\] \\
\hline & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\(\frac{\text { Input }}{\text { Opening WIP }}\)}} \\
\hline 200 & & & & & & \\
\hline 860 & \multicolumn{6}{|l|}{Put into production} \\
\hline & \multicolumn{6}{|l|}{Output} \\
\hline & Completed and transferred & 900 & 900 & 100 & 900 & 100 \\
\hline & Closing WIP & 160 & 160 & 100 & 40 & 25 \\
\hline 1060 & & 1060 & 1060 & & 940 & \\
\hline
\end{tabular}

\subsection*{6.4 Equivalent units: losses}

The guidelines for determining equivalent units for normal and abnormal losses are discussed in study unit 16.

\section*{7 Quantity statement - weighted average and FIFO methods of inventory valuation}

The following activity illustrates the contents of the different columns of a quantity statement for the specific set of information given using different inventory valuation methods.

\section*{Activity 15.2}

\section*{A basic quantity statement}

Lunar Lotion (Pty) Ltd. manufactures shimmering body lotion in a single process and uses a process costing system. Raw material is added at the beginning of the process and conversion takes place evenly throughout the process.

Cost and production figures for January 20X8 are as follows:
\begin{tabular}{lr} 
WIP (1 January 20X8) & 5000 \\
- 40\% complete with regard to conversion cost & \\
New units put into process in the current month & 15000 \\
Units completed in the current month & 18000 \\
WIP (31 January 20X8) & 2000 \\
- 30\% complete with regard to conversion cost &
\end{tabular}

\section*{REQUIRED}

Prepare a quantity statement for January 20X8 based on:
a. the weighted average method of inventory valuation; and
b. the FIFO method of inventory valuation.

\section*{Solution to Activity 15.2}
a. Quantity statement for January 20X8 (weighted average method)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Physical units} & \multicolumn{3}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw material Units \% & \multicolumn{2}{|l|}{\begin{tabular}{l}
Conversion cost \\
Units \\
\%
\end{tabular}} \\
\hline (1) 5000 & Opening WIP & & & & \\
\hline (1) 15000 & Put into production & & & & \\
\hline & Completed and transferred & (1) 18000 & 18000100 & 18000 & 100 \\
\hline & Closing WIP & (1) 2000 & 2000100 & (4) 600 & 30 \\
\hline (2) 20000 & & (2) 20000 & 20000 & 18600 & \\
\hline
\end{tabular}

\section*{b. Quantity statement for January 20X8 (FIFO method)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & \multicolumn{2}{|l|}{Raw material} & Conversi & cost
\(\%\) \\
\hline \multirow[t]{7}{*}{\[
\begin{array}{r}
\text { (1) } 5000 \\
\text { (1) } 15000
\end{array}
\]} & Opening WIP & & & & & \\
\hline & Put into production & & & & & \\
\hline & Completed from: & & & & & \\
\hline & Opening inventory & (4) 5000 & - & 0 & (5) 3000 & (6) 60 \\
\hline & Current production & (3) 13000 & 13000 & 100 & 13000 & 100 \\
\hline & Completed and transferred & (1) 18000 & 13000 & & 16000 & \\
\hline & Closing WIP & (1) 2000 & 2000 & 100 & (4) 600 & 30 \\
\hline (2) 20000 & & (2) 20000 & 15000 & & 16600 & \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) Given
(2) The total of the input column should always agree with the total of the output column.
(3) Balancing figure. For part b. (FIFO), the units completed and transferred to the finished goods store were split between those completed from opening inventory and those completed from the units put into production in the current period. For part a. (weighted average method), all the units completed and transferred were pooled and treated identically, regardless of the period from which they originated.
(4) \(30 \% \times 2000=600\) units
(5) \(60 \% \times 5000=3000\) units
(6) \(100 \%-40 \%=60 \%\) required to complete

NOTE

Did you notice the following?
Units completed from current production (output column)
+ closing WIP (output column)
\(=\) units put into production in the current month (input column)
This is because no losses occurred in the current period.

\section*{8 Summary}

In this study unit, you learnt the following:
- In order to calculate the average cost per unit in process costing, the equivalent of fully completed units needs to be calculated for any partially completed units.
- Equivalent units are not the same thing as physical units.
- To calculate the equivalent units for every line in the quantity statement, an appropriate percentage has to be multiplied by the relevant number of units in the output column.
- The percentages to use are:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Quantity statement line } & \multicolumn{1}{|c|}{ Material } & \multicolumn{1}{c|}{ Conversion cost } \\
\hline \begin{tabular}{l} 
Units completed from open- \\
ing WIP (FIFO)
\end{tabular} & \begin{tabular}{l}
\(100 \%\) less \% of completion \\
of opening WIP with regard \\
to material, therefore for \\
MAC2601 purposes always \\
\(100 \%-100 \%=0 \%\)
\end{tabular} & \begin{tabular}{l}
\(100 \%\) less \% of completion \\
of opening WIP with regard \\
to conversion
\end{tabular} \\
\hline \begin{tabular}{l} 
Units completed from cur- \\
rent production (FIFO)
\end{tabular} & \(100 \%\) & \(100 \%\) \\
\hline \begin{tabular}{l} 
Units completed and trans- \\
ferred (weighted average \\
method)
\end{tabular} & \(100 \%\) & \(100 \%\) \\
\hline \begin{tabular}{l} 
Closing WIP (both meth- \\
ods)
\end{tabular} & \(100 \%\) & \begin{tabular}{l}
\(\%\) of completion of closing \\
WIP with regard to conver- \\
sion
\end{tabular} \\
\hline
\end{tabular}
- In a quantity statement, the total of the input column should always agree to the total of the output column (input = output).

You also learnt how to compile a quantity statement based on the weighted average and the FIFO method of inventory valuation.

In the next study unit, we are going to determine the impact of losses on the calculation of equivalent units for the weighted average and for the FIFO method.

\section*{Additional reading}

Please refer to the list of sources for additional reading at the end of study unit 18.

Self-assessment Activity

Tasteful Textile (Pty) Ltd. manufactures waterproof fabric in a single process and makes use of a process costing system. Material is added at the beginning of the process and conversion takes place evenly throughout the process.

The following information is available for the organisation's 20X7 financial year:
Opening WIP 30000 units
Conversion 60\% complete
New units started
Units completed in the current financial year
Closing WIP
500000 units

Conversion

\section*{REQUIRED}

Prepare a quantity statement for the 20X7 financial year applying:
a. the FIFO method of inventory valuation; and
b. the weighted average method of inventory valuation.

\section*{Solution to Self-assessment Activity}
a. FIFO method
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw mat Units & & Conversi Units & \[
\begin{gathered}
\mathrm{n} \text { cost } \\
\%
\end{gathered}
\] \\
\hline 30000 & \multicolumn{6}{|l|}{Opening WIP} \\
\hline \multirow[t]{6}{*}{500000} & \multicolumn{6}{|l|}{Put into production} \\
\hline & Completed from: & & & & & \\
\hline & Opening inventory & 30000 & - & 0 & 12000 & (2) 40 \\
\hline & Current production & (1) 460000 & 460000 & 100 & 460000 & 100 \\
\hline & Completed and transferred & 490000 & 460000 & & 472000 & \\
\hline & Closing WIP & 40000 & 40000 & 100 & 12000 & (3) 30 \\
\hline 530000 & & 530000 & 500000 & & 484000 & \\
\hline
\end{tabular}
b. Weighted average method
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & \multicolumn{2}{|l|}{Raw material Units \%} & \multicolumn{2}{|l|}{Conversion cost Units \%} \\
\hline 30000 & \multicolumn{6}{|l|}{Opening WIP} \\
\hline \multirow[t]{3}{*}{500000} & \multirow[t]{3}{*}{Completed and transferred Closing WIP} & & & & & \\
\hline & & 490000 & 490000 & 100 & 490000 & 100 \\
\hline & & 40000 & 40000 & 100 & 12000 & 30 \\
\hline 530000 & & 530000 & 530000 & & 502000 & \\
\hline
\end{tabular}

\section*{Explanatory notes:}
(1) Balancing figure (490 000-30 000)
(2) \(100 \%-60 \%=40 \%\), where \(60 \%\) is the percentage of completion of opening stock with regard to conversion (see rule 15.1 in 6.1)
(3) 30\%: percentage of completion of closing stock with regard to conversion (see rule 15.3 in 6.3)

\section*{Losses}


\section*{1 Introduction}

In study unit 14, you learnt that the nature of certain products is such that these products must be manufactured in a process, and that this process mainly consists of input, conversion activities and output.

In a perfect world, all the inputs into the production process will be present in some or other processed form in the final product, or the output of completed units. However, in practice it is likely that some losses will occur in the manufacturing process. These losses can be split into two categories, both of which have distinctive characteristics and which differ with regard to accounting treatment: normal and abnormal losses.

In study unit 16, you are going to learn how to calculate these losses and how to treat them in the quantity statement.

\section*{2 Normal versus abnormal losses}

The table below shows a comparison between normal and abnormal losses. You will note that the table includes alternative names for the two categories, refers to certain characteristics, and also gives examples of normal and abnormal losses.

TABLE 16.1: Normal losses compared with abnormal losses
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Normal losses } & \multicolumn{1}{c|}{ Abnormal losses } \\
\hline \begin{tabular}{l} 
Sometimes also referred to as unavoid- \\
able losses.
\end{tabular} & \begin{tabular}{l} 
Sometimes also referred to as controllable \\
losses.
\end{tabular} \\
\hline \begin{tabular}{l} 
Inherent in the manufacturing process \\
(they will occur as a natural part of the \\
process) - you cannot avoid them.
\end{tabular} & \begin{tabular}{l} 
Avoidable in the manufacturing process \\
(they will not occur as a natural part of the \\
process) - you should control/inhibit their \\
occurrence.
\end{tabular} \\
\hline \begin{tabular}{l} 
Do not indicate that a process is ineffective \\
- therefore "normal".
\end{tabular} & \begin{tabular}{l} 
Indicate that a part/parts of the process is/ \\
are ineffective - therefore "abnormal".
\end{tabular} \\
\hline \begin{tabular}{l} 
Examples: \\
- Wastage due to evaporation in a \\
chemical process (eg some inputs will \\
"vanish" naturally when heating \\
essential for binding takes place). \\
- Waste materials where textiles are \\
produced (off-cuts).
\end{tabular} & \begin{tabular}{l} 
Examples: \\
- Wastage due to use of raw materials of \\
inferior quality resulting in production \\
output scrapped. \\
Wastage due to employee \\
carelessness.
\end{tabular} \\
- Units rejected at quality inspection \\
(within acceptable (normal) range or \\
tolerance).
\end{tabular}\(\quad\)\begin{tabular}{l} 
Spoilt output due to production \\
interruption (eg electrical failure leading \\
to units heating up/cooling down etc).
\end{tabular}

NOTE

In MAC2601, we sometimes refer to losses as wastage, spillage, spoilage or scrapped items. Spillage, for example, generally occurs when some of the product overflows or leaks, whereas spoilage could include losses caused by some products going rotten.

Although the appropriate term actually depends on the nature of the specific product and the specific manufacturing process, we will use these terms interchangeably in this module.

\section*{3 Inputs versus outputs}

As explained in the introduction to this study unit, the total inputs into a process are likely to differ from the final completed units from the process due to normal and abnormal losses. We would therefore have to amend the quantity statement for the following:

Outputs could now include:
- Units completed and transferred (including units completed from the opening WIP and units both started and completed in the current period)
- Normal losses
- Abnormal losses
- Closing WIP

Total inputs into the process should still agree to total outputs from the process (including losses).

\section*{4 Place and size of normal wastage (normal losses)}

In section 2 of this study unit, we indicated that it is likely (normal) that some losses (wastage) will occur in a production process. We will now have a look at how the normal
loss is calculated for the purposes of the quantity statement (ie the number of units wasted by means of normal loss) when wastage occurs in the process of manufacturing a product.

These losses will be included in the output column of the quantity statement, with "Normal loss" in the Details column, as discussed in section 3.

It is important to note that there is a difference between where the normal loss occurs and how much (what the quantity/size of) normal wastage is. Both will influence the calculation of normal loss; however, it is important not to confuse the two concepts with each other.

Wastage could occur at any of the following stages of the production process:
- At the beginning of the process (when the process is \(0 \%\) complete); for example, spillage when material is added.
- At the end of the process (when the process is \(100 \%\) complete); for example, after quality inspections.
- During the process (anywhere between 0\% and 100\% completion); for example, when chemicals evaporate.

Wastage is identified at the wastage point or, in other words, where normal wastage occurs in the process.

The how much is usually a percentage estimate of the size of the normal loss and is, in most instances, expressed (for the purposes of this module) as a percentage of units that enter or pass/reach the wastage point in the current period. This is why it is important to determine how many of the units in the process have passed/reached the wastage point in the current period. We then apply the how much of the wastage to these units when calculating the normal loss to be included in the output column of the quantity statement.

NOTE

For the purposes of MAC2601, the calculation of the normal loss for insertion into the output and equivalent unit columns will not differ between the FIFO and weighted average methods of inventory valuation. In practice, we may decide to split the normal loss line in the quantity statement between opening WIP and the rest of the units for the purposes of calculating equivalent units using the FIFO method. It is debatable how much difference this will make to the final inventory valuations, especially if inventory levels are kept low.

\section*{5 Determining the number of units subject to normal loss}

To determine the units subject to normal loss, we will always start with the total of the input column. We will then apply both of the following rules in order to determine the total number of units subject to normal loss in the current period:

\section*{Rule 16.1}

If \% of completion (opening WIP) is greater than or equal to the wastage point \(\%\), deduct the opening WIP units from the input column total.

If \% of completion (closing WIP) is smaller than the wastage point \%, deduct the closing WIP units from the input column total.

\section*{NOTE}
- This calculation is based on physical units. It applies IRRESPECTIVE of which inventory valuation method is used.
- The following are the possible results of applying rules 16.1 and 16.2:
- Only opening WIP units are deducted from the input column total.
- Only closing WIP units are deducted from the input column total.
- Neither opening nor closing WIP units are deducted from the input column total.
- Both opening WIP units and closing WIP units are deducted from the input column total.

\section*{6 Calculation of normal loss in units, depending on the wastage point}

To determine the size of the normal loss (which is ultimately included in the output column of the quantity statement), we will need to:
- determine how many units are subject to normal loss in the current period (refer to section 5 of this study unit); and
- apply the appropriate loss percentage, ratio, etcetera (the "how much" of the loss, which depends on the information provided in a question) to the number of units subject to normal loss in the current period.

For example, if normal loss is estimated as \(10 \%\) of units that have passed/reached the wastage point, we will have to multiply the total number of units subject to normal loss in the current period by \(10 \%\) to arrive at normal loss in units. This normal loss will then be included in the output column of the quantity statement.

\section*{Activity 16.1}

\section*{Normal loss calculations}

The following information is available for Can-o'-Worms (Pty) Ltd, an organisation that prepares a mixture used for fishing bait (a single process applies and a process costing system is used):
\begin{tabular}{lr} 
& \(\underline{\text { Units }}\) \\
Opening WIP - 40\% completed & 90000 \\
New units put into production in the current period & 200000 \\
Closing WIP - 30\% completed & 40000
\end{tabular}

Normal loss is estimated as \(10 \%\) of the units that have passed the wastage point.

\section*{REQUIRED}

Calculate the normal loss to be included in the output column of the quantity statement for each of the following scenarios:
a. Wastage occurs at the beginning of the process.
b. Wastage occurs at the end of the process.
c. Wastage occurs when the process is \(50 \%\) complete.
d. Wastage occurs when the process is \(35 \%\) complete.
e. Wastage occurs when the process is \(20 \%\) complete.
f. Wastage occurs when the process is \(30 \%\) complete.

\section*{Solution to Activity 16.1}

Firstly, calculate the physical input into the process (for purposes of a-f).
Input Details
(units)
90000 Opening WIP
\(\underline{200000}\) Put into production
\(\underline{\underline{290} 000}\)

\section*{NOTE}
- The total of the input column will be the starting point for all calculations of units that are subject to loss.
- Over the next few pages, we will use figure 16.1 to illustrate the impact of the placement of the wastage point on the calculation of the units lost.
- We have used "WP" as the abbreviation for "wastage point".
- The arrows indicate the production activity that has taken place IN THIS PERIOD.
a. When wastage occurs at the beginning of the process:

b. When wastage occurs at the end of the process:

c. Wastage occurs when the process is \(\mathbf{5 0 \%}\) complete:

d. Wastage occurs when the process is \(35 \%\) complete:

e. Wastage occurs when the process is \(\mathbf{2 0 \%}\) complete:

f. Wastage occurs when the process is \(\mathbf{3 0 \%}\) complete:


Source: Author, 2012.
FIGURE 16.1: Diagrammatic representation of a single manufacturing process with normal wastage

\section*{Explanatory notes}
- In all instances, we started with the total of the input column.
- When we have to deduct opening and/or closing WIP in our normal loss calculation, we are effectively excluding the associated number of units from the total of the input column.
- When opening and/or closing inventory has to be kept or included in the normal loss calculation as per rules 16.1 and 16.2 of this study unit, we will not adjust the total of the input column for the inclusion(s). The reason for this is that the total of the input column already includes all the units involved in the process (including the units in opening and closing WIP): adding opening and/ or closing WIP units to the column total would therefore lead to double counting. Keeping the units included in the calculation is indicated as "keep" and no action is taken.
- We applied rules 16.1 and 16.2 of this study unit to scenarios a. to \(\mathbf{f}\). to calculate the normal loss.
- Although the information in a question often specifies that the normal loss should be calculated on units that have passed the wastage point, this will include instances in which units have reached the wastage point (ie where the percentage of completion in terms of conversion cost is equal to the wastage point, as in scenario f. above). Similarly, when a question refers to the units that have reached the wastage point, you also need to include the units that have actually passed this point.

NOTE

The above diagrams and tables are only provided for the purposes of explaining the
calculations. If this was an assignment or examination question, you could have left out the diagrams and the tables, but you should have shown your calculation of the normal loss (eg scenario f: [290 000-90 000] x 10\% = 20000 ). However, many students find that drawing a timeline or diagram helps them to understand the process.

Take note that the percentage of completion of opening WIP and of closing WIP can be anywhere in the process. The opening WIP percentage of completion will not necessarily be larger than the closing WIP percentage of completion - it could be smaller than or even equal to the closing WIP percentage of completion.

Assume, for example, that the opening WIP percentage of completion with regard to conversion cost now changed to \(15 \%\), with the closing WIP remaining as \(30 \%\) complete and with wastage occurring when the process is \(25 \%\) complete.

The diagram and normal loss would now look as follows:


Source: Author, 2012.
FIGURE 16.2: Diagrammatic representation of a single manufacturing process with normal wastage where both opening and closing WIP are subject to normal loss in the current period

\section*{Activity 16.2}

\section*{Normal loss calculations - ratio of spoilt items}

The following information is available for Cough-Less (Pty) Ltd, a pharmaceutical company that produces a cough syrup (a single process applies and a process costing system is used):
\begin{tabular}{lr} 
& \(\underline{\text { Units }}\) \\
Opening WIP - 15\% completed & 10000 \\
New units put into production in the current period & 22000 \\
Closing WIP - 30\% completed & 6000
\end{tabular}

Normal loss information: Four out of every five units that reach the wastage point are unspoilt and of acceptable quality. Losses take place when the process is \(25 \%\) complete.

\section*{REQUIRED}

Calculate the normal loss to be included in the output column of the quantity statement for the specific scenario.

\section*{Solution to Activity 16.2}
a. Calculate the physical input into the process
Input Details
(units)
10000 Opening WIP
22000 Put into production
32000
b. Calculate the normal loss percentage (size of the loss)

If four out of every five units are unspoilt, it means that \(5-4=1\) out of every 5 units will be lost due to normal wastage.
\(1 / 5 \times 100=20 \%\)
Calculate the normal loss to be included in the output column


\section*{7 Normal losses and the FIFO quantity statement}

Although the calculation of the normal loss in units will not differ regardless of whether we use the FIFO or weighted average method of inventory valuation, the normal loss could influence the FIFO quantity statement in terms of the units completed from opening WIP, based on the percentage of completion of the opening WIP.

If the opening WIP has already passed the wastage point in the previous period, this will mean that the normal loss on these units of opening inventory has already been accounted for in the past. The units in opening WIP that was included in our current period's input column, are therefore already net of the normal loss incurred on these
units in the past. In the output column, the units completed from opening WIP will therefore be equal to the units carried forward in opening WIP.

However, if the opening WIP will only be passing/reaching the wastage point in the current period, the units completed from the opening inventory will be less than the opening WIP units of our current period's input column; this is because of the normal loss on the opening WIP being accounted for in the current period (as part of the normal loss to be included in the output column of the current period's quantity statement).

In other words, if we include (keep) our opening WIP in the calculation of the normal loss in units as per rule 16.1 of this study unit, we will have to decrease our units completed from opening inventory by the normal loss percentage/ratio, etcetera in order to avoid double counting.

If you think about this logically, normal losses on the incomplete units that we started the current period with (opening WIP) have not yet been brought into account in the past, because these units will only be passing/reaching the wastage point in the current period. When they pass/reach the wastage point in the current period, we will have to bring into account the normal losses on these units, together with normal losses on the units that were put into production in the current period and have passed/reached the wastage point.

The units that are eventually completed from this opening WIP will therefore be fewer than the incomplete units that we had at the beginning of the current period.

Therefore:

\section*{Rule 16.3 (FIFO only)}

If \% of completion (opening WIP) is smaller than the wastage point, reduce the units completed from opening inventory by the normal loss on these units.

For example:
\begin{tabular}{|c|l|l|}
\hline & \multicolumn{1}{|c|}{ Scenario 1 } & \multicolumn{1}{|c|}{ Scenario 2 } \\
\hline Opening WIP & \(60 \%\) & \(20 \%\) \\
\hline \% of completion & 150000 & 320000 \\
\hline Wamber of units & \begin{tabular}{l} 
- occurs when the process \\
is 45\% complete; and \\
- is estimated as 15\% of \\
units that reach the wa- \\
stage point.
\end{tabular} & \begin{tabular}{l} 
Occurs when the process \\
is \(45 \%\) complete; and \\
is estimated as 8\% of \\
units that reach the wa- \\
stage point.
\end{tabular} \\
\hline Inventory valuation method & FIFO & FIFO \\
\hline
\end{tabular}

If we apply rule 16.3 above to the two scenarios, the calculation of the units completed from opening inventory to be included in the output column of the quantity statement will be as follows:

\section*{Scenario 1}

Is 60\% (\% of completion: opening WIP) smaller than \(45 \%\) ? No. Therefore, do not reduce the units completed from opening inventory by the normal loss on these units. The
reason for this is that these units will be deducted in our current period normal loss calculation (as per rule 16.1 of this study unit).

The units completed from opening inventory to be included in the output column of the quantity statement will thus be 150000.

\section*{Scenario 2}

Is 20\% (\% of completion: opening WIP) smaller than 45\%? Yes. Therefore, reduce the units completed from opening inventory by the normal loss on these units. The reason for this is that these units will be kept included in our current period normal loss calculation (as per rule 16.1 of this study unit).

Normal loss on 320000 units \(=8 / 100 \times 320000\)
\[
=25600 \text { units }
\]

The units completed from opening inventory to be included in the output column of the quantity statement will thus be \(320000-25600=294400\) units.

\section*{8 Calculation of abnormal loss in units, depending on the wastage point}

The abnormal loss to be included in the output column of the quantity statement ("Abnormal loss" will appear in the Details column) is usually a balancing figure that can be calculated as follows from the output column (which you now know should agree to the input column total):

Output ( = input) column total
Less: Units completed and transferred
Less: Normal loss in units
Less: Closing WIP
Equals: Abnormal loss in units

However, in some questions we might provide you with the number of units spoilt owing to abnormal circumstances and then the units completed and transferred might be the balancing figure.

Another scenario might also arise in which there are TWO types of abnormal losses:
- one type of abnormal loss caused by a specific event (eg a power failure resulting in a specific number of units spoiling) - this might be at any point in the process; and
- an abnormal loss occurring at the same wastage point as the normal loss (this will be the balancing figure in the calculation).

If the abnormal loss results in a negative number, there is actually an abnormal gain from the process. The treatment of this abnormal gain will be covered in later modules. Therefore, if you arrive at an abnormal gain in MAC2601, you should know that you have made an error somewhere!

\section*{9 Determining equivalent units of normal and abnormal loss - general guidelines}

We are calculating equivalent units for losses because money and resources have been spent on these units up to the wastage point. The units will therefore have to carry their share of cost for the period.

\subsection*{9.1 Raw materials}

For the purposes of MAC2601, raw materials will always be added at the beginning of a process. In other words, the materials will always be added to a process when the conversion process is \(0 \%\) complete.

When material is added at the beginning of the process and any wastage of units occurs at any stage of the production process, this means that all the material added for purposes of these wasted units will effectively be wasted.

Therefore, for normal and abnormal losses, the equivalent unit percentage to use in MAC2601 will always be \(100 \%\) for raw materials.

\subsection*{9.2 Conversion cost}

In general, conversion cost will be "lost" due to wastage to the extent that conversion has taken place up to the point where the wastage occurred.

Therefore, for normal losses, the equivalent unit percentage to use in MAC2601 regarding conversion cost will be the percentage of the conversion work that has been done up to the point where wastage occurs (ie the wastage point percentage if conversion took place evenly).

For abnormal losses, we will also use the wastage point percentage if conversion took place evenly, unless the abnormal loss incident took place at a different time from the normal loss. In such a case, the percentage to use for the abnormal loss occurring at a different point in time from the normal loss will be the percentage of completion of the units (in terms of conversion cost) when this abnormal loss incident took place.

If the question does not state at what stage the abnormal loss occurred, you may assume the wastage point is the same as that for normal loss.

We can therefore deduce the following "rules" for abnormal losses:

\section*{Rule 16.4}

Percentage to use in the conversion cost equivalent unit column if conversion takes place evenly AND the normal and abnormal losses occur at the same wastage point:

Wastage point \% (ie \% where the normal and abnormal losses takes place)

\section*{Rule 16.5}

Percentage to use in the conversion cost equivalent unit column if conversion takes place evenly AND the abnormal loss takes place at a different wastage point from the normal loss:

Specific (event) wastage point \% (ie \% where the specific loss takes place)

\subsection*{9.3 Cost of prior processes}

In order to start with a new process in a set of sequential processes, a physical unit of production needs to be fully completed as far as all prior processes are concerned (except when the new process is process 1).

However, in this module you will not be required to calculate the equivalent units of losses for scenarios with consecutive processes.

\subsection*{9.4 Completing the quantity statement}

\section*{NOTE}

Very important: as we explained earlier, the method of inventory valuation has no bearing on the equivalent units of normal or abnormal losses for the purposes of the MAC2601 quantity statement.

\section*{Activity 16.3}

\section*{Losses in the output colum of the quantity statement}

We shall now continue with our example of Lunar Lotion (Pty) Ltd.
To reiterate: Lunar Lotion (Pty) Ltd. manufactures shimmering body lotion in a single process and uses a process costing system. Raw materials are added at the beginning of the process, and conversion takes place evenly throughout the process.

Normal loss for February 20X8 is estimated as \(15 \%\) of inputs that reach the wastage point.

Cost and production figures for February 20X8 are as follows:
\begin{tabular}{lr} 
& \(\underline{\text { Units }}\) \\
WIP (1 February 20X8) - 30\% complete & 2000 \\
New units put into process in the current month & 23000 \\
Units completed in the current month & 16000 \\
WIP (28 February 20X8) \(-60 \%\) complete & 4000
\end{tabular}

\section*{REQUIRED}
a. Prepare the February 20X8 quantity statement according to the:
i. weighted average method
ii. FIFO method
of inventory valuation, if all wastage occurs at the beginning of the process.
b. Prepare the February 20X8 quantity statement according to the:
i. weighted average method
ii. FIFO method
of inventory valuation, if all wastage occurs when the process is \(70 \%\) complete.
a. i Quantity statement for February \(20 \times 8\) (weighted average method):
WP = 0\%
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Physical units} & \multicolumn{3}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw materials Units \% & \multicolumn{2}{|l|}{Conversion cost Units \%} \\
\hline (1) 2000 & Opening WIP & & & & \\
\hline (1) 23000 & Put into production & & & & \\
\hline & Completed and transferred (4) & (1) 16000 & 16000100 & 16000 & 100 \\
\hline & Normal loss & (2) 3450 & 3450100 & - & 0 \\
\hline & Abnormal loss (5) & (3) 1550 & 1550100 & - & 0 \\
\hline & Closing WIP & (1) 4000 & 4000100 & (6) 2400 & 60 \\
\hline 25000 & & 25000 & 25000 & 18400 & \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) Given
(2) \((25000-2000) \times 15 \%=3450\)
[Opening WIP\% \(\geqslant\) WP\% \(\rightarrow\) deduct; closing WIP\% \(\geqslant\) WP\% \(\rightarrow\) keep]
(3) Balancing figure ( \(25000-16000-3450-4000)\)
(4) Can you see that, because we are using the weighted average method, we are not concerned from which inventory the units are completed? Only one line: "Completed and transferred" is required.
(5) The question indicated that all losses occur at the beginning of the process. Abnormal losses therefore occur at the same wastage point as that for normal losses (0\%).
(6) \(4000 \times 60 \%=2400\)
(7) The calculation of equivalent units for closing WIP is exactly the same, regardless of the inventory valuation method used.
a. ii Quantity statement for February 20X8 (FIFO method): WP = 0\%


\section*{Explanatory notes}
(1) Given
(2) Because the percentage of conversion of opening WIP (30\%) is larger than the wastage point ( \(0 \%\) ), we do not reduce the units completed from opening inventory by \(15 \%\). The opening inventory has already been reduced by the losses in the previous period.
(3) Balancing figures:
\(16000-2000=14000\)
\(25000-16000-3450-4000=1550\)
(4) \((25000-2000) \times 15 \%=3450\)
(5) Note that the abnormal loss is exactly the same as for the weighted average method.
(6) \(2000 \times(100 \%-30 \%)=1400\)
(7) The calculation of equivalent units for the closing WIP is exactly the same, regardless of the inventory valuation method used.
b. i Quantity statement for February 20 X 8 (weighted average method): WP = 70\%
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Physical units} & \multicolumn{3}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw materials Units \% & \multicolumn{2}{|l|}{Conversion cost Units \%} \\
\hline (1) 2000 & Opening WIP & & & & \\
\hline (1) 23000 & Put into production & & & & \\
\hline & Completed and transferred & (1) 16000 & 16000100 & 16000 & 100 \\
\hline & Normal loss & (2) 3150 & 3150100 & (3) 2205 & 70 \\
\hline & Abnormal loss & (3) 1850 & 1850100 & (4) 1295 & 70 \\
\hline & Closing WIP & (1) 4000 & 4000100 & (5) 2400 & 60 \\
\hline 25000 & & 25000 & 25000 & 21900 & \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) Given
(2) \((25000-4000) \times 15 \%=3150\)
[Opening WIP\% < WP\% \(\rightarrow\) keep; closing WIP\% < WP\% \(\rightarrow\) deduct]
(3) \(3150 \times 70 \%=2205\)
(4) \(1850 \times 70 \%=1295\). The question indicated that all losses occur when the process is \(70 \%\) complete. Abnormal losses therefore occur at the same wastage point as that for normal losses (70\%).
(5) \(4000 \times 60 \%=2400\)
b. ii Quantity statement for February \(20 X 8\) (FIFO method): WP = 70\%
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw m Units & \begin{tabular}{l}
rials \\
\%
\end{tabular} & Conversio Units & \[
\underset{\%}{\text { cost }}
\] \\
\hline \multirow[t]{9}{*}{\[
\begin{array}{r}
\text { (1) } 2000 \\
\text { (1) } 23000
\end{array}
\]} & \multicolumn{6}{|l|}{Opening WIP} \\
\hline & \multicolumn{6}{|l|}{Put into production} \\
\hline & Completed from: & & & & & \\
\hline & Opening inventory & (2) 1700 & - & 0 & (7) 1190 & 70 \\
\hline & Current production & (3) 14300 & 14300 & 100 & 14300 & 100 \\
\hline & Completed and transferred & 16000 & 14300 & & 15490 & \\
\hline & Normal loss & (4) 3150 & 3150 & 100 & (8) 2205 & 70 \\
\hline & Abnormal loss & (3) 1850 & 1850 & 100 & (9) 1295 & 70 \\
\hline & Closing WIP & (1) 4000 & 4000 & 100 & (10) 2400 & 60 \\
\hline 25000 & & 25000 & 23300 & & 21390 & \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) Given
(2) \(2000 \times(100 \%-15 \%)=1700\). Because the percentage of conversion of opening WIP (30\%) is smaller than the wastage point (70\%), we have to reduce the units completed from opening inventory by \(15 \%\). These losses are now included in normal loss for the period.
(3) Balancing figures:
\(16000-1700=14300\)
\(25000-16000-3150-4000=1850\)
(4) \((25000-4000) \times 15 \%=3150\) (note that this is exactly the same as for the weighted average method)
(5) Note that the abnormal loss is exactly the same as for the weighted average method.
(6) Note that the closing WIP is exactly the same in all four quantity statements in this question.
(7) \(1700 \times(100 \%-30 \%)=1190\)
(8) \(3150 \times 70 \%=2205\)
(9) \(1850 \times 70 \%=1295\)
(10) \(4000 \times 60 \%=2400\)

NOTE
- Let us say the question did not specify that all losses occurred at a specific point in the process (eg at the beginning of the process or when the process is \(70 \%\) complete), but only indicated the point where the normal losses occur. If this was the case, you could have assumed the same wastage point for the abnormal losses as for the normal losses, unless the question specified that an abnormal loss occurred at a specific point in the process (due to a specific event). If, in fact, an abnormal loss occurred owing to a specific event, you would have had to do the following:
- Determine whether this abnormal loss takes place earlier in the process than the normal losses, in which case you will have to exclude the abnormal loss arising from the specific event from your normal loss unit calculation.
- Treat any remaining input units that cannot be accounted for as an additional abnormal loss (balancing figure) occurring at the same point in the process as the normal loss.
- When FIFO is used, remember to include a separate line for units completed from opening inventory and make sure that you only reduce the units involved by a normal loss figure if opening WIP percentage of completion (with regard to conversion cost) is smaller than the wastage point.
- For the purposes of this module, the opening inventory equivalent units for material will always be zero for units completed from opening WIP when applying FIFO (applying rule 15.1). This is because of the assumption, in MAC2601, that material will always be added at the starting point in the process \((100 \%-100 \%=0 \%)\).

\section*{Activity 16.4}

\section*{Prepare quantity statements}

The following information for March 20X8 was taken from Activity 15.1 of study unit 15 :
"Jumpy Juice (Pty) Ltd. manufactures fruit juice in a single process and makes use of a process costing system.

Closing WIP - 20\% complete 50000 units
Material is added at the beginning of the process and conversion takes place evenly throughout the process."

Jumpy Juice (Pty) Ltd. now has the following additional process costing information available:

April 20X8
Put into production 250000 units
Units completed in the current month 200000 units
Closing WIP - 90\% complete 60000 units
Normal loss
\(5 \%\) of units that reach wastage point
Wastage point 75\%

\section*{REQUIRED}

Prepare a quantity statement for April 20X8 by applying:
a. the weighted average method of inventory valuation
b. the FIFO method of inventory valuation

\section*{Solution to Activity 16.4}
a. Quantity statement - weighted average method (WP = 75\%)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Physical units} & \multicolumn{3}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw materials Units \% & \multicolumn{2}{|l|}{Conversion cost Units \%} \\
\hline (1) 50000 & Opening WIP & & & & \\
\hline (2) 250000 & Put into production & & & & \\
\hline & Completed and transferred & (2) 200000 & 200000100 & 200000 & 100 \\
\hline & Normal loss & (3) 15000 & 15000 (5) 100 & (6) 11250 & 75 \\
\hline & Abnormal loss & (4) 25000 & 25000 (5) 100 & (7) 18750 & 75 \\
\hline & Closing WIP & (2) 60000 & 60000100 & (8) 54000 & 90 \\
\hline 300000 & & 300000 & 300000 & 284000 & \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) Closing WIP from March 20X8 automatically becomes opening WIP for April 20X8.
(2) Given
(3) \(300000 \times 5 \%=15000\)
[Opening WIP\% < WP\% \(\rightarrow\) keep; closing WIP\% < WP\% \(\rightarrow\) keep]
(4) Balancing figure ( \(300000-200000-15000-60000\) ). Assume the same wastage point as for the normal loss.
(5) Equivalent units with regard to material for both the normal and the abnormal loss will be the units of the relevant loss in the output column multiplied by \(100 \%\), because material is added at the beginning of the process.
(6) 15000 (output column) \(\times 75 \%=11250\)
(7) 25000 (output column) \(\times 75 \%=18750\)
(8) 60000 (output column) \(\times 90 \%=54000\)
b. Quantity statement - FIFO method (WP = 75\%)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Input \\
(units) \\
(1) 50000 \\
(2) 250000
\end{tabular}} & Details & Output (units) & Raw mater Units & rials
\[
\%
\] & Conversio Units & cost \% \\
\hline & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Opening WIP Put into production}} \\
\hline & & & & & & \\
\hline & \multicolumn{6}{|l|}{Completed from:} \\
\hline & Opening inventory & (4) 47500 & - & 0 & 38000 & 80 \\
\hline & Current production & (5) 152500 & 152500 & 100 & 152500 & 100 \\
\hline & Completed and transferred & (2) 200000 & 152500 & & 190500 & \\
\hline & Normal loss & (3) 15000 & (3)15000 & (3) 100 & (3) 11250 & (3) 75 \\
\hline & Abnormal loss & (3) 25000 & (3) 25000 & (3) 100 & (3) 18750 & (3) 75 \\
\hline & Closing WIP & (3) 60000 & (3) 60000 & (3) 100 & (3) 54000 & (3) 90 \\
\hline 300000 & & 300000 & 252500 & & 274500 & \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) Closing WIP from March 20X8 automatically becomes opening WIP for April 20X8.
(2) Given
(3) These numbers could be taken directly from the weighted average method quantity statement prepared in a.
(4) Opening inventory was kept included in the normal loss calculation, therefore units completed from opening inventory have to be reduced by \(5 \%\) : \(50000 \times 95 \%=47500\).
(6) Balancing figure (200 000-47500)

\section*{10 Summary}

In this study unit, you learnt the following:
- The how much of the normal loss should not be confused with the where of the normal loss (wastage point).
- In the output column of the quantity statement, the units completed from current production (FIFO only) and the abnormal loss are usually balancing figures. However, in some questions, one/both of these figures can be given, in which case other figures in the output column may have to be calculated as a balancing figure.
- If the percentage of completion (opening WIP) is greater than or equal to the wastage point, deduct the opening WIP in the normal loss calculation.
- If the percentage of completion (closing WIP) is smaller than the wastage point, deduct the closing WIP in the normal loss calculation.
- If the percentage of completion (opening WIP) is smaller than the wastage point, reduce the units completed from opening inventory by the normal loss on these units (FIFO only).
- The percentages to use when calculating equivalent units for the losses for purposes of the quantity statement are:
\begin{tabular}{|l|c|l|}
\hline \begin{tabular}{c} 
Quantity statement line \\
(both methods)
\end{tabular} & Material & \begin{tabular}{c} 
Conversion cost (if conversion \\
takes place evenly)
\end{tabular} \\
\hline Normal loss & \(100 \%\) & \begin{tabular}{l} 
\% at wastage point (\% of completion \\
where wastage occurs)
\end{tabular} \\
\hline Abnormal loss & \(100 \%\) & \begin{tabular}{l}
\(\%\) at wastage point (\% of completion \\
where wastage occurs)
\end{tabular} \\
\hline
\end{tabular}

In the next study unit, you are going to learn how to prepare production cost statements for the different methods of inventory valuation (FIFO and weighted average). In the process, you will learn how these statements differ in some areas and agree in other areas when the two methods of inventory valuation are applied.

\section*{References and additional reading}

Please refer to the list of references and sources for additional reading at the end of study unit 18.

Self-assessment Activity

\section*{QUESTION 1}

Brake Away Ltd. produces brake fluid for vehicles using a single process. The company uses a process costing system.

The following cost and production figures are available for the year ended 31 December 20X3:
\begin{tabular}{|l|r|c|c|}
\hline & \multicolumn{1}{|c|}{ Units } & \begin{tabular}{c} 
Completion: \\
raw \\
materials
\end{tabular} & \begin{tabular}{c} 
Completion: \\
conversion \\
cost
\end{tabular} \\
\hline WIP (1 Jan 20X3) & 40000 & \(100 \%\) & \(45 \%\) \\
\hline Finished products & 160000 & \(100 \%\) & \(100 \%\) \\
\hline Units started in current year & 195000 & & \\
\hline WIP (31 Dec 20X3) & 30000 & \(100 \%\) & \(25 \%\) \\
\hline
\end{tabular}

Additional information
- Raw materials are added at the beginning of the process.
- Conversion takes place evenly throughout the process.
- Normal losses are estimated as \(12 \%\) of units that reach the wastage point.
- The organisation uses the FIFO method of inventory valuation.

\section*{REQUIRED}

Prepare the quantity statement if wastage occurs:
a. at the end of the process
b. when the process is \(30 \%\) complete.

\section*{QUESTION 2}

The following partially completed quantity statement is available for Purposeful Plastics (Pty) Ltd:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline \multirow[t]{4}{*}{Input (units) 10000 200000} & Details & Output (units) & Raw m Units & \[
\begin{aligned}
& \text { rials } \\
& \%
\end{aligned}
\] & \begin{tabular}{l}
Conver \\
Units
\end{tabular} & cost
\% \\
\hline & \multicolumn{6}{|l|}{Opening WIP} \\
\hline & \multicolumn{6}{|l|}{Put into production} \\
\hline & Completed from: & & & & & \\
\hline & Opening inventory & 10000 & - & 0 & ? & 25 \\
\hline & Current production & 170000 & ? & 100 & ? & 100 \\
\hline & Completed and transferred & 180000 & ? & & ? & \\
\hline & Normal loss & ? & ? & 100 & ? & 30 \\
\hline & Abnormal loss & 8200 & 8200 & 100 & 2460 & 30 \\
\hline & Closing WIP & 20000 & 20000 & 100 & 5000 & 25 \\
\hline 210000 & & 210000 & ? & & ? & \\
\hline
\end{tabular}

Raw materials are added at the beginning of the process, and conversion takes place uniformly.

\section*{REQUIRED}
a. Determine which inventory valuation method is used by Purposeful Plastics (Pty) Ltd.
b. What was the stage of completion for the opening and for the closing WIP?
c. At what stage of completion is the wastage point?
d. What is the waste percentage (percentage of units that are wasted when they reach the wastage point)?

\section*{QUESTION 3}

The following quantity statement is available for Soweto Sweeteners (Pty) Ltd:
\begin{tabular}{llr|rrrr}
\multicolumn{2}{c|}{ Physical units } & \multicolumn{4}{c}{ Equivalent units } \\
\begin{tabular}{lll|rrrr} 
Input \\
(units) \\
70000
\end{tabular} & Details & \begin{tabular}{l} 
Output \\
(units)
\end{tabular} & \multicolumn{2}{c}{\begin{tabular}{l} 
Raw materials \\
Units
\end{tabular}} & \begin{tabular}{l} 
Conversion cost \\
Onits
\end{tabular} & \%
\end{tabular}

\section*{REQUIRED}
a. Determine what inventory valuation method is used by Soweto Sweeteners (Pty) Ltd.
b. What was the stage of completion for the closing WIP?
c. At what stage of completion is the wastage point?
d. Assume the stage of completion for opening WIP was \(45 \%\). Complete the sentence: One out of every \(\qquad\) units is lost due to normal wastage.

\section*{QUESTION 4}

The following information is available for Amazing Antidotes (Pty) Ltd, an organisation that uses a single process to manufacture an anti-venom for a specific type of snake bite. The organisation uses a process costing system, with material added at the beginning of the process and conversion taking place evenly throughout the process.

\section*{October 20X9}

Opening WIP - 30\% complete 4000 litres
New units put into production 15000 litres
Units completed in the current month 12000 litres
Closing WIP - 80\% complete 3000 litres

Normal loss
Wastage point
\(10 \%\) of litres that reach the wastage point

Inventory valuation method

80\%
Weighted average

On 5 October 20X9, the cooling system in the factory broke down and this resulted in Amazing Antidotes (Pty) Ltd. having to discard 300 litres of anti-venom that heated up
and was thus rendered ineffective against the snake venom. These litres were \(60 \%\) complete in terms of conversion cost.

\section*{REQUIRED}

Prepare a quantity statement for Amazing Antidotes (Pty) Ltd. for October 20X9.

Solution to Self-assessment Activity

\section*{QUESTION 1}
a. Wastage point of \(100 \%\) (end of process)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw mat Units & & Conversio Units & \[
\begin{gathered}
\text { cost } \\
\%
\end{gathered}
\] \\
\hline 40000 & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Opening WIP Put into production}} \\
\hline \multirow[t]{8}{*}{195000} & & & & & & \\
\hline & \multicolumn{6}{|l|}{Put into production Completed from:} \\
\hline & Opening inventory & (1) 35200 & - & 0 & 19360 & 55 \\
\hline & Current production & (2) 124800 & 124800 & 100 & 124800 & 100 \\
\hline & Completed and transferred & 160000 & 124800 & & 144160 & \\
\hline & Normal loss & (3) 24600 & 24600 & 100 & 24600 & 100 \\
\hline & Abnormal loss & (2) 20400 & 20400 & 100 & 20400 & 100 \\
\hline & Closing WIP & 30000 & 30000 & 100 & 7500 & 25 \\
\hline 235000 & & 235000 & 199800 & & 196660 & \\
\hline
\end{tabular}
b. Wastage point of \(30 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw mat Units & \[
\begin{aligned}
& \text { rials } \\
& \%
\end{aligned}
\] & Conversi Units & \[
\begin{gathered}
\text { cost } \\
\%
\end{gathered}
\] \\
\hline 40000 & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multirow[t]{8}{*}{195000} & & & & & & \\
\hline & \multicolumn{6}{|l|}{Completed from:} \\
\hline & Opening inventory & 40000 & - & 0 & 22000 & 55 \\
\hline & Current production & (2) 120000 & 120000 & 100 & 120000 & 100 \\
\hline & Completed and transferred & 160000 & 120000 & & 142000 & \\
\hline & Normal loss & (4) 19800 & 19800 & 100 & 5940 & 30 \\
\hline & Abnormal loss & (2) 25200 & 25200 & 100 & 7560 & 30 \\
\hline & Closing WIP & 30000 & 30000 & 100 & 7500 & 25 \\
\hline 235000 & & 235000 & 195000 & & 163000 & \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) \(40000 \times(100 \%-12 \%)=35200\)
(2) Balancing figures:
\(160000-40000=120000\)
\(235000-160000-19800-30000=25200\)
(3) \((235000-30000) \times 12 \%=24600\)
(4) \(235000-40000-30000) \times 12 \%=19800\)

NOTE

Opening WIP (45\%) < wastage point (100\%)
- When the opening WIP is kept included in the calculation of normal loss, the normal loss on these units will effectively be included in the quantity statement as part of the normal loss line. The loss on these units cannot, therefore, also be kept included in the units completed from opening inventory, because this would amount to double counting. Each input should only be accounted for once in the output column.
- Normal loss on the input units of 40000 would be \(40000 \times 12 \%=4800\). These 4800 units that were lost are effectively included in the total normal loss of 24600 units in the quantity statement, because opening WIP was included in the normal loss calculation as per rule 16.1 of this study unit.

Opening WIP (45\%) > wastage point (30\%)
- The opening WIP has already passed the wastage point in the previous year and therefore the 40000 input units are already net of any normal losses incurred on the opening WIP.
- When normal loss is calculated, opening WIP will be deducted in (excluded from) the calculation as per rule 16.2 of this study unit.

\section*{QUESTION 2}
a. The completed output is split between units completed from opening inventory and units completed from current production. We therefore know that the FIFO method is being used.
b. Opening WIP: these units required a further \(25 \%\) of conversion work to be completed and therefore had to be \(75 \%\) complete when the period started.
Closing WIP: \(25 \%\) as per the conversion column.
c. \(30 \%\) as per the conversion column.
d. Calculate waste percentage
- Percentage of completion (opening WIP) of \(75 \%\) is greater than the wastage point of \(30 \%\), therefore opening WIP would have been deducted in the normal loss calculation.
- Percentage of completion (closing WIP) of \(25 \%\) is smaller than the wastage point of \(30 \%\), therefore the closing WIP would have been deducted in the normal loss calculation.
- Normal loss would therefore have been calculated based on (210 000-20 000\(10000)=180000\) units.
- The normal loss in the output column can be calculated as a balancing figure of \((210000-180000-8200-20000)=1800\) units.
- \(1800 / 180000=1 \%\)

NOTE

If the percentage of completion of opening WIP was smaller than the wastage point of \(30 \%\), our units completed from opening inventory would have been reduced by the percentage of the normal loss. We would then also be able to calculate the waste percentage based on the difference between opening WIP in the input column and units completed from opening inventory in the output column, divided by the opening WIP in the input column.

\section*{QUESTION 3}
a. The completed output is not split between units completed from opening inventory and units completed from current production. We therefore know that the weighted average method is being used.
b. \(\mathbf{6 0 \%}\) as per the conversion column.
c. \(45 \%\) as per the conversion column.
d. Calculate the waste ratio:

Percentage of completion (opening WIP) of \(45 \%\) is equal to the wastage point of \(45 \%\); therefore opening WIP would have been deducted in the normal loss calculation.
Percentage of completion (closing WIP) of \(60 \%\) is larger than the wastage point of \(45 \%\); therefore the closing WIP would have been kept included in the normal loss calculation.

Normal loss would therefore have been calculated based on (630 000-70 000)
\(=560000\) units.
Normal loss in the output column is 8000 units (given).
\(8000 / 560000=1 / 70\) if simplified.
Answer: 70

\section*{QUESTION 4}

AMAZING ANTIDOTES (PTY) LTD
Quantity statement for the month ended 31 October 20X9
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw mat Units & \[
\begin{aligned}
& \text { rials } \\
& \%
\end{aligned}
\] & Conversi Units & \[
\begin{gathered}
\text { cost } \\
\%
\end{gathered}
\] \\
\hline 4000 & \multicolumn{6}{|l|}{Opening WIP} \\
\hline 15000 & \multicolumn{6}{|l|}{Put into production} \\
\hline & Completed and transferred & 12000 & 12000 & 100 & 12000 & 100 \\
\hline & Normal loss & (1) 1870 & 1870 & 100 & 1496 & 80 \\
\hline & Abnormal loss (at normal & & & & & \\
\hline & loss wastage point) & (2) 1830 & 1830 & 100 & 1464 & 80 \\
\hline & Abnormal loss (due to power failure) & 300 & 300 & 100 & 180 & (3) 60 \\
\hline & Closing WIP & 3000 & 3000 & 100 & 2400 & 80 \\
\hline 19000 & & 19000 & 19000 & & 17540 & \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) Calculation of normal loss:
- Percentage of completion (opening WIP) of \(30 \%\) is smaller than the wastage point of \(80 \%\), therefore opening WIP will have to be kept included in the normal loss calculation.
- Percentage of completion (closing WIP) of \(80 \%\) is equal to the wastage point of \(80 \%\), therefore the closing WIP will have to be kept included in the normal loss calculation.
- The abnormal loss due to the power failure occurred when the relevant units were \(60 \%\) complete, that is, before they could reach the \(80 \%\) wastage point. These 300 units were thus never subject to a normal loss and will have to be deducted in the normal loss calculation.
- Normal loss should therefore be calculated based on \(19000-300=18700\) units.
- Normal loss in the output column should therefore be \(10 \% \times 18700=1870\) units.
(2) In addition to the abnormal loss that resulted from the power failure, the balancing figure of \(19000-3000-300-1870-12000=1830\) also represents an abnormal loss.
(3) The conversion cost equivalent units for the abnormal loss that occurred owing to the power failure are based on the stage of completion when the loss occurred.

\section*{studyunit 17}

\section*{Production cost statements}


\section*{1 Introduction}

In previous study units, you learnt how to determine the equivalent units of output for the quantity statement. In this study unit, you will learn how cost is allocated to these equivalent units in a production cost statement and what the differences and consistencies between production cost statements are when the weighted average and FIFO methods of inventory valuation are used.

The average cost per unit in a process costing system (see previous study units) is calculated in a production cost statement.

\section*{PRODUCTION COST STATEMENT}

The production cost statement is a summary of the following:
- Total manufacturing cost for a specific period
- Number of units produced in the specific period - equivalent units from the quantity statement
- Resultant average cost per unit for each category of input

As with the quantity statement, conversion cost may have to be split into labour and overhead costs (if the information given in a question necessitates this).

It is important to note which method of inventory valuation is being used, since there is a significant difference between the calculations in the production cost statement for the FIFO method and for the weighted average method.

\section*{NOTE}
a. In this module (MAC2601), process cost will be calculated based on actual material and labour cost and allocated overheads for the current and prior period(s). In later modules, you will learn how to integrate a process costing system with a standard costing system. (Standard costing is covered later on in this module.)
b. In a MAC2601 process costing question, we generally round cost per unit to two decimals, unless the number of decimal places to use is specified otherwise.

\section*{2 Production cost statement preparation - FIFO method of inventory valuation}

Where the FIFO method of inventory valuation is used, only the current period production cost should be taken into account in the calculation of the average cost per unit manufactured (because we are spreading it over current period production activities only).

The next activity will demonstrate how to complete the production cost statement on the FIFO basis.

\section*{Activity 17.1}

\section*{FIFO production cost statement}

The following quantity statement is available for Jumpy Juice (Pty) Ltd. for May 20X8:
\begin{tabular}{lll|rrrr}
\multicolumn{2}{c|}{ Physical units } & \multicolumn{5}{c}{ Equivalent units } \\
\hline \begin{tabular}{l} 
Input \\
(units)
\end{tabular} & Details & \begin{tabular}{l} 
Output \\
(units)
\end{tabular} & \multicolumn{2}{c}{\begin{tabular}{l} 
Raw materials \\
Units
\end{tabular}} & \multicolumn{2}{c}{\begin{tabular}{l} 
Conversion cost \\
Units
\end{tabular}} \\
30000 & Opening WIP & & \%
\end{tabular}

In addition, the following cost information is available for May 20X8:

\section*{R}

WIP: 1 May 20X8
Material
180000
Conversion cost
297000
Material added during May 20X8 1219800
Labour for May 20X8 1020565
Overheads for May 20X8 1091000

\section*{REQUIRED}

Prepare the production cost statement for May 20X8 under the assumption that Jumpy Juice (Pty) Ltd. uses the FIFO method of inventory valuation.

Solution to Activity 17.1

\section*{PRODUCTION COST STATEMENT - FIFO}
\begin{tabular}{|c|c|c|c|}
\hline & Total R & Material & Conversion cost \\
\hline Opening WIP & (1) 477000 & & \\
\hline Current production cost & 3331365 & 1219800 & 2111565 \\
\hline Total & 3808365 & & \\
\hline Equivalent units & & (2) 380000 & (2) 358500 \\
\hline - per quantity statement & & & \\
\hline Equivalent cost per unit & (5) R9, 10 & (3) R3,21 & (4) R5,89 \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) \(180000+297000=477000\). Note that the R180 000 and the R297 000 from the opening inventory are excluded from the material and conversion cost columns respectively when the FIFO method of inventory valuation is used. (In the production cost statement above, the relevant section is blocked out to reinforce this principle.) The equivalent units exclude the percentage of completion from the previous period, and therefore we should exclude the costs that have arisen in the previous period so that the units and the costs are matched.
(2) Equivalent unit column totals from the quantity statement
(3) Average material cost per equivalent unit manufactured = current period material cost / equivalent units
\(=\) R1 219800 / 380000 units
\(=\) R3,21 per unit
(4) Average conversion cost per equivalent unit manufactured
\(=\) current period conversion cost / equivalent units
\(=\) R2 111565 / 358500 units
\(=R 5,89\) per unit
(5) R3,21 (material) + R5,89 (conversion cost) \(=R 9,10\). This is the total average cost per unit manufactured.

\section*{NOTE}
- The TOTAL average cost per unit manufactured (5) is NEVER calculated by dividing the current production cost by any number of units. Instead, it is the sum of the input costs per equivalent unit!
- Although the R180 000 and R297 000 are not included in the equivalent cost per unit calculations for May 20X8, these costs relating to opening inventory will effectively be used in the valuation of our completed goods. This principle should become clearer to you when you work through study unit 18.

\section*{3 Production cost statement preparation - weighted average method of inventory valuation}

Where the weighted average method of inventory valuation is used, both the current
period production cost and the cost included in the opening WIP should be taken into account in the calculation of the average cost per unit manufactured. In calculating the average, we will include the opening WIP equivalent units in full, as included in the "Completed and transferred" line in the quantity statement.

\section*{Activity 17.2}

\section*{Weighted average production cost statement}

Refer to the information in activity 17.1 in this study unit.

\section*{REQUIRED}

Prepare the production cost statement for May 20X8 under the assumption that Jumpy Juice (Pty) Ltd. uses the weighted average method of inventory valuation.

\section*{Solution to Activity 17.2}

In this case, we were only provided with the FIFO quantity statement. From previous examples, we could see that the equivalent unit column totals differed between the FIFO and weighted average methods of inventory valuation because units completed from the opening inventory and from current production have to be split where FIFO is used. We cannot, therefore, simply just take the totals from our FIFO quantity statement for use in our weighted average production cost statement. We will therefore have to prepare the weighted average quantity statement for May \(20 \times 8\) before we can prepare the weighted average production cost statement for May 20X8.
QUANTITY STATEMENT - Weighted average method
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{3}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw materials Units \% & Conversio
Units & \[
\begin{gathered}
\text { cost } \\
\hline
\end{gathered}
\] \\
\hline (1) 60000 & Opening WIP & & & & \\
\hline (1) 380000 & Put into production & & & & \\
\hline & Completed and transferred & 360000 & 360000100 & 360000 & 100 \\
\hline & Normal loss & (1) 16500 & (1) 16500 (1) 100 & (1) 12375 & (1) 75 \\
\hline & Abnormal loss & (1) 13500 & (1) 13500 (1) 100 & (1) 10125 & (1) 75 \\
\hline & Closing WIP & (1) 50000 & (1) 50000 (1) 100 & (1) 30000 & (1) 60 \\
\hline (1) 440000 & & (1) 440000 & 440000 & 412500 & \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) These items will be exactly the same as in the FIFO quantity statement.

NOTE

Can you see that the calculation of the total normal loss in units is in no way dependent on the valuation method used? This is because the calculation of the units lost is based on the PHYSICAL units that reached the wastage point.
\begin{tabular}{lcccc} 
PRODUCTION COST STATEMENT - Weighted average method \\
& \begin{tabular}{c} 
Total \\
\(\mathbf{R}\)
\end{tabular} & Material & \begin{tabular}{c} 
Conversion \\
cost
\end{tabular} \\
& (1) 477000 & (1) 180000 & (1) 297000 \\
Opening WIP & 3331365 & 1219800 & 2111565 \\
\hline Current production cost & 3808365 & 1399800 & 2408565 \\
Total & & (2) 440000 & (2) 412500 \\
Equivalent units & (5) \(R 9,02=\) & (3) \(R 3,18+\) & (4) \(R 5,84\)
\end{tabular}

\section*{Explanatory notes}
(1) \(180000+297000=477000\). Note that the R180 000 and the R297 000 are included in the material and conversion cost columns respectively when the weighted average method of inventory valuation is used. The equivalent units completed included those completed from the opening inventory in full and we should therefore include the costs related to the opening inventory so that the units and costs are matched.
(2) Equivalent unit column totals from the quantity statement
(3) Average material cost per equivalent unit manufactured
\(=\) total material cost / equivalent units
\(=\) R1 399800 / 440000 units
\(=\) R3,18 per unit (rounded to two decimals)
(4) Average conversion cost per equivalent unit manufactured
\(=\) total conversion cost / equivalent units
\(=\) R2 408565 / 412500 units
\(=\) R5,84 per unit (rounded to two decimals)
(5) R3,18 (material) + R5,84 (conversion cost) \(=R 9,02\). This is the total average cost per unit manufactured.

NOTE

The above explanatory notes, as well as the explanatory notes in the solution to Activity 17.1 in this study unit, were included in the solution simply to show you how some of the figures in the production cost statements were arrived at. As long as it is clear that you have applied the correct principles in the production cost statement (ie used cost of the current period for FIFO/total cost for the weighted average method, and divided this cost by the column totals from the quantity statement) you do not have to explain the figures (as done here).

\section*{4 Differences between FIFO and weighted average production cost statements}

By carefully looking at Activity 17.1 and Activity 17.2 in this study unit, you will notice the following significant differences between the FIFO and weighted average production cost statements:
- For FIFO, the cost included in opening WIP is only included in the total column whereas, for the weighted average method, the costs included in the opening WIP are also shown separately for material and for conversion in the relevant columns.
- For FIFO, only the production cost of the current period is used in the calculation of an average cost per unit for material and for conversion. For the weighted average method, the sum of the value of the opening WIP and the current period production cost need to be determined and then the respective totals are used to calculate the average cost per unit for material and conversion.
- The number of units used in the calculation of average cost per unit will also differ between FIFO and weighted average, because the quantity statements for these two methods will differ in terms of the equivalent unit column totals for material and conversion cost.

If we list the cost per unit from Activity 17.1 and Activity 17.2 in this study unit according to the method of inventory valuation, we will arrive at the following:
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c} 
Total \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Material \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Conversion \\
\(\mathbf{R}\)
\end{tabular} \\
\hline Equivalent cost per unit (FIFO) & 9,10 & 3,21 & 5,89 \\
\hline \begin{tabular}{l} 
Equivalent cost per unit (weighted \\
average method)
\end{tabular} & 9,02 & 3,18 & 5,84 \\
\hline
\end{tabular}

The differences between the two methods in terms of the equivalent cost per unit are due to the fact that the two methods account for different costs and for a different number of equivalent units when the cost per equivalent unit is calculated, as summarised in the following table:
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Inventory valuation \\
method
\end{tabular} & Costs to account for & Units \\
\hline FIFO & Costs of the current period & \begin{tabular}{l} 
Equivalent output of current \\
period as per FIFO quantity \\
statement
\end{tabular} \\
\hline Weighted average & \begin{tabular}{l} 
Costs of the current period \\
costs included in opening \\
inventory
\end{tabular} & \begin{tabular}{l} 
Equivalent output of current \\
period as per weighted \\
average quantity statement
\end{tabular} \\
\hline
\end{tabular}

In inflationary conditions, production costs may increase from period to period. It therefore follows that the FIFO method will result in higher unit costs, because this method only 'uses' costs for the latest period (which are higher than the costs for the previous period). If opening inventory (valued at the previous period's costs) is small compared with current period production, the weighted average method will achieve equivalent unit costs very close to that of FIFO.

NOTE

In very specific scenarios, the equivalent unit column totals of the FIFO and weighted average quantity statements may agree for material and/or conversion, which will result in the same number of units being used in the cost per equivalent unit calculations according to the two methods. However, the costs to be accounted for in the calculations will generally still differ between the methods, resulting in different costs per equivalent unit for the two methods.

\section*{5 Consistencies of FIFO and weighted average production cost statements}

If you study Activity 17.1 and Activity 17.2 in this study unit carefully, you will notice the following main consistencies between the FIFO and weighted average production cost statements:
- Both statements summarise cost and equivalent unit information for material and conversion cost, and in total.
- Both statements kept the R477 000 value of opening WIP included in the total column. We always need to keep this amount in the total column in order to arrive at the total cost associated with all the units that were in the production process at some stage during the current period (R3 808365 in these examples). Eventually the total cost in the production cost statement has to balance with the total cost as per the cost allocation statement (refer to study unit 18).
- The total average cost per unit is arrived at by adding the average material cost per unit to the average conversion cost per unit.

\section*{6 Summary}

In this study unit, you learnt the following:
- A production cost statement summarises the cost and equivalent unit information for a specific period and indicates the resultant average cost per equivalent unit manufactured - for materials, conversion costs and in total.
- If the FIFO method of inventory valuation is used, only the current period production cost is used in the calculation of the average material and conversion cost per equivalent unit.
- If the weighted average method of inventory valuation is used, both the current period production cost and the value of the opening WIP are used in the calculation of the average material and conversion cost per equivalent unit.

In the next study unit, you are going to learn how to prepare cost allocation statements for the different methods of inventory valuation (FIFO and weighted average). You are also going to learn how to calculate and allocate the rand value of the normal loss for the cost allocation statement.

\section*{Additional reading}

Please refer to the list of sources for additional reading at the end of study unit 18.

> Self-assessment Activity

Refer to Activity 16.3 in study unit 16 and the cost information below. Now that you have learnt how to prepare production cost statements, draft these statements for the four different scenarios in Activity 16.3 and see whether your answer corresponds with the suggested solution below. Make sure that you understand how each of the numbers in the production cost statements was arrived at and which numbers differ between the different scenarios.

\section*{Cost information}

\footnotetext{
WIP (1 February 20X8)
R30 000
(including raw materials and conversion cost in the ratio \(2: 1\) )
Material added during February
R253 000
Conversion cost for February
R363 165
}
a.i and b.i Production cost statement - weighted average method
\begin{tabular}{|c|c|c|c|}
\hline & Total R & Material & Conversion costs \\
\hline Opening WIP & 30000 & (1) 20000 & (1) 10000 \\
\hline Current production cost & 616165 & 253000 & 363165 \\
\hline Total & 646165 & 273000 & 373165 \\
\hline \begin{tabular}{l}
Equivalent units \\
- per quantity statement (0\%)
\end{tabular} & & (2) 25000 & (2) 18400 \\
\hline Equivalent cost per unit & R31,20 & \(=\mathrm{R} 10,92\) & + R20,28 \\
\hline \begin{tabular}{l}
Equivalent units \\
- per quantity statement (70\%)
\end{tabular} & & (3) 25000 & (3) 21900 \\
\hline Equivalent cost per unit & R27,96 & \(=\mathrm{R} 10,92\) & + R17,04 \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) Material: \(2 / 3 \times\) R30 \(000=\) R20 000

Conversion costs: \(1 / 3 \times\) R30 \(000=\) R10 000
(2) From quantity statement in Activity 16.3 in study unit 16, part a.i.
(3) From quantity statement in Activity 16.3 in study unit 16, part b.i.

\section*{NOTE}
- The above difference in equivalent cost per unit for conversion is a result of the same amount of R373 165 being divided by different numbers of equivalent units (18 400 and 21900 respectively). The equivalent unit numbers for conversion differ because different wastage points are applicable.
- In practice, the actual amount of conversion costs would have differed between the two wastage points, because the organisation would stop spending money (incurring conversion costs) on the units that have been identified as wasted. The two costs per unit would therefore tend to be very close to each other in optimal manufacturing conditions, irrespective of where the wastage point is.
- Since MAC2601 assumes that all materials are being added at the beginning of the process and the weighted average method is being applied, 100\% of all the different types of output units will be accounted for in the material equivalent units column, independent of where in the process wastage occurs. This is why there was no difference between a.i. and b.i. in the equivalent cost per unit for material.
a.ii and b.ii Production cost statement - FIFO method
\begin{tabular}{|c|c|c|c|}
\hline & Total R & Material & Conversion Cost \\
\hline Opening WIP & 30000 & & \\
\hline Current production cost & 616165 & 253000 & 363165 \\
\hline Total & 646165 & & \\
\hline \multicolumn{4}{|l|}{Equivalent units} \\
\hline - per quantity statement (0\%) & & (1) 23000 & (1) 17800 \\
\hline Equivalent cost per unit & R31,40 & \(=\mathrm{R} 11,00\) & + R20,40 \\
\hline Equivalent units & & (2) 23300 & (2) 21390 \\
\hline - per quantity statement (70\%) & & & \\
\hline Equivalent cost per unit & R27,84 & \(=\mathrm{R} 10,86\) & + R16,98 \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) From quantity statement in Activity 16.3 of study unit 16, part a.ii.
(2) From quantity statement in Activity 16.3 of study unit 16, part b.ii.

\section*{NOTE}
- Refer to the notes on conversion cost differences below the solution to a.i. and b.i.
- ADVANCED NOTE: One would expect the material cost per unit to be the same, because the material is added at the beginning and the spillage percentage is always \(100 \%\) irrespective of where the spillage take place. However, we have indicated that, in MAC2601, we will apply a measure of inaccuracy in determining the normal loss equivalent units when applying the FIFO method in order to simplify the calculations. If, in Activity 16.3 b.ii., we had split the normal loss between that generated by the opening inventory and that from the new units started, we would have excluded from the raw materials equivalent column 2000 units \(\times 15 \%=300\) units BECAUSE THESE COSTS WERE NOT INCURRED IN THE CURRENT PERIOD! In the solution above, this would have achieved the same equivalent material cost per unit. However, there is no need to worry if you do not understand this concept, because you will not be examined on it.

\section*{Allocation statements}


\section*{1 Introduction}

In the previous study unit, you learnt how to prepare production cost statements using the FIFO and weighted average methods of inventory valuation.

In this study unit, you are going to learn how to prepare cost allocation statements using the FIFO and weighted average methods of inventory valuation. You will also learn how to determine the value of losses and how to perform the allocation of the normal loss.

\section*{ALLOCATION STATEMENT}

An allocation statement, also called a cost allocation statement, is a statement that links the equivalent unit input costs in the production cost statement to the output from the quantity statement in order to value inventory, abnormal losses and production for the period, including any normal losses for the period.

All units included in the equivalent unit columns of the quantity statement should be accounted for under appropriate headings or parts in the cost allocation statement. Each equivalent unit is multiplied by the appropriate average cost per unit (average material or conversion cost per unit as applicable).

\section*{NOTE}

The total production cost allocated in the cost allocation statement should agree to the total production cost as per the production cost statement.

\section*{Allocation statement}

The cost allocation statement could include the following parts (headings):

TABLE 18.1: Sections/parts of the cost allocation statement per inventory valuation method
\begin{tabular}{|l|l|l|l|}
\hline & Part (heading) & Weighted average method & FIFO method \\
\hline 1 & Opening WIP & No & Yes \\
\hline 2 & \begin{tabular}{l} 
Current period equivalent \\
production activities
\end{tabular} & No & Yes \\
\hline 3 & \begin{tabular}{l} 
Completed production \\
transferred (to finished goods \\
or the next process)
\end{tabular} & Yes & \begin{tabular}{l} 
Yes (total of \\
parts 1 and 2)
\end{tabular} \\
\hline 4 & Abnormal loss & Yes & Yes \\
\hline 5 & Closing WIP & Yes & Yes \\
\hline
\end{tabular}

NOTE
There is no separate heading for normal losses. The allocation of normal loss is dealt with next.

\section*{2 Treatment of losses}

Knowing the differences between normal and abnormal loss is crucial to your understanding of the accounting treatment of each. Because it is so important to know the differences, we include the information contained in Table 16.1 of study unit 16 once more in Table 18.2 below. Please note that we have added an extra row at the end of the table (this applies to allocation statements).

TABLE 18.2: Normal losses compared with abnormal losses
\begin{tabular}{|c|c|}
\hline Normal losses & Abnormal losses \\
\hline Sometimes also referred to as unavoidable losses. & Sometimes also referred to as controllable losses. \\
\hline Inherent in the manufacturing process (they will occur as a natural part of the process) - you cannot avoid them. & Avoidable in the manufacturing process (they will not occur as a natural part of the process) - you should control/inhibit their occurrence. \\
\hline Do not indicate that a process is ineffective - therefore "normal". & Indicate that a part/parts of the process is/ are ineffective - therefore "abnormal". \\
\hline \begin{tabular}{l}
Examples: \\
- Wastage due to evaporation in a chemical process (eg some inputs will "vanish" naturally when heating essential for binding takes place). \\
- Waste materials where textiles are produced (off-cuts). \\
- Units rejected at quality inspection (within acceptable (normal) range or tolerance).
\end{tabular} & \begin{tabular}{l}
Examples: \\
- Wastage due to use of raw materials of inferior quality resulting in production output scrapped. \\
- Wastage due to employee carelessness. \\
- Spoilt output due to production interruption (eg electrical failure leading to units heating up/cooling down etc).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Normal losses } & \multicolumn{1}{c|}{ Abnormal losses } \\
\hline \begin{tabular}{l} 
Product cost (included in the cost of \\
inventory)
\end{tabular} & \begin{tabular}{l} 
Period cost (not included in the cost of \\
Note: also allocated to abnormal units (if \\
inventory).
\end{tabular} \\
they have shared in the loss). & \begin{tabular}{l} 
Note, however, that the abnormal loss will \\
include its share of the normal loss (if the \\
abnormal loss has indeed shared in the \\
normal loss).
\end{tabular} \\
\hline
\end{tabular}

In terms of International Financial Reporting Standards (IFRS), normal losses should be included in the cost of inventory (thus it will be included in product cost) (IFRS Foundation 2010). This is logical, because this cost is unavoidable and is an inextricable part of the production process.

We can illustrate the inclusion of normal losses in the cost of inventory with a simple example:

Let us say an organisation spends R10 in total for the material and conversion work that go into a single litre ( \(1000 \mathrm{~m} \ell\) ) of output. If no normal wastage takes place, the output per litre of input will also be one litre, resulting in a cost per unit of output of R10/1 litre \(=\) R10 per litre.

If \(10 \%\) (or \(100 \mathrm{~m} \ell\) ) of each litre is lost due to normal wastage, the output will only be \(900 \mathrm{~m} \ell\) for each litre of input. The same cost per litre of input (R10) still needs to be accounted for, but we will allocate it to only \(900 \mathrm{~m} \ell\) of output, resulting in a cost per unit of output of R10/0,9 litre \(=\) R11,11 per litre (rounded).

\section*{Another way of putting it:}

If the normal loss percentage is \(10 \%\), how many litres should we put into the process at the beginning to arrive at one litre of output?
\(1 \ell / 90 \%=1,1111 \ell\) (rounded)
[Proof: If \(1,1111 \ell\) goes into the process and \(10 \%\) of that is lost, then \(1,1111 \ell \times 10 \%\) \(=0,1111 \mathrm{l}\) is wasted, leaving one litre of final output.]

Therefore, 1,1111 at \(R 10 / \ell=R 11,11\) is the normal cost incurred to generate one litre. This is why normal losses are included in the valuation of "good" output.

This principle is taken further in this study unit and can be translated into a rule as follows:

\section*{Rule 18.1}

All units of production that have reached/passed the (normal) wastage point in the current period are subject to the normal loss of this period and therefore each of these units needs to be allocated a portion of the rand value of the normal loss.

At the end of a period when financial reporting needs to take place, the rand value of the normal loss will therefore have to be allocated to the following:
- Completed units transferred to the finished goods store or to the following process (equivalent units) - to the extent that these units passed the wastage point in the current period (the only exception to this rule is when the weighted average method is used and opening inventory has already passed the wastage point in the previous period [opening WIP \(\% \geqslant\) wastage point \(\%\) ], in which case we will use all units completed and transferred in the allocation calculation).
- Closing WIP (equivalent units) - only if closing WIP has already reached/passed the wastage point.
- Abnormal losses (equivalent units) - only if the abnormal loss occurs at the same wastage point as the normal loss or after the wastage point where the normal loss occurred.

The only part of the rand value of the normal loss that will eventually not be included in the inventory valuation or cost of sales is the portion that is allocated to the abnormal loss.

Rule 18.2
The rand value of abnormal losses (including their allocated portion of the normal loss) will not form part of the inventory cost, but should be written off as a period cost in the statement of profit or loss and other comprehensive income.

\section*{3 Calculation of the rand value of normal loss}

The rand value of the normal loss is calculated as follows:
\(\mathrm{NLR}=\mathrm{NLM}+\mathrm{NLC}\)
where:
NLR \(=\) Normal loss in rand
NLM \(=\) Equivalent cost per unit for material (from production cost statement) x normal loss in terms of equivalent units for material (from quantity statement)
NLC \(=\) Equivalent cost per unit for conversion cost (from production cost statement) \(x\) normal loss in terms of equivalent units for conversion cost (from quantity statement)

For example, assume the following information:
Quantity statement for September 20X8 - FIFO; closing WIP 90\% complete
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline \multirow[t]{2}{*}{Input (units)} & \multirow[t]{2}{*}{Details} & \multirow[t]{2}{*}{Output (units)} & \multicolumn{2}{|l|}{Raw materials} & \multicolumn{2}{|l|}{Conversion cost} \\
\hline & & & Units & \% & Units & \% \\
\hline 40000 & Opening WIP & & & & & \\
\hline 260000 & Put into production & & & & & \\
\hline & Completed from: & & & & & \\
\hline & Opening inventory & 36800 & - & - 0 & 23920 & 65 \\
\hline & Current production & 183200 & 183200 & 100 & 183200 & 100 \\
\hline & Completed and transferred & 220000 & 183200 & & 207120 & \\
\hline & Normal loss & 24000 & 24000 & 100 & 21600 & 90 \\
\hline & Abnormal loss & 6000 & 6000 & 100 & 5400 & 90 \\
\hline & Closing WIP & 50000 & 50000 & 100 & 45000 & 90 \\
\hline 300000 & & 300000 & 263200 & & 279120 & \\
\hline
\end{tabular}

Production cost statement for September 20X8 - FIFO; closing WIP 90\% complete
\begin{tabular}{|c|c|c|c|}
\hline & Total R & Material & Conversion Cost \\
\hline Opening WIP & 855 000* & & \\
\hline Current production cost & 7273432 & 4621792 & 2651640 \\
\hline Total & 8128432 & & \\
\hline \begin{tabular}{l}
Equivalent units \\
- per quantity statement
\end{tabular} & & 263200
\(=\)
R17 & 279120
\(+\quad \mathrm{R} 950\) \\
\hline Equivalent cost per unit & R27,06 & \(=\mathrm{R} 17,56\) & + R9,50 \\
\hline
\end{tabular}
* Consisting of material cost of R700 000 and conversion cost of R155 000.

From the above quantity statement and production cost statement, we can calculate the rand value of the normal loss as follows:
```

NLR = NLM + NLC
= (24 000 x 17,56) + (21 600 x 9,50)
= 421440 + 205 200
= R626640

```

\section*{Activity 18.1}

Normal loss calculation: weighted average method of inventory valuation
Refer to the information in the Self-assessment Activity of study unit 17. You will notice that the FIFO method of inventory valuation has been used. We know this because:
- in the quantity statement, the units completed and transferred were split between units completed from opening inventory and units started and completed in the current period ("current production"); and
- in the production cost statement, only the production cost for the current period ("current production cost") was used to calculate the equivalent cost per unit.

\section*{REQUIRED}

Now assume that the organisation should actually have used the weighted average method of inventory valuation, and:
a. prepare the quantity statement and the production cost statement
b. calculate the rand value of the normal loss
a. LUNAR LOTION (PTY) LTD

Quantity statement for September 20X8: weighted average method
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Input \\
(units)
\end{tabular}} & Details & Output & \multicolumn{2}{|l|}{Raw materials} & \multicolumn{2}{|l|}{Conversion cost} \\
\hline & & (units) & Units & \% & Units & \% \\
\hline 40000 & Opening WIP & & & & & \\
\hline 260000 & Put into production & & & & & \\
\hline & Completed and transferred & 220000 & 220000 & 100 & 220000 & 100 \\
\hline & Normal loss & 24000 & 24000 & 100 & 21600 & 90 \\
\hline & Abnormal loss & 6000 & 6000 & 100 & 5400 & 90 \\
\hline & Closing WIP & 50000 & 50000 & 100 & 45000 & 90 \\
\hline 300000 & & 300000 & 300000 & & 292000 & \\
\hline
\end{tabular}

Production cost statement for September 20X8: weighted average method
\begin{tabular}{|c|c|c|c|}
\hline & Total R & Material & Conversion Cost \\
\hline Opening WIP & 855000 & 700000 & 155000 \\
\hline Current production cost & 7273432 & 4621792 & 2651640 \\
\hline Total & 8128432 & 5321792 & 2806640 \\
\hline \begin{tabular}{l}
Equivalent units \\
- per quantity statement
\end{tabular} & & 300000 & 292000 \\
\hline Equivalent cost per unit & R27,35 & \(=\mathrm{R} 17,74\) & + R9,61 \\
\hline
\end{tabular}
\[
\text { b. NLR } \begin{aligned}
& =\text { NLM }+ \text { NLC } \\
& =(24000 \times 17,74)+(21600 \times 9,61) \\
& =425760+207576 \\
& =R 633336
\end{aligned}
\]

NOTE

As you will notice, the method of calculation of the rand value of normal loss will be the same for the weighted average and the FIFO methods; however, the equivalent cost per unit will differ between the two methods and the result of the calculation will therefore differ between the methods.

\section*{4 Allocation of the rand value of normal loss}

The allocation of the rand value of the normal loss consists of two parts: material and conversion cost. The values of normal losses in terms of material and conversion cost for a specific period (R421 440 and R205 200 respectively in the FIFO example in section 3) are allocated to all the units that reached/passed the wastage point in the specific period (subject to the weighted average method exception as mentioned in section 2). We base the allocation on the number of equivalent units of each relevant item as per the quantity statement.

For example, if we use the FIFO quantity statement and production cost statement provided in section 3 above, we will allocate the normal loss as follows:

Material
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Units } & \multicolumn{1}{|c|}{ Calculation } & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & 183200 & \(183200 / 239200 \times\) R421 440 & 322775 \\
\hline Abnormal loss & 6000 & \(6000 / 239200 \times\) R421440 & 10571 \\
\hline Closing WIP & 50000 & \(50000 / 239200 \times\) R421 440 & 88094 \\
\hline TOTAL & 239200 & & \(\mathbf{4 2 1 4 4 0}\) \\
\hline
\end{tabular}

Conversion
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Units } & \multicolumn{1}{|c|}{ Calculation } & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & 207120 & \(207120 / 257520 \times\) R205 200 & 165040 \\
\hline Abnormal loss & 5400 & \(5400 / 257520 \times\) R205 200 & 4303 \\
\hline Closing WIP & 45000 & \(45000 / 257520 \times\) R205 200 & 35857 \\
\hline TOTAL & 257520 & & \(\mathbf{2 0 5 2 0 0}\) \\
\hline
\end{tabular}

NOTE

We can summarise the allocation of the normal loss of R626 640 as follows:
\begin{tabular}{|l|r|r|}
\hline Allocated to & Calculation & \multicolumn{1}{|c|}{\(\mathbf{R}\)} \\
\hline Completed goods & \(322775+165040\) & 487815 \\
\hline Abnormal loss & \(10571+4303\) & 14874 \\
\hline Closing WIP & \(88094+35857\) & 123951 \\
\hline Total cost of normal loss & & \(\mathbf{6 2 6 6 4 0}\) \\
\hline
\end{tabular}

\section*{Activity 18.2}

\section*{Allocation of normal loss}

Refer to the information in section 4 above (including the weighted average quantity statement and production cost statement prepared in Activity 18.1).

\section*{REQUIRED}

Allocate the rand value of the normal loss for purposes of preparing the cost allocation statement based on the following:
a. weighted average method
b. FIFO method (assume closing inventory is now only \(40 \%\) complete at 30 September 20X8)
c. weighted average method (assume closing inventory is now only \(40 \%\) complete at 30 September 20X8).

NOTE

In practice, the total production cost for the month would be less if closing WIP were now only \(40 \%\) complete (compared with \(90 \%\) complete). However, for the purposes of simplicity, we have kept the amounts the same.

\section*{Solution to Activity 18.2}

\section*{a. Material}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Units } & \multicolumn{1}{c|}{ Calculation } & \multicolumn{1}{|c|}{ R } \\
\hline Completed and transferred & \multicolumn{1}{c|}{220000} & \(220000 / 276000 \times\) R425 760 & 339374 \\
\hline Abnormal loss & 6000 & \(6000 / 276000 \times\) R425 760 & 9256 \\
\hline Closing WIP & 50000 & \(50000 / 276000 \times\) R425 760 & 77130 \\
\hline TOTAL & 276000 & & 425760 \\
\hline
\end{tabular}

\section*{Conversion}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Units } & \multicolumn{1}{c|}{ Calculation } & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & 220000 & \(220000 / 270400 \times\) R207 576 & 168886 \\
\hline Abnormal loss & 5400 & \(5400 / 270400 \times\) R207 576 & 4145 \\
\hline Closing WIP & 45000 & \(45000 / 270400 \times\) R207 576 & 34545 \\
\hline TOTAL & 270400 & & 207576 \\
\hline
\end{tabular}

\section*{NOTE}

We can summarise the allocation of the normal loss of R633 336 (refer to Activity 18.1) as follows:
\begin{tabular}{|l|r|r|}
\hline Allocated to & Calculation & \multicolumn{1}{|c|}{ R } \\
\hline Completed goods & \(339374+168886\) & 508260 \\
\hline Abnormal loss & \(9256+4145\) & 13401 \\
\hline Closing WIP & \(77130+34545\) & 111675 \\
\hline Total cost of normal loss & & \(\mathbf{6 3 3} 336\) \\
\hline
\end{tabular}
b. The fact that closing inventory is now only \(40 \%\) complete at the end of the period will result in the following having to be adjusted (changes are highlighted):
- FIFO quantity statement
- FIFO production cost statement (equivalent unit costs)
- Calculation of normal loss rand value
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline \multirow[t]{2}{*}{Input (units)} & \multirow[t]{2}{*}{Details} & \multirow[t]{2}{*}{Output (units)} & \multicolumn{2}{|l|}{Raw materials} & \multicolumn{2}{|l|}{Conversion cost} \\
\hline & & & Units & \% & Units & \% \\
\hline 40000 & Opening WIP & & & & & \\
\hline 260000 & Put into production & & & & & \\
\hline & Completed from: & & & & & \\
\hline & Opening inventory & 36800 & - & 0 & 23920 & 65 \\
\hline & Current production & 183200 & 183200 & 100 & 183200 & 100 \\
\hline & Completed and transferred & 220000 & 183200 & & 207120 & \\
\hline & Normal loss & (1)-(3) 20000 & 20000 & 100 & 18000 & 90 \\
\hline & Abnormal loss & (4) 10000 & 10000 & 100 & 9000 & 90 \\
\hline & Closing WIP & 50000 & 50000 & 100 & 20000 & 40 \\
\hline 300000 & & 300000 & 263200 & & 254120 & \\
\hline
\end{tabular}

Production cost statement for September 20X8 - FIFO; closing WIP 40\% complete
\begin{tabular}{|c|c|c|c|}
\hline & Total R & Material & Conversion Cost \\
\hline Opening WIP & 855000 & & \\
\hline Current production cost & 7273432 & 4621792 & 2651640 \\
\hline Total & 8128432 & & \\
\hline \begin{tabular}{l}
Equivalent units \\
- per quantity statement
\end{tabular} & & 263200 & 254120 \\
\hline Equivalent cost per unit & R27,99 & \(=\mathrm{R} 17,56\) & + R10,43 \\
\hline
\end{tabular}

NLR \(=N L M+N L C\)
\[
=\quad(20000 \times 17,56)+(18000 \times 10,43)
\]
\[
=351200+187740
\]
\[
=\quad R 538940
\]

\section*{Explanatory notes}
(1) From the quantity statement given in section 3, the normal loss percentage can be calculated as (40 000-36 800) / \(40000=8 \%\) or alternatively, \(24000 / 300000(2)=8 \%\).
(2) The full 300000 was used, as:
- opening inventory percentage of completion ( \(100 \%-65 \%=35 \%\) ) was not larger than or equal to the wastage point (90\%), therefore opening inventory would have been included in the normal loss calculation.
- closing inventory percentage of completion (90\%) was not smaller than the wastage point ( \(90 \%\) ), therefore closing inventory would have been included in the normal loss calculation.
(3) The normal loss calculation for the adjusted quantity statement will be as follows:
\(8 \% \times(300000-50000)=20000\)
(Closing inventory percentage of completion (now 40\%) is now smaller than the wastage point ( \(90 \%\) ), therefore closing inventory will have to be deducted in the normal loss calculation.)
(4) Balancing figure

The allocation of the normal loss of R538 940 will be as follows:
Material
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{l|}{ Units } & \multicolumn{1}{c|}{ Calculation } & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & 183200 & \(183200 / 193200 \times\) R351 200 & 333022 \\
\hline Abnormal loss & 10000 & \(10000 / 193200 \times\) R351 200 & 18178 \\
\hline Closing WIP & - & & 0 \\
\hline TOTAL & 193200 & & 351200 \\
\hline
\end{tabular}

Conversion
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Units } & \multicolumn{1}{c|}{ Calculation } & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & 207120 & \(207120 / 216120 \times\) R187 740 & 179922 \\
\hline Abnormal loss & 9000 & \(9000 / 216120 \times\) R187 740 & 7818 \\
\hline Closing WIP & - & & 0 \\
\hline TOTAL & 216120 & & 187740 \\
\hline
\end{tabular}

NOTE
- At the end of the period, closing inventory had not yet reached/passed the wastage point ( \(40 \%<90 \%\) ) and we cannot, therefore, allocate a portion of the normal loss to these units.
- We can summarise the allocation of the normal loss of R538 940 as follows:
\begin{tabular}{|l|r|r|}
\hline Allocated to & \multicolumn{1}{|c|}{ Calculation } & \multicolumn{1}{|c|}{ R } \\
\hline Completed goods & \(333022+179922\) & 512944 \\
\hline Abnormal loss & \(18178+7818\) & 25996 \\
\hline Closing WIP & \(0+0\) & 0 \\
\hline Total cost of normal loss & & \(\mathbf{5 3 8 9 4 0}\) \\
\hline
\end{tabular}
c. The fact that closing inventory is now only \(40 \%\) complete at the end of the period will result in the following having to be adjusted:
- Weighted average method quantity statement
- Weighted average method production cost statement (equivalent unit costs)
- Calculation of normal loss rand value

Quantity statement for September 20X8 - weighted average method; closing WIP 40\% complete
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Input (units)} & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline & Details & \multirow[t]{2}{*}{Output (units)} & \multicolumn{2}{|l|}{Raw materials} & \multicolumn{2}{|l|}{Conversion cost} \\
\hline & & & Units & \% & Units & \% \\
\hline 40000 & Opening WIP & & & & & \\
\hline 260000 & Put into production & & & & & \\
\hline & Completed and transferred & 220000 & 220000 & 100 & 220000 & 100 \\
\hline & Normal loss & (1) 20000 & 20000 & 100 & 18000 & 90 \\
\hline & Abnormal loss & (2) 10000 & 10000 & 100 & 9000 & 90 \\
\hline & Closing WIP & 50000 & 50000 & 100 & 20000 & 40 \\
\hline 300000 & & 300000 & 300000 & & 267000 & \\
\hline
\end{tabular}

Production cost statement for September 20X8 - weighted average method; closing WIP 40\% complete
\begin{tabular}{|c|c|c|c|}
\hline & Total R & Material & Conversion cost \\
\hline Opening WIP & 855000 & 700000 & 155000 \\
\hline Current production cost & 7273432 & 4621792 & 2651640 \\
\hline Total & 8128432 & 5321792 & 2806640 \\
\hline \begin{tabular}{l}
Equivalent units \\
- per quantity statement
\end{tabular} & & 300000 & 267000 \\
\hline Equivalent cost per unit & R28,25 & \(=\mathrm{R} 17,74\) & + R10,51 \\
\hline
\end{tabular}
\[
\begin{aligned}
\text { NLR } & =\mathrm{NLM}+\text { NLC } \\
& =(20000 \times 17,74)+(18000 \times 10,51) \\
& =354800+189180 \\
& =\text { R543 } 980
\end{aligned}
\]

\section*{Explanatory notes}
(1) As in part b.
(2) Balancing figure (as in part b.)

Material
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|l|}{ Units } & \multicolumn{1}{c|}{ Calculation } & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & 220000 & \(220000 / 230000 \times\) R354 800 & 339374 \\
\hline Abnormal loss & 10000 & \(10000 / 230000 \times\) R354 800 & 15426 \\
\hline Closing WIP & - & & 0 \\
\hline TOTAL & 230000 & & 354800 \\
\hline
\end{tabular}

Conversion
\begin{tabular}{|l|c|c|r|}
\hline & \multicolumn{1}{|c|}{ Units } & Calculation & \multicolumn{1}{|c|}{ R } \\
\hline Completed and transferred & 220000 & \(220000 / 229000 \times\) R189 180 & 181745 \\
\hline Abnormal loss & 9000 & \(9000 / 229000 \times\) R189 180 & 7435 \\
\hline Closing WIP & - & & - \\
\hline TOTAL & 229000 & & 189180 \\
\hline
\end{tabular}

NOTE

At the end of the period, closing inventory has not yet reached/passed the wastage point ( \(40 \%<90 \%\) ) and we cannot, therefore, allocate a portion of the normal loss to these units.

\section*{5 Allocation statement preparation - FIFO method of inventory valuation}

The example below shows the format of the allocation statement as used with the FIFO method of inventory valuation. This example is based on the FIFO statements and related information in sections 3 and 4 above.

\section*{NOTE}

In an assignment or examination question, you will not have to show the explanatory notes for the calculation and allocation of the normal loss rand value/the cost allocation statement. [The purpose of the explanatory notes in sections 5 and 6 is simply to explain the calculations to you.] The only exception is if these figures do not come directly from a quantity statement or production cost statement provided in the question or prepared as part of your answer to the question.
\begin{tabular}{|c|c|c|}
\hline & Where closing inventory is 90\% complete R & Where closing inventory is 40\% complete R \\
\hline Opening WIP & 855000 & 855000 \\
\hline Material & 700000 & 700000 \\
\hline Conversion cost & 155000 & 155000 \\
\hline Current period equivalent production activities & 5672447 & 5890198 \\
\hline Material
\[
\begin{aligned}
& (17,56 \text { (1) } \times 183200 \text { ②, (5) } \\
& (17,56 ® 183200 \text { (2), (5) })
\end{aligned}
\] & 3216992 & 3216992 \\
\hline Conversion cost
\[
(9,50 \oplus 1) \times 207120(2), \text { (5) })
\] & 1967640 & \\
\hline (10,43(1) \(\times 207120\) (2), (5) & & 2160262 \\
\hline Normal loss
\[
(322775+165040)
\] & 487815 & \\
\hline \((333022+179\) 922) & & 512944 \\
\hline Completed and transferred & 6527447 & 6745198 \\
\hline Abnormal loss & 171534 & 295466 \\
\hline Material
\[
\begin{aligned}
& (17,56(1) \times 6000 \text { (3) }) \\
& (17,56(1) \times 10000(3)
\end{aligned}
\] & 105360 & 175600 \\
\hline Conversion cost (9,50 (1) \(\times 5\) 400③)
\[
(10,43(1) \times 9000 \text { (3) })
\] & 51300 & 93870 \\
\hline Normal loss
\[
\begin{aligned}
& (10571+4303) \\
& (18178+7818)
\end{aligned}
\] & 14874 & 25996 \\
\hline Closing WIP & 1429451 & 1086600 \\
\hline \multirow[t]{3}{*}{Material
\[
\begin{aligned}
& (17,56 \text { (1) } \times 50000 \text { (4) }) \\
& (17,56 \text { (1) } \times 50000 \text { (4) }
\end{aligned}
\]} & & \\
\hline & 878000 & \\
\hline & & 878000 \\
\hline Conversion cost
\[
(9,50 \text { © } \times 45000 \text { (4) })
\] & 427500 & \\
\hline (10,43 (1) x 20 000(4) & & 208600 \\
\hline Normal loss & & \\
\hline \[
\begin{aligned}
& (88094+35857) \\
& (0+0)
\end{aligned}
\] & 123951 & 0 \\
\hline & & \\
\hline Total cost allocated & 8128432 & 8127264 \\
\hline Rounding difference & - & 1168 \\
\hline Total cost per production cost statement & 8128432 & 8128432 \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) From the relevant production cost statement
(2) From the equivalent unit columns in the relevant quantity statement
(3) Abnormal losses as per the equivalent unit columns in the relevant quantity statement
(4) Closing WIP as per the equivalent unit columns in the relevant quantity statement
(5) Although the heading used is Current period equivalent production activities, this
refers to the equivalent units in the quantity statement for completing the opening WIP in this period and new units started and completed.

NOTE
- In the example above, we have combined two cost allocation statements (one for where closing inventory is \(90 \%\) complete and one for where closing inventory is \(40 \%\) complete) so that you can compare the two scenarios.
- A balancing figure may exist in your cost allocation statement (eg see the R1 168 in the cost allocation statements above). If all your workings are correct, this will only be due to rounding.

In MAC2601 questions, you can show the rounding difference as a balancing figure between the total of the cost allocation statement and the total cost per production cost statement. You will not be required to show where the rounding difference comes from. However, if your rounding difference amounts to a large portion of the total cost allocated, your answer probably contains mistakes.

\section*{Enrichment Activity}

Indicate where the rounding difference of R1 168 in the above example comes from.

\section*{Solution to enrichment activity}

From the rounding of R10,4345 ... (equivalent conversion cost per unit as per activity 17.5 , part b.) to R10,43, because:
\[
(10,4345 \ldots-10,43) \times 254120=\text { R1 168,40 (rounded to R1 168). }
\]

\section*{6 Allocation statement preparation - weighted average method of inventory valuation}

The example below shows the format of the allocation statement if the weighted average method of inventory valuation is used. This example is based on the weighted average method statements and related information in sections 3 and 4 above.

\section*{Cost allocation statements for September 20X8 - weighted average method}
\begin{tabular}{|c|c|c|}
\hline & Where closing inventory is 90\% complete R & Where closing inventory is 40\% complete R \\
\hline Completed and transferred & 6525260 & 6736119 \\
\hline \begin{tabular}{l}
Material
\[
\begin{aligned}
& (17,74 \text { ① } \times 220000 \text { ②) } \\
& (17,74 ② 20000 \text { (2) })
\end{aligned}
\] \\
Conversion cost (9,61(1) x 220000 ②) (10,51 (1) x 220000 ②) Normal loss \((339374+168886)\)
\((339374+181745)\)
\end{tabular} & \[
\begin{array}{r}
3902800 \\
2114200 \\
508260
\end{array}
\] & \[
\begin{array}{r}
3902800 \\
2312200 \\
521119
\end{array}
\] \\
\hline Abnormal loss & 171735 & 294851 \\
\hline \begin{tabular}{l}
Material \\
(17,74①) x 6 000③) \\
(17,74(1) x 10000 ③) \\
Conversion cost \\
(9,61(1) x 5 400③) \\
(10,51①) x 9 000③) \\
Normal loss
\[
(9256+4145)
\] \\
(15426 + 7 435)
\end{tabular} & \[
\begin{aligned}
& 106440 \\
& 51894 \\
& 13401
\end{aligned}
\] & \[
\begin{aligned}
& 177400 \\
& 94590 \\
& 22861
\end{aligned}
\] \\
\hline Closing WIP & 1431125 & 1097200 \\
\hline \begin{tabular}{l}
Material \\
(17,74① \(\times 50\) 00044) \\
(17,74(1) \(\times 50000\) (4) \\
Conversion cost \\
(9,61(1) x 45000 (4) \\
(10,51(1) x 20000 (4) \\
Normal loss
\[
(77130+34545)
\]
\[
(0+0)
\]
\end{tabular} & \[
\begin{aligned}
& 887000 \\
& 432450 \\
& 111675
\end{aligned}
\] & 887000
210200 \\
\hline Total cost allocated & 8128120 & 8128170 \\
\hline Rounding difference & 312 & 262 \\
\hline Total cost per production cost statement & 8128432 & 8128432 \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) From the relevant production cost statement
(2) From the equivalent unit columns in the relevant quantity statement
(3) Abnormal losses as per the equivalent unit columns in the relevant quantity statement
(4) Closing WIP as per the equivalent unit columns in the relevant quantity statement

\section*{Activity 18.3}

\section*{Weighted average cost allocation statement}

Refer to the information in Activity 16.3 of study unit 16 and the Self-assessment Activity of study unit 17. Below, we have duplicated the weighted average quantity statements and production cost statements from these activities for ease of reference:

Quantity statement for February 20X8 (weighted average method; wastage at beginning of process)
\begin{tabular}{lll|rrrr}
\multicolumn{2}{c|}{ Physical units } & \multicolumn{4}{c}{ Equivalent units } \\
\hline \begin{tabular}{l} 
Input \\
(units)
\end{tabular} & Details & \begin{tabular}{l} 
Output \\
(units)
\end{tabular} & \multicolumn{2}{c}{\begin{tabular}{l} 
Raw materials \\
Units
\end{tabular}} & \multicolumn{2}{c}{\begin{tabular}{l} 
Conversion cost \\
2000
\end{tabular}} \\
23000 & Opening WIP & & & & & \\
& Put into production & & & & \\
& Completed and transferred & 16000 & 16000 & 100 & 16000 & 100 \\
& Normal loss & 3450 & 3450 & 100 & - & 0 \\
& Abnormal loss & 1550 & 1550 & 100 & - & 0 \\
& Closing WIP & 4000 & 4000 & 100 & 2400 & 60 \\
\hline 25000 & & 25000 & 25000 & 18400 & \\
\hline \hline
\end{tabular}

Quantity statement for February 20X8 (weighted average method; wastage at 70\%)
\begin{tabular}{lll|lrlr}
\multicolumn{2}{c|}{ Physical units } & \multicolumn{4}{c}{ Equivalent units } \\
\hline \begin{tabular}{l} 
Input \\
(units)
\end{tabular} & Details & \begin{tabular}{l} 
Output \\
(units)
\end{tabular} & \multicolumn{2}{c}{\begin{tabular}{l} 
Raw materials \\
Units \\
\(\% 000\)
\end{tabular}} & Opening WIP & \multicolumn{2}{c}{\begin{tabular}{l} 
Conversion cost \\
Units
\end{tabular}} & \(\%\) \\
23000 & Put into production & & & & & \\
& Completed and transferred & 16000 & 16000 & 100 & 16000 & 100 \\
& Normal loss & 3150 & 3150 & 100 & 2205 & 70 \\
& Abnormal loss & 1850 & 1850 & 100 & 1295 & 70 \\
& Closing WIP & 4000 & 4000 & 100 & 2400 & 60 \\
\hline 20000 & & 25000 & 25000 & & 21900 \\
\hline
\end{tabular}

Production cost statement - weighted average method
\begin{tabular}{|c|c|c|c|}
\hline & Total R & Material & Conversion cost \\
\hline Opening WIP & 30000 & 20000 & 10000 \\
\hline Current production cost & 616165 & 253000 & 363165 \\
\hline Total & 646165 & 273000 & 373165 \\
\hline \begin{tabular}{l}
Equivalent units \\
- per quantity statement (0\%)
\end{tabular} & & 25000 & 18400 \\
\hline Equivalent cost per unit & R31,20 & \(=\mathrm{R} 10,92\) & + R20,28 \\
\hline \begin{tabular}{l}
Equivalent units \\
- per quantity statement (70\%)
\end{tabular} & & 25000 & 21900 \\
\hline Equivalent cost per unit & R27,96 & \(=\mathrm{R} 10,92\) & + R17,04 \\
\hline
\end{tabular}

\section*{REQUIRED}
a. Prepare the cost allocation statement for February 20X8 under the assumptions that Lunar Lotion (Pty) Ltd. uses the weighted average method of inventory valuation and that wastage occurs at the beginning of the process.
b. Prepare the following general ledger accounts for the scenario in a. above:
i. WIP
ii. Production account
iii. Completed goods
iv. Abnormal loss
c. Prepare the cost allocation statement for February 20X8 under the assumptions that Lunar Lotion (Pty) Ltd. uses the weighted average
method of inventory valuation and that wastage occurs when the process is 70\% complete.
d. Prepare the following general ledger accounts for the scenario in c. above:
i. WIP
ii. Production account
iii. Completed goods
iv. Abnormal loss

\section*{Solution to Activity 18.3}
a.
- Calculate the rand value of the normal loss
\[
\begin{aligned}
\text { NLR } & =\mathrm{NLM}+\mathrm{NLC} \\
& =(3450(2) \times 10,92(1)+(0 \text { (2) } \times 20,28 \text { (1) }) \\
& =37674+0 \\
& =\mathrm{R} 37674
\end{aligned}
\]
- Allocate the rand value of the normal loss

Material
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{c|}{ Units } & \multicolumn{1}{c|}{ Calculation } & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & (2), (7)16 000 & \(16000 / 21550 \times\) R37 674 & 27971 \\
\hline Abnormal loss & (4) 1550 & \(1550 / 21550 \times\) R37 674 & 2710 \\
\hline Closing WIP & (5) 4000 & \(4000 / 21550 \times\) R37 674 & 6993 \\
\hline TOTAL & 21550 & & 37674 \\
\hline
\end{tabular}

Conversion: The rand value of the normal loss in terms of conversion cost is zero.
- Prepare the cost allocation statement

\section*{LUNAR LOTION (PTY) LTD}

\section*{Cost allocation statement for February 20X8}
(Weighted average; wastage at 0\%)
\begin{tabular}{|c|c|}
\hline & R \\
\hline Completed and transferred & 527171 \\
\hline \[
\begin{aligned}
& \text { Material } \\
& (10,92(1) \times 16000 \text { (2) })
\end{aligned}
\] & (3) 174720 \\
\hline \[
\begin{aligned}
& \text { Conversion cost } \\
& (20,28 \text { © } \times 16000 \text { (2) })
\end{aligned}
\] & (3) 324480 \\
\hline Normal loss & 27971 \\
\hline Abnormal loss & 19636 \\
\hline \begin{tabular}{l}
Material \\
(10,92(1) \(\times 1\) 550(4)) \\
Conversion cost \\
(20,28(1) x 04) \\
Normal loss
\end{tabular} & 16926
0
2710 \\
\hline Closing WIP & 99345 \\
\hline \[
\begin{aligned}
& \text { Material } \\
& (10,92(1) \times 4000 \text { © })
\end{aligned}
\] & 43680 \\
\hline \[
\begin{aligned}
& \text { Conversion cost } \\
& (20,28(1) \times 2400(5)
\end{aligned}
\] & 48672 \\
\hline Normal loss & 6993 \\
\hline Total cost allocated & 646152 \\
\hline Rounding difference & 13 \\
\hline Total cost per production cost statement & (6) 646165 \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) From the relevant production cost statement
(2) From the equivalent unit columns in the relevant quantity statement
(3) Note that the combined cost of material and conversion cost could have been calculated immediately as \(\mathrm{R} 31,20^{\oplus}\) (total equivalent cost per unit) x \(16000=\) R499 200, because the number of equivalent units for material and conversion cost agree for the units completed and transferred.
(4) Abnormal losses as per the equivalent unit columns in the relevant quantity statement
(5) Closing WIP as per the equivalent unit columns in the relevant quantity statement
(6) The total cost per the production cost statement is R646 165. However, because the average cost per unit for material and for conversion cost used in the cost allocation statement is rounded off, we will not arrive at the exact same total and will have a rounding difference of R13.
(1) Although the opening WIP \% of completion is larger than the wastage point \(\%\) (which means that the opening WIP has already passed the wastage point in the previous month), the exception referred to in section 2 above applies, because the weighted average method of inventory valuation is being used. We therefore include all the units completed and transferred in the allocation of the rand value of the normal loss.
b. General ledger - wastage at \(0 \%\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Dr} & Cr \\
\hline \multicolumn{6}{|c|}{WIP} \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 1 / 2 \\
& 28 / 2
\end{aligned}
\]} & \multirow[b]{2}{*}{Opening balance 2 Production account} & R & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{28/2 Production account Closing balance}} & R \\
\hline & & 30000
99435 & & & \[
\begin{aligned}
& 30000 \\
& 99435
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{1/3 Opening balance}} & 129435 & & & 129435 \\
\hline & & 99435 & & & \\
\hline
\end{tabular}

\begin{tabular}{|ll|l|}
\hline Dr & & Cr \\
\hline \multicolumn{3}{|l|}{ Abnormal loss } \\
\hline & R & R \\
\begin{tabular}{c} 
28/2 Production \\
account
\end{tabular} & 19636 & \\
\hline
\end{tabular}
\begin{tabular}{|cc|cc|}
\hline Dr & & Cr \\
\hline \multicolumn{3}{|c|}{ Completed goods } \\
\hline & R & R \\
\begin{tabular}{ccc}
\(28 / 2\) Production \\
account
\end{tabular} & 527171 & \\
\hline
\end{tabular}
c.
- Calculate the rand value of the normal loss
\[
\begin{aligned}
\mathrm{NLR} & =\mathrm{NLM}+\mathrm{NLC} \\
& =(3150(1) \times 10,92(4))+(2 \text { 205(1) } \times 17,04 \text { (4) }) \\
& =34398+37573(2) \\
& =\mathrm{R} 71971
\end{aligned}
\]
- Allocate the rand value of the normal loss

Material
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{c|}{ Units } & \multicolumn{1}{c|}{ Calculation } & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & (1) 16000 & \(16000 / 17850 \times\) R34 398 & 30833 \\
\hline Abnormal loss & (1) 1850 & \(1850 / 17850 \times\) R34 398 & 3565 \\
\hline Closing WIP & (3) - & & - \\
\hline TOTAL & 17850 & & 34398 \\
\hline
\end{tabular}

Conversion
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{c|}{ Units } & \multicolumn{1}{c|}{ Calculation } & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & (1) 16000 & \(16000 / 17295 \times\) R37 573 & 34760 \\
\hline Abnormal loss & (1) 1295 & \(1295 / 17295 \times\) R37573 & 2813 \\
\hline Closing WIP & (3) - & & - \\
\hline TOTAL & 17295 & & 37573 \\
\hline
\end{tabular}

\section*{- Prepare the cost allocation statement}

\section*{LUNAR LOTION (PTY) LTD}

Cost allocation statement for February 20X8
(weighted average; wastage at 70\%)

R
\begin{tabular}{|c|c|}
\hline Completed and transferred & 512953 \\
\hline Material
\[
(10,92 \text { (4) x } 16000 \text { (1) })
\] & (5) 174720 \\
\hline Conversion cost
\[
(17,04 \text { (4) x } 16000 \text { (1) })
\] & (5) 272640 \\
\hline \[
\begin{aligned}
& \text { Normal loss } \\
& (30833+34760)
\end{aligned}
\] & 65593 \\
\hline Abnormal loss & 48647 \\
\hline Material
\[
(10,92 \text { (4) x } 1850 \text { (1) })
\] & 20202 \\
\hline Conversion cost
\[
(17,04 \text { (4) x } 1 \text { 295(1) }
\] & (2) 22067 \\
\hline Normal loss
\[
\text { (3565 + } 2813 \text { ) }
\] & 6378 \\
\hline Closing WIP & 84576 \\
\hline Material
\[
(10,92 \text { (4) x } 4000(1)
\] & 43680 \\
\hline Conversion cost
\[
(17,04 \text { (4) x } 2400 \text { (1) })
\] & 40896 \\
\hline Normal loss (3) & 0 \\
\hline Total cost allocated & 646176 \\
\hline Rounding difference & (11) \\
\hline Total cost per production cost statement & 646165 \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) From the equivalent unit columns in the relevant quantity statement
(2) For the purposes of this module and topic, we generally round total cost to the nearest rand, unless the number of decimal places to use was specified otherwise.
(3) Since the percentage of completion of the closing WIP with regard to conversion cost (60\%) is smaller than the wastage point (70\%), no portion of the normal loss would be allocated to closing WIP. (Closing WIP has not passed the wastage point yet and therefore the normal loss is only allocated to "Completed and transferred" and the abnormal loss.)
(4) From the relevant production cost statement
(5) Note that the combined cost of material and conversion cost could have been calculated immediately as R27,96(4) (total equivalent cost per unit) \(x\) \(16000=\mathrm{R} 447360\), because the number of equivalent units for material and conversion cost agree for the units completed and transferred.
d. General ledger - wastage at \(70 \%\)
\begin{tabular}{|c|c|c|c|}
\hline Dr & & & Cr \\
\hline \multicolumn{4}{|c|}{WIP} \\
\hline & R & \multirow{5}{*}{28/2 Production account Closing balance} & R \\
\hline 1/2 Opening balance & 30000 & & 30000 \\
\hline 28/2 Production account & 84576 & & 84576 \\
\hline & 114576 & & 114576 \\
\hline 1/3 Opening balance & 84576 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Dr & & & & Cr \\
\hline \multicolumn{5}{|c|}{Production account} \\
\hline & R & & & R \\
\hline 28/2 WIP & 30000 & 28/2 & Completed goods & 512953 \\
\hline Material & 253000 & & WIP & 84576 \\
\hline Conversion cost & 363165 & & Abnormal loss & 48647 \\
\hline Rounding difference & 11 & & & \\
\hline & 646176 & & & 646176 \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|}
\hline Dr & & Cr \\
\hline & \multicolumn{2}{c|}{ Abnormal loss } \\
\hline \(28 / 2\) Production account & R & R \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|}
\hline Dr & \multicolumn{2}{c|}{} \\
\hline & \multicolumn{2}{c|}{ Completed goods } \\
\hline \(28 / 2\) Production account & R & \\
\hline
\end{tabular}

\section*{NOTE}
- Separate accounts usually exist for labour and overheads, but the question does not provide sufficient information to enable us to split this cost.
- The completed goods account will be credited with the cost of sales for February.
- Closing balance for WIP and finished goods will reflect on the statement of financial position.
- The abnormal loss will be written off as period cost in the statement of profit or loss and other comprehensive income.

\section*{Activity 18.4}

\section*{FIFO cost allocation statement}

Refer to the information in Activity 16.3 of study unit 16 and the Self-assessment Activity of study unit 17.

Below, we have duplicated the FIFO quantity statements and production cost statements from these activities for ease of reference:

Quantity statement for February 20X8 (FIFO method; wastage at beginning of process)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw m Units & erials \% & Convers Units & \[
\begin{gathered}
\mathrm{n} \text { cost } \\
\%
\end{gathered}
\] \\
\hline 2000 & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multirow[t]{8}{*}{23000} & & & & & & \\
\hline & \multicolumn{6}{|l|}{Completed from:} \\
\hline & Opening inventory & 2000 & - & 0 & 1400 & 70 \\
\hline & Current production & 14000 & 14000 & 100 & 14000 & 100 \\
\hline & Completed and transferred & 16000 & 14000 & & 15400 & \\
\hline & Normal loss & 3450 & 3450 & 100 & - & 0 \\
\hline & Abnormal loss & 1550 & 1550 & 100 & - & 0 \\
\hline & Closing WIP & 4000 & 4000 & 100 & 2400 & 60 \\
\hline 25000 & & 25000 & 23000 & & 17800 & \\
\hline
\end{tabular}

Quantity statement for February 20X8 (FIFO method; wastage at 70\%)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline Input (units) & Details & Output (units) & Raw m Units & erials \% & Conver Units & \[
\begin{gathered}
\text { n cost } \\
\%
\end{gathered}
\] \\
\hline 2000 & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Opening WIP \\
Put into production
\end{tabular}}} \\
\hline \multirow[t]{8}{*}{23000} & & & & & & \\
\hline & \multicolumn{6}{|l|}{Put into production Completed from:} \\
\hline & Opening inventory & 1700 & - & 0 & 1190 & 70 \\
\hline & Current production & 14300 & 14300 & 100 & 14300 & 100 \\
\hline & Completed and transferred & 16000 & 14300 & & 15490 & \\
\hline & Normal loss & 3150 & 3150 & 100 & 2205 & 70 \\
\hline & Abnormal loss & 1850 & 1850 & 100 & 1295 & 70 \\
\hline & Closing WIP & 4000 & 4000 & 100 & 2400 & 60 \\
\hline 25000 & & 25000 & 23300 & & 21390 & \\
\hline
\end{tabular}

\section*{Production cost statements - FIFO method}
\begin{tabular}{|c|c|c|c|}
\hline & Total R & Material & Conversion Cost \\
\hline Opening WIP & 30000 & & \\
\hline Current production cost & 616165 & 253000 & 363165 \\
\hline Total & 646165 & & \\
\hline \begin{tabular}{l}
Equivalent units \\
- per quantity statement (0\%)
\end{tabular} & & 23000 & 17800 \\
\hline Equivalent cost per unit & R31,40 & \(=\mathrm{R} 11,00\) & + R20,40 \\
\hline Equivalent units & & 23300 & 21390 \\
\hline - per quantity statement (70\%) & & & \\
\hline Equivalent cost per unit & R27,84 & \(=\mathrm{R} 10,86\) & + R16,98 \\
\hline
\end{tabular}

\section*{REQUIRED}
a. Prepare the cost allocation statement for February 20X8 under the assumptions that Lunar Lotion (Pty) Ltd. uses the FIFO method of inventory valuation and that wastage occurs at the beginning of the process.
b. Prepare the following general ledger accounts for the scenario in a. above:
i. WIP
ii. Production account
iii. Completed goods
iv. Abnormal loss
c. Prepare the cost allocation statement for February 20X8 under the assumptions that Lunar Lotion (Pty) Ltd. uses the FIFO method of inventory valuation and that wastage occurs when the process is \(70 \%\) complete.
d. Prepare the following general ledger accounts for the scenario in c. above:
i. WIP
ii. Production account
iii. Completed goods
iv. Abnormal loss

\section*{Solution to Activity 18.4}
a.
- Calculate the rand value of the normal loss
\[
\begin{aligned}
\text { NLR } & =\mathrm{NLM}+\mathrm{NLC} \\
& =(3450 \text { (2) } \times 11,00 \text { (1) })+(0 \text { (2) } \times 20,40 \text { (1) }) \\
& =37950+0 \\
& =\mathrm{R} 37950
\end{aligned}
\]
- Allocate the rand value of the normal loss

Material
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Units } & Calculation & \multicolumn{1}{c|}{ R } \\
\hline \begin{tabular}{l} 
Completed and \\
transferred \\
\((14000-0\) (6) \()\)
\end{tabular} & (2), (6) 14000 & \(14000 / 19550 \times\) R37 950 & 27176 \\
\hline Abnormal loss & (3) 1550 & \(1550 / 19550 \times\) R37 950 & 3009 \\
\hline Closing WIP & (4) 4000 & \(4000 / 19550 \times\) R37 950 & 7765 \\
\hline TOTAL & 19550 & & 37950 \\
\hline
\end{tabular}

Conversion: The rand value of the normal loss for conversion cost is zero.
- Prepare the cost allocation statement

\section*{LUNAR LOTION (PTY) LTD}

\section*{Cost allocation statement for February 20X8 (FIFO; wastage at 0\%)}
\begin{tabular}{|c|c|}
\hline & R \\
\hline Opening WIP & 30000 \\
\hline Material & 20000 \\
\hline Conversion cost & 10000 \\
\hline Current period equivalent production activities & 495336 \\
\hline Material & 154000 \\
\hline (11,00(1) x 14000 (2), (5) & \\
\hline Conversion cost & 314160 \\
\hline (20,40(1) \(\times 15400\) (2), (5) & \\
\hline Normal loss & (3) 27176 \\
\hline Completed and transferred & 525336 \\
\hline Abnormal loss & 20059 \\
\hline Material & 17050 \\
\hline (11,00(1) x 1 550③) & \\
\hline Conversion cost & - \\
\hline (20,40 (1) x 033) & \\
\hline Normal loss & 3009 \\
\hline Closing WIP & 100725 \\
\hline Material & 44000 \\
\hline (11,00(1) x 4 0004) & \\
\hline Conversion cost & 48960 \\
\hline (20,40(1) x 2 400(4) & \\
\hline Normal loss & 7765 \\
\hline Total cost allocated & 646120 \\
\hline Rounding difference & 45 \\
\hline Total cost per production cost statement & 646165 \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) From the relevant production cost statement
(2) From the equivalent unit columns in the relevant quantity statement
(3) Abnormal losses as per the equivalent unit columns in the relevant quantity statement
(4) Closing WIP as per the equivalent unit columns in the relevant quantity statement
(5) Although the heading used is Current period equivalent production activities, this refers to the equivalent units in the quantity statement for completing the opening WIP in this period and new units started and completed.
(6) The opening WIP \% of completion is larger than the wastage point \% (which means that the opening WIP has already passed the wastage point in the previous month). We therefore need to deduct/exclude units completed from opening WIP from the units completed and transferred in the allocation of the rand value of normal loss.
b. General ledger - wastage at \(0 \%\)
\begin{tabular}{|c|c|c|c|}
\hline Dr & & & Cr \\
\hline \multicolumn{4}{|c|}{WIP} \\
\hline & R & \multirow{5}{*}{28/2 Production account Closing balance} & R \\
\hline 1/2 Opening balance & 30000 & & 30000 \\
\hline 28/2 Production account & 100725 & & 100725 \\
\hline & 130725 & & 130725 \\
\hline 1/3 Opening balance & 100725 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Dr} & Cr \\
\hline \multicolumn{4}{|c|}{Production account} \\
\hline & R & & R \\
\hline 28/2 WIP & 30000 & 28/2 Completed goods
\[
(495336+30000)
\] & 525336 \\
\hline Material & 253000 & WIP & 100725 \\
\hline Conversion cost & 363165 & Abnormal loss & 20059 \\
\hline & & Rouding difference & 45 \\
\hline & 646165 & & 646165 \\
\hline 1/3 Opening balance & 84576 & & \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|}
\hline Dr & \multicolumn{2}{c|}{} \\
\hline \multicolumn{2}{c|}{ Abnormal loss } & Cr \\
\hline & R & \\
\hline \(28 / 2\) Production account & 20059 & R \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|}
\hline Dr & \multicolumn{2}{l|}{Cr} \\
\hline & \multicolumn{2}{c|}{ Completed goods } \\
\hline \(28 / 2\) Production account & R & R \\
\hline
\end{tabular}
c.
- Calculate the rand value of normal loss
\[
\begin{aligned}
\text { NLR } & =\text { NLM }+ \text { NLC } \\
& =(3150 \oplus 1 \times 10,86(5))+(2 \text { 205(1) } \times 16,98 \text { (5) }) \\
& =34209+37441 \\
& =\text { R71650 }
\end{aligned}
\]
- Allocate the rand value of normal loss

Material
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Units } & \multicolumn{1}{|c|}{ Calculation } & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & 14300 & \(14300 / 16150 \times\) R34 209 & 30290 \\
\hline Abnormal loss & (3) 1850 & \(1850 / 16150 \times\) R34 209 & 3919 \\
\hline Closing WIP & (2) - & & - \\
\hline TOTAL & 16150 & & 34209 \\
\hline
\end{tabular}

Conversion
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Units } & Calculation & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & 15490 & \(15490 / 16785 \times\) R37 441 & 34552 \\
\hline Abnormal loss & (3) 1295 & \(1295 / 16785 \times\) R37 441 & 2889 \\
\hline Closing WIP & (2) - & & - \\
\hline TOTAL & 16785 & & 37441 \\
\hline
\end{tabular}
- Prepare the cost allocation statement

\section*{LUNAR LOTION (PTY) LTD}

Cost allocation statement for February 20X8 (FIFO; wastage at 70\%)
\begin{tabular}{|c|c|}
\hline & R \\
\hline Opening WIP & 30000 \\
\hline Material & 20000 \\
\hline Conversion cost & 10000 \\
\hline Current period equivalent production activities & 483160 \\
\hline Material
\[
(10,86 \text { (5) x } 14300)
\] & 155298 \\
\hline Conversion cost & 263020 \\
\hline (16,985) x 15 490) & \\
\hline Normal loss & 64842 \\
\hline (30 \(290+34552\) ) & \\
\hline Completed and transferred & 513160 \\
\hline Abnormal loss & 48888 \\
\hline Material & 20091 \\
\hline (10,86(5) x 1 850(3) & \\
\hline Conversion cost & 21989 \\
\hline (16,98(5) x 1 2953) & \\
\hline Normal loss & 6808 \\
\hline (3919 + 2 889) & \\
\hline Closing WIP & 84192 \\
\hline Material & 43440 \\
\hline (10,86(5) x 4000 (4) & \\
\hline Conversion cost & 40752 \\
\hline (16,98(5) x 2 400(4) & \\
\hline Normal loss & 0 \\
\hline \((0+0)\) & \\
\hline Total cost allocated & 646240 \\
\hline Rounding difference & (75) \\
\hline Total cost per production cost statement & 646165 \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) Normal losses as per the equivalent unit columns in the relevant quantity statement
(2) Since the percentage of completion of the closing WIP in terms of conversion cost (60\%) is smaller than the wastage point (70\%), no portion of the normal loss would be allocated to closing WIP.
(3) Abnormal losses as per the equivalent unit columns in the relevant quantity statement
(4) Closing WIP as per the equivalent unit columns in the relevant quantity statement
(5) Cost per unit per the relevant production cost statement
d. General ledger - wastage at \(70 \%\)
\begin{tabular}{|c|c|c|c|}
\hline Dr & & & Cr \\
\hline \multicolumn{4}{|c|}{WIP} \\
\hline & R & \multirow{5}{*}{28/2 Production account Closing balance} & R \\
\hline 1/2 Opening balance & 30000 & & 30000 \\
\hline 28/2 Production account & 84192 & & 84192 \\
\hline & 114192 & & 114192 \\
\hline 1/3 Opening balance & 84192 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Dr} & Cr \\
\hline \multicolumn{5}{|c|}{Production account} \\
\hline & R & & & R \\
\hline 28/2 WIP & 30000 & & Completed goods
\[
(483160+30000)
\] & 513160 \\
\hline Material & 253000 & & WIP & 84192 \\
\hline Conversion cost & 363165 & & Abnormal loss & 48888 \\
\hline Rouding difference & 75 & & & \\
\hline & 646240 & & & 646240 \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|}
\hline Dr & & Cr \\
\hline & Abnormal loss & \\
\hline \(28 / 2\) Production account & R & R \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|}
\hline Dr & \multicolumn{2}{c|}{ Completed goods } \\
\hline & R & Cr \\
\hline \(28 / 2\) Production account & 513160 & R \\
\hline
\end{tabular}

\section*{Activity 18.5}

Allocation statement: opening WIP passed wastage point in previous period; wastage point not at beginning of process
Wonderwash (Pty) Ltd. manufactures washing powder in a single process and uses a process costing system. Material is added at the beginning of the process and conversion takes place evenly throughout the process.

The following information is available for December 20X9:
Quantity statement for December 20X9
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline Input (units) & Details & \multirow[t]{2}{*}{Output (units)} & \multicolumn{2}{|l|}{Raw materials Units \%} & \multicolumn{2}{|l|}{Conversion cost Units \%} \\
\hline 50000 & Opening WIP & & & & & \\
\hline 350000 & Put into production & & & & & \\
\hline & Completed from: & & & & & \\
\hline & Opening inventory & 50000 & - & 0 & 40000 & 80 \\
\hline & Current production & 290000 & 290000 & 100 & 290000 & 100 \\
\hline & Completed and transferred & 340000 & 290000 & 100 & 330000 & \\
\hline & Normal loss & 28000 & 28000 & 100 & 2800 & 10 \\
\hline & Abnormal loss & 12000 & 12000 & 100 & 1200 & 10 \\
\hline & Closing WIP & 20000 & 20000 & 100 & 8000 & 40 \\
\hline 400000 & & 400000 & 350000 & & 342000 & \\
\hline
\end{tabular}

Production cost statement for December 20x9
\begin{tabular}{lrcc} 
& \begin{tabular}{c} 
Total \\
\(\mathbf{R}\)
\end{tabular} & Material & \begin{tabular}{c} 
Conversion \\
cost
\end{tabular} \\
\hline Opening WIP & 150000 & & 1881000 \\
\begin{tabular}{l} 
Current production cost \\
Total
\end{tabular} & \(\underline{2651000}\) & 770000 & 1881 \\
Equivalent cost per unit & \begin{tabular}{r}
2801000 \\
\end{tabular} & 7,70 & \(=2,20\)
\end{tabular}

\section*{REQUIRED}

Calculate and allocate the rand value of the normal loss for purposes of the cost allocation statement.

\section*{Solution to Activity 18.5}

Before we answer this question, it is important to note a few things about the organisation:
- You will notice from the format of the quantity statement and the production cost statement that the organisation uses the FIFO method of inventory valuation.
- Normal loss percentage can be calculated as follows from the statements provided:
Opening inventory \% of completion (100\% - 80\%) 20\%
Closing inventory \% of completion 40\%
Wastage point 10\%

\section*{Therefore:}
- since the \(20 \%\) for opening inventory is larger than the wastage point \(\%\) of \(10 \%\), opening WIP was therefore deducted in the normal loss calculation for December 20X9.
- closing inventory \(40 \%\) is not smaller than the wastage point \(\%\) of \(10 \%\). Closing WIP was therefore included in the normal loss calculation.
- normal loss / units to be included in calculation
\(=28000 /(400000-50000)\)
\(=28000 / 350000\)
\(=8 \%\)
- Since the \(20 \%\) for opening inventory is larger than the wastage point \(\%\) of \(10 \%\), opening inventory would have already passed the wastage point in the previous month. We cannot apply the exception of section 2 here because the FIFO method is being used and the opening WIP should therefore not share in the normal loss rand value for December 20X9. We will therefore have to deduct/exclude the units completed from opening WIP when we do the allocation of the normal loss rand value.
a. Calculate the rand value of normal loss
\[
\begin{aligned}
\text { NLR } & =\text { NLM }+ \text { NLC } \\
& =(28000 \times 2,20)+(2800 \times 5,50) \\
& =61600+15400 \\
& =R 77000
\end{aligned}
\]
b. Allocate the rand value of normal loss

Material
\begin{tabular}{|l|r|c|r|}
\hline & \multicolumn{1}{c|}{ Units } & Calculation & \multicolumn{1}{c|}{ R } \\
\hline \begin{tabular}{l} 
Completed and transferred \\
\((290000-0(1)\)
\end{tabular} & (1)290 000 & \(290000 / 322000 \times R 61600\) & 55478 \\
\hline Abnormal loss & 12000 & \(12000 / 322000 \times \mathrm{R} 61600\) & 2296 \\
\hline Closing WIP & 20000 & \(20000 / 322000 \times \mathrm{R} 61600\) & 3826 \\
\hline TOTAL & 322000 & & 61600 \\
\hline
\end{tabular}

Conversion
\begin{tabular}{|l|r|c|r|}
\hline & \multicolumn{1}{|c|}{ Units } & Calculation & \multicolumn{1}{c|}{ R } \\
\hline \begin{tabular}{l} 
Completed and transferred \\
\((330000-40000(1))\)
\end{tabular} & (1) 290000 & \(290000 / 299200 \times\) R15 400 & 14926 \\
\hline Abnormal loss & 1200 & \(1200 / 299200 \times\) R15 400 & 62 \\
\hline Closing WIP & 8000 & \(8000 / 299200 \times\) R15 400 & 412 \\
\hline TOTAL & 299200 & & 15400 \\
\hline
\end{tabular}

\section*{Explanatory notes}
(1) The opening WIP \% of completion is larger than the wastage point \% (which means that the opening WIP has already passed the wastage point in the previous month). We therefore need to deduct/exclude units completed from opening WIP from the units completed and transferred in the allocation of the rand value of the normal loss. Remember that this is only applicable when the FIFO method is being used and opening stock \% of completion is larger than or equal to the wastage point \%.

\section*{7 Summary}

In this study unit, you learnt the following:
- A cost allocation statement brings together unit information from the quantity statement and cost information from the production cost statement.
- A cost allocation statement is used to value closing WIP, units completed and abnormal loss.
- If FIFO is used, separate sections for opening WIP and current period equivalent production activities need to be included in the allocation statement.
- If the weighted average method of inventory valuation is used, opening WIP and current period equivalent production activities are combined into a single section for cost of production transferred.
- If the percentage of completion of closing WIP (with regard to conversion cost) is smaller than the wastage point (where wastage occurs), the rand value of normal loss needs to be calculated, allocated to abnormal loss and the units completed and transferred and included under appropriate headings in the cost allocation statement.

\section*{Comprehensive Self-assessment}

Activity (combining all study units)

Tub Bob Ltd. produces foam bath in a single process and uses a process costing system. The following information is available for September 20X9:
\begin{tabular}{lr} 
WIP (opening) & Units \\
- Percentage completion \(-25 \%\) & 10000
\end{tabular}

New units put into production during the current month 32000
Completed 26000
WIP (closing) 8000
- Percentage completion - 60\%

\section*{Additional information}
1. Wastage takes place when the process is \(35 \%\) complete.
2. Tub Bob Ltd. applies the FIFO method of inventory valuation.
3. Raw materials are added at the beginning of the process.
4. Conversion takes place evenly throughout the process.
5. Normal losses are estimated as \(10 \%\) of the units that reach the wastage point.
6. Cost data are as follows:

\section*{R}
\begin{tabular}{lr} 
Opening WIP & \\
Material & 12820 \\
Conversion & 33744 \\
In September 20X9 & \\
Material & 149000 \\
Conversion & 178800
\end{tabular}

\section*{REQUIRED}

Draft the:
a. Quantity statement
b. Production cost statement
c. Allocation statement
d. General ledger accounts for WIP, production, abnormal loss and finished goods for Tub Bob Ltd. for September 20X9.

\section*{Solution to Comprehensive Self-assessment Activity}
a. TUB BOB LTD

Quantity statement for September 20X9
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Physical units} & \multicolumn{4}{|c|}{Equivalent units} \\
\hline \multirow[t]{11}{*}{\begin{tabular}{l}
Input (units) \\
10000 \\
32000
\end{tabular}} & Details & Output & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Raw materials Units \%}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Conversion cost Units \%}} \\
\hline & & (units) & & & & \\
\hline & WIP - opening & & & & & \\
\hline & Put into production & & & & & \\
\hline & Completed from: & & & & & \\
\hline & Opening inventory (1) & 9000 & - & 0 & (4) 6750 & 75 \\
\hline & Current production (3) & 17000 & 17000 & 100 & 17000 & 100 \\
\hline & Completed and transferred & 26000 & 17000 & & 23750 & \\
\hline & Normal loss(2) & 4200 & (2) 4200 & 100 & (2) 1470 & 35 \\
\hline & Abnormal loss (3) & 3800 & 3800 & 100 & (5) 1330 & 35 \\
\hline & WIP - closing & 8000 & 8000 & 100 & (6) 4800 & 60 \\
\hline 42000 & & 42000 & 33000 & & 31350 & \\
\hline
\end{tabular}
b. TUB BOB LTD

Production cost statement for September 20X9
\begin{tabular}{lccc} 
& \begin{tabular}{c} 
Total \\
\(\mathbf{R}\)
\end{tabular} & Material & \begin{tabular}{c} 
Conversion \\
cost
\end{tabular} \\
\begin{tabular}{lcc} 
Opening WIP & 46564 & \\
Current production cost & \(\frac{327800}{374364}\) & 149000
\end{tabular} & 178800 \\
\begin{tabular}{l} 
Total
\end{tabular} & & & \\
\begin{tabular}{l} 
Equivalent units per quantity \\
statement
\end{tabular} & 10,22 & 33000 & 31350 \\
Equivalent cost per unit & & \(=4,52\) & \(+5,70\)
\end{tabular}
c. i. Calculate the rand value of normal loss

NLR \(=\mathrm{NLM}+\mathrm{NLC}\)
\[
\begin{aligned}
& =(4200 \times 4,52)+(1470 \times 5,70) \\
& =18984+8379 \\
& =R 27363
\end{aligned}
\]
c. ii. Allocate the rand value of normal loss

Material
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Units } & \multicolumn{1}{|c|}{ Calculation } & \multicolumn{1}{c|}{ R } \\
\hline Completed and transferred & 17000 & \(17000 / 28800 \times\) R18 984 & 11206 \\
\hline Abnormal loss & 3800 & \(3800 / 28800 \times\) R18 984 & 2505 \\
\hline Closing WIP & 8000 & \(8000 / 28800 \times\) R18 984 & 5273 \\
\hline TOTAL & 28800 & & 18984 \\
\hline
\end{tabular}

Conversion
\begin{tabular}{|l|r|r|r|}
\hline & Units & Calculation & \multicolumn{1}{|c|}{\(\mathbf{R}\)} \\
\hline Completed and transferred & 23750 & \(23750 / 29880 \times \mathrm{R} 8379\) & 6660 \\
\hline Abnormal loss & 1330 & \(1330 / 29880 \times \mathrm{R8} 379\) & 373 \\
\hline Closing WIP & 4800 & \(4800 / 29880 \times \mathrm{R} 8379\) & 1346 \\
\hline TOTAL & 29880 & & 8379 \\
\hline
\end{tabular}
c. iii Prepare the cost alocation statement

\section*{TUB BOB LTD}

Allocation statement for September 20X9


\section*{Explanatory notes}
(1) \(10000 \times 90 \%=9000\)
(2) \(42000 \times 10 \%=4200\). Both opening and closing WIP, as well as the abnormal loss, passed the wastage point in the current period; therefore there is nothing to deduct in the normal loss unit calculation.
```

4200 x 100% = 4 200
4 200 x 35% = 1470

```
(3) Balancing figure
(4) \((100 \%-25 \%) \times 9000=6750\)
(5) \(3800 \times 35 \%=1330\)
(6) \(8000 \times 60 \%=4800\)
a. General ledger
\begin{tabular}{|c|c|c|c|}
\hline Dr & & & Cr \\
\hline \multicolumn{4}{|c|}{WIP} \\
\hline & R & \multirow{5}{*}{30/9 Production account Closing balance} & R \\
\hline 1/9 Opening balance & 46564 & & 46564 \\
\hline 30/9 Production account & 70139 & & 70139 \\
\hline & 116703 & & 116703 \\
\hline 1/10 Opening balance & 70139 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Dr & & & & Cr \\
\hline \multicolumn{5}{|c|}{Production account} \\
\hline & R & & & R \\
\hline 30/9 WIP & 46564 & 30/9 & Completed goods & 276645 \\
\hline Material & 149000 & & WIP & 70 \\
\hline & & & & 139 \\
\hline Conversion cost & 178800 & & Abnormal loss & 27635 \\
\hline Rounding difference & 55 & & & \\
\hline & 374419 & & & 374419 \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|}
\hline Dr & & Cr \\
\hline & Abnormal loss & \\
\hline & R & R \\
\(30 / 9\) Production account & 27635 & \\
\hline
\end{tabular}
\begin{tabular}{|lc|c|}
\hline Dr & \multicolumn{2}{c|}{ Finished goods* \(^{*}\)} \\
\hline & R & Cr \\
\hline & 276645 & R \\
\(30 / 9\) Production account & 2 & \\
\hline
\end{tabular}
*Remember, in MAC2601, we use the terms "finished goods" and "completed goods" interchangeably.

\section*{SUMMARISED STEPS FOR PROCESS COSTING}
1. Determine total inputs for period and complete input column of quantity statement.
2. Determine units subject to normal wastage by taking total of input column and subtracting units that did not pass the wastage point.
3. Calculate normal loss units.
4. If FIFO is used, split units completed between opening WIP and new production.
5. Fill in the output column of the quantity statement.
6. Complete the "Equivalent units" section of the quantity statement for ALL line items, including the normal and abnormal losses.
7. Complete the production cost statement and calculate the equivalent production cost per unit.
8. Determine the value of normal loss based on its equivalent units for material and conversion cost (separately).
9. Determine whether opening WIP, abnormal loss and/or closing WIP will have to be excluded when normal loss is allocated (also refer to step 2).
10. Allocate the value of normal loss for material and conversion cost separately, based on the ratio of equivalent units in the quantity statement of those units sharing in normal loss.
11. Complete the allocation statement by multiplying each category of equivalent output by its equivalent cost per unit. Remember to include that category's share of normal loss.
12. Determine rounding and balance.
13. Complete T-accounts (if required).

\section*{References}

IFRS Foundation. 2010. International Accounting Standard 2: Inventories. [Online] Available at: http://eifrs.iasb.org/eifrs/bnstandards/en/ias2.pdf. Accessed: 7 December 2011.

\section*{Additional reading}

Drury, C. 2008. Management and cost accounting. 7th edition. London: SouthWestern Cengage Learning.

Niemand, AA, Meyer, L, Botes, VL \& Van Vuuren, SJ. 2006. Fundamentals of cost and management accounting. Revised 5th edition. Durban: LexisNexis Butterworths.

\section*{Joint and by-product costing system}

\section*{LEARNING OUTCOMES}

After studying this topic, you should be able to:
- differentiate between joint and by-products
- allocate joint costs, using different methods
- account for the net proceeds of by-products
- calculate the value of joint and by-product inventory
- calculate profits from the sale of joint products

STUDY UNIT
Study unit \(19 \quad\) Costing joint products
Study unit 20 Accounting for by-products


\section*{Introduction}

In the previous topics, you have learned how to cost unique custom-made products (job costing) and masses of similar products (process costing). In this topic, we will demonstrate how to cost products that emerge from a joint process, that are dissimilar from each other. You will also learn how to treat the costing of the emergence of byproducts and their proceeds (if any).

\section*{Costing joint products}


\section*{1 Introduction}

In this study unit, we will discuss the joint and by-product costing system and explain how the cost of the joint output should be determined. We will illustrate how to calculate the profits from joint product (finished goods) sales, after apportioning joint costs, including instances where these are processed further.

\section*{2 What is a joint process?}

Consider the following scenario:
A butcher, with his own abattoir, purchases an ox (weighing 875 kg ) for R16 100 and slaughters it to yield the following:

> kg

Grade A meat cuts 420
Grade B meat cuts 250
Grade C meat cuts 50
Bones (clean) 75
Hide 15
Blood (disposed of) \(\quad \underline{65}\)
Total 875

Given the above, how would you go about calculating the cost of, say, grade A cuts per kilogram and, say, the cost of the bones per kilogram?

Did you calculate the cost of grade A meat cuts as R18,40 (R16 100 / 875) per kilogram?
Did you calculate the cost of the bones as R18,40 per kilogram?
Do you have a problem with these answers?
The problem with the answers obtained above is that grade A meat and a bag of bones both cost R18,40 per kilogram. Our logic tells us that all the different types of output should not cost the same. Use of the joint and by-product costing system will help us to solve this problem!

\section*{JOINT PROCESS}

In a joint production process:
- two or more different products, which are not separately identifiable until this process is completed, emerge from the joint process; and
- the output cannot be manipulated to yield only one or more desired products, but not the rest.

In our scenario above, the joint production process is the slaughtering process. The different products are the meat, bones etcetera. The meat, for instance, cannot separately be identified until the slaughtering process is completed. The slaughtering process will yield the bones (irrespective of whether the butcher wants this output or not). In other words, the butcher will not obtain the grade A meat without also obtaining all the other products.

\section*{SPLIT-OFF POINT}

The split-off point is the point in the production process where the separate joint products can be identified for the first time (eg the hide and a carcass are identified). There can be various split-off points before all joint products can be identified (eg the carcass is cut up into smaller pieces to yield various grades of meat, bones and blood).

This is illustrated diagrammatically in figure 19.1 as follows:


FIGURE 19.1: Diagram of a joint process with various split-off points

\section*{3 Classification of joint output into joint products and by-products}

The products yielded by a joint process can be classified as either joint products or byproducts.

\section*{JOINT PRODUCTS}

Products arising from the joint process which have significant value are known as joint products. The joint process is intentionally completed to obtain these products. These are the main products on which the survival of the organisation depends.

A joint process may yield one million units of \(A\) (sales price of 50 cent each, total value \(=\) R0,5 million) and two million units of \(B\) (sales price of \(R 1\) each, total value \(=R 2\) million) and one unit of \(C\) (sales price of R1 000), in which case product \(A\) and \(B\) would be regarded as the joint product, whereas product \(C\) would not be regarded as the joint product.

\section*{BY-PRODUCTS}

When a product is insignificant in value to the joint products, it is classified as a byproduct, i.e. by-products have a limited sales value. They are incidental to the manufacturing process. In some cases the by-products may not even have a sales value at all, but they are nevertheless by-products arising from the manufacturing of the principal product(s). The organisation's survival is not dependent on the sales of the by-products!!

\section*{WASTE (SCRAP) PRODUCTS}

A by-product with no sales value is also regarded as waste or scrap products. The organisation may sometimes even have to incur costs to get rid of the waste or scrap products in terms of health or environmental regulations!!

In our example, both the good and poor quality meat are produced in large quantities and make a substantial contribution to the market value of the output of the manufacturing process and are therefore regarded as joint products. The hide is a high-value item and will also be regarded as a joint product

The bones (and blood) are of lesser importance and make a relatively small contribution to the total market value. These are therefore classified as a by-product. Because the blood (in this scenario), had no sales value at all, it is treated as a waste product.

\section*{Joint costs}

In our example of the ox, certain costs are common to the production of the various products. The cost of the ox, labour and overheads related to the slaughtering thereof are common to all products.

\section*{JOINT COSTS}

All the common costs incurred prior to the split-off point are known as joint costs. These include all materials, labour and overheads incurred to yield the products at the split-off point.

\section*{5 Additional (further) processing costs incurred after the split-off point}

It frequently happens that joint products are not sold directly after the split-off point, due mainly to two reasons:
1. There is no market for the joint product (or by-product) in its current state.
2. Incremental value can be added by processing the products further before sale thereof. For example, the selling price per unit will increase by R100 if we spent another R76 on further processing of the product.

The separated products then undergo further separate processing. For example, the meats may be marinated, hide cured etcetera. These additional processing costs will be assigned directly to the respective products by means of a job or process costing system.

\section*{FURTHER PROCESSING COSTS}

These are the costs incurred to further process (convert) the separated joint products into final products. This would also include costs to prepare by-products for sale.

The good quality meat processed into tenderised steak and the poor quality meat processed into mince represent further examples.

Further processing costs therefore do not form part of the joint costs and are assigned to the specific product beyond the split-off point.

NOTE

In MAC3701 you will learn how to decide whether to process the joint-/by-product further, or to sell these at the split-off point. In this module you may assume that all separated products will be processed further before being sold, unless instructed otherwise in a question.

\section*{6 Methods for allocating joint costs (assuming no by-product sales)}

In our introductory scenario we identified the problem of ALL output being costed at R18,40 per kilogram. How do we therefore assign the joint costs of the joint manufacturing process to the respective joint products?

Initially we will demonstrate appropriate methods by assuming that no by-products are produced. In study unit 20 we will then show the slight adjustments required to these methods, when accounting for by-products.

The following four methods are normally used:

\subsection*{6.1 The physical standard method (units produced)}

According to this method the joint costs are allocated to each joint product in proportion to the physical quantity of each joint product produced.

Some joint products may, however, be solids (kilograms) and liquids (litres).
This approach is very limited, because it is only suitable where the output (ie the various different joint products) is very similar in nature and value. In fact, this is precisely the reason why our initial costing of the meat and bones of the ox was inappropriate (ie R18,40 per kg for both products) the assumption was made, when applying this particular approach, was that the bones and meat are very similar in nature and value.

\subsection*{6.2 Market value at split-off point method (split-off point selling price) market value)}

In this method the joint costs are allocated to each product in proportion to the potential market value of that product at the split-off point in the production process. The assumption is that higher selling prices are accompanied by higher costs. Joint costs are therefore borne to a greater extent by products with a high sales value than by products with a low sales value.

This method can be used if the joint products can be sold after the split-off point without the organisation having to incur any additional processing costs. The products which arise from the joint process therefore each have a given potential market value at the split-off point; in other words, there is a market for the products in their current state.

This method cannot be applied where there is no market for the separated products directly after the split-off point, because no market value would exist.

\subsection*{6.3 The net realisable value (NRV) at split-off point method (relative sales value)}

According to this method, the market value of the final product (ie the product produced after further processing) is taken and reduced by any costs incurred for processing of the product beyond the split-off point and by any selling and distribution costs incurred to sell the final product. These NRV values are then used to establish the ratio in which the
joints costs are to be apportioned. In this way an estimated market value (net of all further costs) for the products at the split-off point is achieved.

One therefore has to work back from the market value of the final product to determine an estimated market value at the split-off point. For example:

\section*{R}

Market price of final product 213 Less:

Commission 13
Transport to customer 20
Further processing after split-off point 100
NRV at split-off point \(\quad \overline{80}\)

This method is frequently used if further processing of the products is essential and the product cannot be sold at the split-off point (no market).

In practice, this approach is complicated, because products may split-off at different stages.

\subsection*{6.4 The reversal costing method (or constant gross profit percentage [GP\%])}

If we use the reversal cost method, the question is not what portion of the joint costs should be allocated to the products, but what amount should be absorbed by each product to arrive at a constant GP\% for all (or only specific) products.

The management of a company often decides on a minimum rate of return (profit) which must be earned by all joint products that emerge from a joint process. This profit percentage can then be used to determine the estimated gross profit for each product separately.

This is done by using the estimated gross profit (rand value) as the basis and then deducting the selling price to arrive at the cost of sales from which we then deduct the further processing costs. The resulting answer is the portion of the joint costs that the joint product can absorb and still deliver the required GP\%.

For example: if the final product sells for R250 and the standard GP\% is \(20 \%\), then:
\begin{tabular}{lc} 
& R \\
Target gross profit \((\mathrm{R} 250 \times 20 \%)\) & 50 \\
Less: \(\quad\) Selling price & 250 \\
Cost of sales & \((200)\) \\
Less: \(\quad\) Further processing costs, say & \\
Amount of joint costs that can be absorbed & \(\underline{\underline{(127)}}\)
\end{tabular}

This is done for each joint product and the joint costs are once again apportioned based on this ratio.

The drawback of this method is that applying a constant GP\% will mean that some joint products (which, in effect, may be unprofitable) may be kept (processed further and marketed) as part of the product range generated by the joint process, because they are assigned the same constant positive GP\% as the other joint products.

Care should therefore be taken that the output ratios and products from a joint process
are not manipulated to comply with the definition of a joint process so that the GP\% method can be applied.

Secondly, products usually have different GP\% and it is unrealistic to use the same percentage for all the joint products from one joint process.

NOTE

The following is very important for allocation purposes:In all methods where sales values or net realisable sales values are used as the allocation base, the sales values or NRVs are determined for the respective joint product OUTPUT at the split-off point, regardless of how many units of the respective joint products have actually been sold in the period. In other words, the sales value or NRV is NOT calculated for the units actually sold, but for the actual units PRODUCED in the period.

The next two activities demonstrate how these methods are applied. For now, we will assume that no by-productsare generated in the joint process.

\section*{Activity 19.1}

Robertson Ltd. manufactures two types of joint products, Smokey and Red-hot, in a joint process. Each product is then processed further (separately) to completion, before being marketed. The joint costs amount to R140 000 per month and 900 units of Smokey and 600 units of Red-hot are manufactured and sold per month.

Additional information:
\begin{tabular}{lcc} 
& Smokey & Red-hot \\
& R & R \\
Selling price of completed (final) unit & 720 & 900 \\
Further cost to complete a unit after split-off point & 270 & 360 \\
Sales commission per unit & 60 & 75
\end{tabular}

\section*{REQUIRED}

Calculate the total profit per month for each joint product if sold after further processing and joint costs are allocated according to:
a. the physical standard (units) method
b. the realisable market value at split-off point (NRV) method

\section*{Solution to Activity 19.1}
a. Profitability if the physical standard method is used
\begin{tabular}{|c|c|c|}
\hline & Smokey R & Red-hot R \\
\hline Sales (900 x R720; \(600 \times \mathrm{R900}\) ) & 648000 & 540000 \\
\hline Less: Cost of sales & 327000 & 272000 \\
\hline Joint costs & (1) 84000 & (1) 56000 \\
\hline Additional costs - further processing & (2) 243000 & (2) 216000 \\
\hline Gross profit & 321000 & 268000 \\
\hline Commission & (3) 54000 & (3) 45000 \\
\hline Profit & 267000 & 223000 \\
\hline
\end{tabular}
\(\begin{aligned} \text { (1) Smokey } 900 / 1500 \times \text { R140 } 000 & =\text { R84 } 000 \\ \text { Red-hot } 600 / 1500 \times R 140000 & =\text { R56 } 000\end{aligned}\)
(2) Smokey \(900 \times \mathrm{R} 270=\mathrm{R} 243000\)

Red-hot \(600 \times\) R360 \(=\) R216 000
(3) Smokey \(900 \times \mathrm{R} 60=\mathrm{R} 54000\)

Red-hot \(600 \times\) R75 \(=\) R45 000
b. Profitability if the NRV method is used
\begin{tabular}{rrr}
\begin{tabular}{c} 
Smokey \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{r} 
Red-hot \\
\(\mathbf{R}\)
\end{tabular} \\
648000 & & 540000 \\
321000 \\
\hline 78000 & & 278000 \\
\hline 243000 & & \begin{tabular}{r}
62000 \\
3216000 \\
\hline 34000
\end{tabular} \\
\hline
\end{tabular}

\section*{Calculation of allocation of joint cost}
\begin{tabular}{lrr} 
& \begin{tabular}{c} 
Smokey \\
\(\mathbf{R}\)
\end{tabular} & \multicolumn{1}{c}{ Red-hot } \\
& \multicolumn{1}{c}{ R }
\end{tabular}

Smokey R351 000/R630 000 11 \(\times\) R140 \(000=R 78000\)
Red-hot R279 000/R630 \(000 \times\) R140 \(000=R 62000\)
(1) R351 \(000+\mathrm{R} 279000=\mathrm{R} 630000\)

\section*{Activity 19.2}

Videira Butchers has provided you with the following information:
When the carcasses are processed, two separate joint products are obtained, good quality meat (grade A) and poorer quality meat (grade B).

Potential selling prices per kilogram of the products at the split-off point immediately after the separation are:
\begin{tabular}{ll} 
Grade A & R20 \\
Grade B & R16
\end{tabular}

In the course of a month, 150 carcasses are processed at a joint cost of R300 000. The processing of the carcasses in the joint process yielded 18000 kg of grade A and 15750 kg of grade B meat.

All joint products undergo further processing before they are sold as finished products. Grade A meat is converted into steak and grade B meat is converted into mince.

The selling price per kilogram of joint products after further processing is:
\begin{tabular}{ll} 
Steak & R30 \\
Mince & R24
\end{tabular}

Additional costs per kilogram of the further processing of joint products after the split-off point are:
Grade A - steak
R6
Grade B - mince
R8

The target GP\% for steak is \(40 \%\).
There was no opening inventory and the total production for the month was sold.
Sales and distribution costs for the month are:
\begin{tabular}{ll} 
Grade A (steak) & R20 000 \\
Grade B (mince) & R30 000
\end{tabular}

\section*{REQUIRED}

Draft a SCl , showing the gross profit and GP\% if the joint cost is allocated according to the following methods:
a. the physical standard method
b. the market value at split-off point method if:
i. all the products are sold at the split-off point
ii. all the products undergo further processing
c. NRV at the split-off point
d. reversal cost method (constant GP\%)

Assume in all cases that further processing takes places, except in b.i.

\section*{Solution to Activity 19.2}
a. The physical standard method (output at split-off point)
\begin{tabular}{|c|c|c|c|c|}
\hline Product & Quantity produced (kilograms) & Calculation & Joint cost allocated R & Cost per kg R \\
\hline Grade A & 18000 & \(\frac{18000 \mathrm{~kg}}{33750 \mathrm{~kg}} \times \frac{\mathrm{R} 300000}{1}\) & 160000 & 8,89 \\
\hline Grade B & 15750 & \[
\frac{15750 \mathrm{~kg}}{33750 \mathrm{~kg}} \mathrm{x} \frac{\mathrm{R} 300000}{1}
\] & 140000 & 8,89 \\
\hline & 33750 & & 300000 & \\
\hline
\end{tabular}

NOTE

Again this approach loses its appropriateness, because it clearly shows that each kilogram of grade A meat has the same cost allocation as each kilogram of grade B meat, even though their selling prices per kilogram differ.

\section*{Statement of comprehensive income}

Sales (18 \(000 \mathrm{~kg} \times \mathrm{R} 30\) );(15 \(750 \mathrm{~kg} \times \mathrm{R} 24\) ) Less: Cost of sales

Joint costs
Additional costs (18 \(000 \mathrm{~kg} \times \mathrm{R} 6\) ); (15 \(750 \mathrm{~kg} \times \mathrm{R} 8\) )
Gross profit
GP\%
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Steak \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Mince \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Total \\
\(\mathbf{R}\)
\end{tabular} \\
\hline 540000 & 378000 & 918000 \\
268000 & 266000 & 534000 \\
\hline 160000 & 140000 & 300000 \\
108000 & 126000 & 234000 \\
\hline 272000 & 112000 & 384000 \\
\hline \(50,37 \%\) & \(29,63 \%\) & \(41,83 \%\) \\
\hline \hline
\end{tabular}

NOTE

The physical standard method of allocation of joint costs always produces the same joint cost per unit for each joint product identified at the split-off point. The assumption is made that the value of steak is similar to the value of mince. We know this to be highly unlikely.

In this example it was \(\mathrm{R} 300000 \div(18000 \mathrm{~kg}+15750 \mathrm{~kg})=\mathrm{R} 8,89\) per kilogram. If we use this method, the sales values are ignored when allocating joint costs, with the result that the costs allocated to a product may exceed the income from that product.
b. Market value at the split-off point method
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Product & Production (kg) & Selling price at split-off point & Market value & Ratio & Portion of joint costs & Cost per kg \\
\hline Grade A & 18000 x & R20 = & R360 000 & \[
\begin{gathered}
\frac{\mathrm{R} 360000}{\mathrm{R} 612000} \\
\text { multiplied by the total } \\
\text { joint costs } \\
\frac{\mathrm{R} 300000}{1}=
\end{gathered}
\] & R176 471 divided by 18000 kg & R9,80 \\
\hline Grade B & 15750 x & R16 = & R252 000 & \begin{tabular}{c}
\(\frac{\mathrm{R} 252000}{\mathrm{R} 612000}\) \\
\begin{tabular}{c} 
multiplied by the total \\
joint costs
\end{tabular} \\
\(\frac{\mathrm{R} 300000}{1}\)
\end{tabular}\(=\) & R123 529 divided by 15750 kg & R7,84 \\
\hline & \multicolumn{4}{|c|}{R612 000} & \multicolumn{2}{|l|}{R300 000} \\
\hline
\end{tabular}
i. Statement of comprehensive income (if all the products are sold at the split-off point)

Sales (from above)
Less: Joint costs

Gross profit
GP\%
\begin{tabular}{|r|r|r|}
\hline \begin{tabular}{r} 
Grade A \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{r} 
Grade B \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Total \\
\(\mathbf{R}\)
\end{tabular} \\
\hline 360000 & 252000 & 612000 \\
176471 & 123529 & 300000 \\
\hline 183529 & 128471 & 312000 \\
\hline \(51 \%\) & \(51 \%\) & \(51 \%\) \\
\hline
\end{tabular}

NOTE

This method produces the same GP\% for both products if the products are sold at the split-off point, because the costs are allocated in proportion to the sales. A greater proportion of the joint costs are allocated to the products with higher sales revenues.
ii. Statement of comprehensive income (if all the products undergo further processing)

Sales (from a.)
Less: Cost of sales
Joint costs (from b.i)
Additional costs (from a.)
Gross profit
GP\%
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Steak \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Mince \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Total \\
\(\mathbf{R}\)
\end{tabular} \\
\hline 540000 & 378000 & 918000 \\
284471 & 249529 & 534000 \\
\hline 176471 & 123529 & 300000 \\
108000 & 126000 & 234000 \\
\hline 255529 & 128471 & 384000 \\
\hline \(47,32 \%\) & \(34 \%\) & \(41,83 \%\) \\
\hline
\end{tabular}

NOTE

Did you notice that the total gross profit increased from R312 000 (in i.) to R384 000 (in ii.) if all products undergo further processing? This is because the selling price of the final product, steak, increased by more than the further processing costs. As we said earlier on in this module, you will learn more about deciding whether or not to incur further processing costs in MAC3701.
c. NRV at the split-off point
\begin{tabular}{|c|c|c|c|}
\hline & Steak R & Mince R & Total R \\
\hline Sales value (from a.) & 540000 & 378000 & 918000 \\
\hline Less: Selling and distribution & 20000 & 30000 & 50000 \\
\hline Additional costs (from a.) & 108000 & 126000 & 234000 \\
\hline NRV at split-off point & 412000 & 222000 & 634000 \\
\hline Joint costs allocated & & & R300 000 \\
\hline \(\underline{\mathrm{R} 412000} \times \underline{\text { R300 } 000}\) & & & \\
\hline R634000 \(\times \frac{1}{}\) & R194 953 & & \\
\hline \(\underline{R 222000} \times \underline{\text { R300 } 000}\) & & & \\
\hline R634000 \(\times\) 1 & & R105 047 & \\
\hline Joint costs per kg & & & \\
\hline (R194 \(953 \div 18000 \mathrm{~kg}\) ) & R19,83 & & \\
\hline (R105 \(047 \div 15750 \mathrm{~kg}\) ) & & R6,67 & \\
\hline
\end{tabular}

\section*{Statement of comprehensive income}

Sales (from a.)
Less: Cost of sales
Joint costs (from c.)
Additional costs (from a.)
Gross profit
GP\%
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Steak \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Mince \\
\(\mathbf{R}\)
\end{tabular} & \begin{tabular}{c} 
Total \\
\(\mathbf{R}\)
\end{tabular} \\
\hline 540000 & 378000 & 918000 \\
302953 & 231047 & 534000 \\
\hline 194953 & 105047 & 300000 \\
108000 & 126000 & 234000 \\
\hline 237047 & 146953 & 384000 \\
\hline \hline \(43,90 \%\) & \(38,88 \%\) & \(41,83 \%\) \\
\hline
\end{tabular}

\section*{NOTE}

If this method is used, the NRVs are taken into account, thus avoiding the problem which may arise when we use the physical standard method, namely, that the joint costs allocated to a product may exceed the income that product generates.
d. Reversal cost method

Sales (from a.)
Less: Gross profit
Cost of sales
Less: Additional costs (from a.)
Joint cost absorbed
\begin{tabular}{|r|r|r|}
\hline \begin{tabular}{r} 
Steak \\
\(\mathbf{R}\)
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{r} 
Mince \\
\(\mathbf{R}\)
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c} 
Total \\
\(\mathbf{R}\)
\end{tabular}} \\
\hline 540000 & 378000 & 918000 \\
(1) 216000 & (4) 168000 & 384000 \\
\hline 324000 & (3) 210000 & 534000 \\
108000 & 126000 & 234000 \\
\hline 216000 & (2) 84000 & 300000 \\
\hline \hline
\end{tabular}
(1) \(\quad(\mathrm{R} 540000 \times 40 \%)=\mathrm{R} 216000\)
(2) R300 000-216 \(000=\) R84 000 (balancing figure)
(3) R84 \(000+\mathrm{R} 126000=\mathrm{R} 210000\)
(4) R378 \(000-\mathrm{R} 210000\)

\section*{NOTE}

You were provided with a target gross profit for steak. Determine the amount of joint costs steak can absorb and still achieve a \(40 \%\) GP\%. The balance of the joint cost is allocated to mince. Work back to calculate the gross profit of mince.

\section*{Statement of comprehensive income}

Sales (from a.)
Less: Cost of sales
Joint costs
Additional costs (from a.)
Gross profit
Gross profit percentage
\begin{tabular}{|r|r|r|}
\hline \begin{tabular}{c} 
Steak \\
\(\mathbf{R}\)
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Mince \\
\(\mathbf{R}\)
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c} 
Total \\
\(\mathbf{R}\)
\end{tabular}} \\
\hline 540000 & 378000 & 918000 \\
324000 & 210000 & 534000 \\
\hline 216000 & 84000 & 300000 \\
108000 & 126000 & 234000 \\
\hline 216000 & 168000 & 384000 \\
\hline \hline \(40 \%\) & \(44,44 \%\) & \(41,83 \%\) \\
\hline
\end{tabular}

In summary, if we compare the results of the different methods: If all joint products are processed further
a. Physical standard method

Gross profit
GP\%
\begin{tabular}{|c|c|r|}
\hline Steak & Mince & Total \\
\hline R272 000 & R112 000 & R384 000 \\
\hline \hline \(50,37 \%\) & \(29,63 \%\) & \(41,83 \%\) \\
\hline
\end{tabular}
b. ii. Market value at split-off point method

Gross profit
GP\%
\begin{tabular}{|r|r|r|}
\hline R255 529 & R128 471 & R384 000 \\
\hline \(47,32 \%\) & \(34 \%\) & \(41,83 \%\) \\
\hline
\end{tabular}
c. NRV at the split-off point method

Gross profit
GP\%
\begin{tabular}{|r|r|r|}
\hline R237 047 & R146 953 & R384 000 \\
\hline \hline \(43,90 \%\) & \(38,88 \%\) & \(41,83 \%\) \\
\hline
\end{tabular}
d. Reversal cost method (Constant GP\%)

Gross profit
GP\%
\begin{tabular}{|r|r|r|}
\hline R216 000 & R168 000 & R384 000 \\
\hline \hline \(40,00 \%\) & \(44,44 \%\) & \(41,83 \%\) \\
\hline
\end{tabular}

If all joint products are sold at split-off point
b. i. Market value at split-off point method

Gross profit
GP\%
\begin{tabular}{|r|r|r|}
\hline R183 529 & R128 471 & R12 000 \\
\hline \(51 \%\) & \(51 \%\) & \(51 \%\) \\
\hline
\end{tabular}

NOTE
(1) When all products are processed further, the total gross profit in rands increases, even though the GP\% went down, compared with the total gross profit in rands when the products are sold at split-off point.
(2) Although the GP\% in total for all joint products stays constants at \(41,83 \%\), the different methods used to allocate joint costs results in huge changes in the GP\% of individual products. For example: steak's GP\% ranges from \(50,37 \%\) to \(40 \%\), and that of mince ranges from \(44,44 \%\) to \(29,63 \%\).
(3) If this was a large meat processing plant with separate divisions for each product, as the manager of, say, the steak division, you would be very concerned/interested in the method that the cost accountant uses to allocate joint costs. You will learn more about performance management in MAC3701.

\section*{7 Summary}

In this study unit, you have learned the following about joint and by-products:
- how to classify joint process, joint products, by-products and scrap/waste;
- how to describe joint cost and further processing costs; and
- how to cost joint products by using four different methods (assuming no byproduct sales).

In the next study unit we will investigate how to account for the production and sales of by-products and how this influences the inventory valuations of joint and by-products.

Self-assessment Activity

\section*{QUESTION 1}

Mansini Ltd. uses a base material to manufacture products Syrup A, Syrup B, Syrup C and Syrup D in a joint process. In April, R1 800000 worth of base material was put into the process. The following production and sales figures were recorded during April:
\begin{tabular}{|l|c|l|c|}
\hline Product & Production & Sales & \begin{tabular}{c} 
Selling price \\
per litre
\end{tabular} \\
\hline Syrup A & litre & litre & \(\mathbf{R}\) \\
Syrup B & 14000 & 12000 & 50 \\
Syrup C & 20000 & 17000 & 60 \\
Syrup D & 25000 & 21000 & 20 \\
& 1000 & Nil & 100 \\
\hline
\end{tabular}

There was no inventory on hand at the beginning of the month.
Syrup D is also considered a joint product, despite its sales revenue being lower than the other three products.

\section*{REQUIRED}

Calculate the net profit or loss per product for April if joint costs are allocated according to the:
a. physical standard method
b. market value at the split-off point method

\section*{Solution to Self-assessment Activity}

\section*{QUESTION 1}
a. Calculation of the net profit or loss per product for April if joint costs are allocated according to the physical standard method
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Product} & \multirow[b]{2}{*}{Total} \\
\hline & Syrup A & Syrup B & Syrup C & Syrup D & \\
\hline Physical units produced & 14000 & 20000 & 25000 & 1000 & 60000 \\
\hline & Syrup A & Syrup B & Syrup C & Syrup D & Total \\
\hline & R & R & R & R & R \\
\hline Sales: & & & & & 2040000 \\
\hline Syrup A: \(12000 \times \mathrm{R} 50\) & 600000 & & & & \\
\hline Syrup B: \(17000 \times \mathrm{R} 60\) & & 1020000 & & & \\
\hline Syrup C: \(21000 \times \mathrm{R} 20\) & & & 420000 & & \\
\hline Syrup D: Nil & & & & Nil & \\
\hline Less: Cost of sales & 360000 & 510000 & 630000 & nil & 1500000 \\
\hline Joint costs: & & & & & 1800000 \\
\hline Syrup A: & & & & & \\
\hline \[
\frac{14000 \ell}{60000 \ell} \times \frac{\mathrm{R} 1800000}{1}
\] & 420000 & & & & \\
\hline Syrup B: & & & & & \\
\hline \[
\frac{20000 \ell}{60000 \ell} \times \frac{\mathrm{R} 1800000}{1}
\] & & 600000 & & & \\
\hline Syrup C: & & & & & \\
\hline \[
\frac{25000 \ell}{60000 \ell} \times \frac{\mathrm{R} 1800000}{1}
\] & & & 750000 & & \\
\hline Syrup D: & & & & & \\
\hline \[
\frac{1000 \ell}{60000 \ell} \ell \quad \frac{\mathrm{R} 1800000}{1}
\] & & & & 30000 & \\
\hline
\end{tabular}

Less: Closing inventory:
Syrup A:
\(\frac{2000 \ell}{14000 \ell} \times \frac{420000}{1}\) (or \(2000 \ell \times \mathbf{R 3 0}\) )

Syrup B:
\(\frac{3000 \ell}{20000} \ell \times \frac{\mathrm{R} 600000}{1}\) (or \(3000 \ell \times \mathbf{R 3 0}\) )

Syrup C:
\(\frac{4000 \ell}{25000 \ell} \times \frac{\mathrm{R} 750000}{1}\) (or \(4000 \ell \times \mathbf{R 3 0}\) )

Syrup D:
\(\frac{1000 \ell}{1000 \ell} \times \frac{\mathrm{R} 30000}{1}\)
\((\) or \(1000 \ell \times \mathrm{R} 30\) )
Profit/Loss
\begin{tabular}{|r|r|r|r|r|}
\hline Syrup A & Syrup B & Syrup C & Syrup D & Total \\
\hline \(\mathbf{R}\) & \(\mathbf{R}\) & \(\mathbf{R}\) & \(\mathbf{R}\) & \(\mathbf{R}\) \\
60000 & & & & \\
& & & & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{NOTE}

Can you see that, if we use the physical standard method, the joint cost per unit is the same (R30) for all products? Again, as stated previously, this is not an appropriate basis of allocation if the products differ significantly in nature and value.
b. Calculation of the net profit/loss per product if the allocation of the joint costs are according to market value at the split-off point
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Product & Market value of production at split-off point & Ratio & Joint costs & Joint costs per litre & Closing inventory (litres) & Value of closing inventory R \\
\hline Syrup A & \[
\begin{aligned}
& (14000 \times R 50) \\
& =R 700000
\end{aligned}
\] & \[
\frac{\mathrm{R} 700000}{\mathrm{R} 2500000}=\frac{7}{25}
\] & \[
\begin{aligned}
& \frac{\text { R1 } 800000}{1} \times \frac{7}{25} \\
& =\text { R504 000 }
\end{aligned}
\] & \[
\begin{array}{r}
\frac{\mathrm{R} 504000}{14000 \ell} \\
=\mathrm{R} 36
\end{array}
\] & 2000 & 72000 \\
\hline Syrup B & \[
\begin{aligned}
& \left(\begin{array}{lll}
20 & 000 \times R 60) \\
= & R 1200000
\end{array}\right)
\end{aligned}
\] & \[
\frac{R 1200000}{R 2500000}=\frac{12}{25}
\] & \[
\begin{aligned}
& \frac{R 1800000}{1} \times \frac{12}{25} \\
& =\text { R864 000 }
\end{aligned}
\] & \[
\begin{aligned}
& \frac{R 864000}{20000 \ell} \\
& =\quad \mathbf{R 4 3}, 20
\end{aligned}
\] & 3000 & 129600 \\
\hline Syrup C & \[
\begin{aligned}
& (25000 \times R 20) \\
& =R 500000
\end{aligned}
\] & \[
\frac{\mathrm{R} 500000}{\mathrm{R} 2500000}=\frac{5}{25}
\] & \[
\begin{aligned}
& \frac{R 1800000}{1} \times \frac{5}{25} \\
& =R 360000
\end{aligned}
\] & \[
\begin{aligned}
& \frac{R 360000}{25000 \ell} \\
& =R 14,40
\end{aligned}
\] & 4000 & 57600 \\
\hline Syrup D & \[
\begin{aligned}
& (1000 \times R 100) \\
& =R 100000
\end{aligned}
\] & \[
\frac{\mathrm{R} 100000}{\mathrm{R} 2500000}=\frac{1}{5}
\] & \[
\begin{aligned}
& \frac{\mathrm{R} 1800000}{1} \times \frac{1}{25} \\
& =\mathrm{R} 72000
\end{aligned}
\] & \[
\begin{gathered}
\frac{R 72000}{1000 \ell} \\
=R 72
\end{gathered}
\] & 1000 & 72000 \\
\hline & R2 500000 & & R1 800000 & & & 331200 \\
\hline
\end{tabular}

NOTE

Can you see that, if we use the market value at split-off point method, a different cost per litre is obtained for inventory valuations?
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & Syrup A & Syrup B & Syrup C & Syrup D & Total \\
\hline & R & R & R & R & R \\
\hline Sales & 600000 & 1020000 & 420000 & - & 2040000 \\
\hline Less: Cost of sales & 432000 & 734400 & 302400 & - & 1468800 \\
\hline Joint costs & 504000 & 864000 & 360000 & 72000 & 1800000 \\
\hline Less: Closing inventory & 72000 & 129600 & 57600 & 72000 & 331200 \\
\hline Profit/Loss & 168000 & 285600 & 117600 & - & 571200 \\
\hline
\end{tabular}

In study unit \(\mathbf{2 0}\) you will have more opportunities to practise the allocation of joint costs.

\section*{Accounting for by-products}


\section*{1 Introduction}

In the previous study unit, you learnt how to distinguish between joint and by-products. We also covered the four methods used to allocate joint costs in scenarios where there were no by-products. In this study unit, we will investigate the two main methods for the accounting treatment of by-products and how these two methods influence the valuation of the joint product inventories.

\section*{2 Costing methods for by-products}

Before we commence with the treatment of by-products, let's just first remind ourselves about what a by-product actually is. Essentially, a by-product is a production output that has little or insignificant value or, sometimes, no market value (in which case it is regarded as waste). By-products do not constitute part of the main purpose of any organisation's operations. On the other hand, they are unavoidable, given that the output of a joint process cannot be manipulated.

Given the above, the basic approach regarding by-products should be one that has a minimal effect on the operating results in those instances where by-products are sold. A starting point is to establish whether a regular market exists for the by-product or not. If by-products are sold on a regular and recurring basis, there is clearly a market for them (albeit one that is insignificant in value).
1. Where a regular market exists, the objective is to reflect the sales results of the by-product in such a way that these sales yield no profit. This is achieved by ensuring that the by-product inventories that arise from the joint process are valued at NRV. That is, net proceeds on sales (after deducting any selling and distribution costs) less the further cost of processing, if any. If this approach is adopted, there is no profit once the by-product units are sold, which means that a the SCl for any organisation reflects the profitability of its main (joint) products only.
2. If there is no market for the by-products, they essentially constitute waste, in which case these products would normally be destroyed or discarded. Incidental sales may, however, occur of these waste products. Since these transactions are isolated and sporadic, their impact, by implication, should be minimal on operating profits. The results of these transactions must, however, be accounted for.

We will now discuss each of the scenarios for the costing of by-products individually.

\section*{3 Costing of by-products: where a regular market exists}

In this method, the total joint costs for the period will be reduced (credited) by the total NRV of the production of the by-product in the period concerned. After this, the NET joint costs are allocated to the remaining joint products using any of the four methods explained in study unit 19, section 6.

NOTE

The rationale for this treatment is very similar to that which you have encountered in topic 7 about process costing. Just as the value of the normal loss (based on an estimated "normal" percentage loss) is allocated to all production output in process costing, the NRV of the by-products generated in a specific period is credited to the joint process costs. This credit applies irrespective of whether the sales and further processing of the by-products have actually occurred in the same period.

This is done in order to achieve a "normal" price for the joint products which does not fluctuate from period to period (depending on when the by-product was processed further or sold). However, you should note that we can only do this where there is a regular market for the by-product and the organisation is assured of the eventual sale of the by-product at its NRV.

The next example shows how the NRV of the by-product is calculated:
R
Total sales proceeds for the production of by-product (100 units \(\times\) R20 per unit) 2000
Less: any selling and distribution costs relating to the by-product (100 units x R2 per unit)
Less: total further processing for the production of the by-product (100 units x R8 per unit)
NRV of the by-product (R10 per unit)

Assume that the joint process cost for the period amounted to R40 000.
We will demonstrate the accounting entries in two scenarios.

\section*{Scenario 1:}

Assuming all by-product production is processed further and sold in the same period (100 units produced by joint process and processed further 100 units sold \(=\) NIL closing inventories for byproducts):
1. The net amount (NRV) of the by-products produced is credited to the WIP account for the joint products:
Dt WIP (by-products) (R10 x 100)
R1 000 Ct WIP (joint process)
R1 000
2. Once further processing has occurred, the accounting entry is as follows:
Dt WIP (by-products) with the further processing costs
R800 Ct Bank/Kreditors
R800
3. When the sales occur the accounting entry is as follows:
Dt Bank (net) (R2 000 - R200)
R1 800
Ct WIP (by-products) with the net proceeds of the sale
R1 800

The result in the byproducts WIP account is then as follows:
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ WIP (by-products) } \\
\hline 1. & WIP (joint products) & 1000 & \(3 . \quad\) Bank & 1800 \\
\hline 2. & Bank/Creditors & 800 & & 1800 \\
\hline & 1800 & & \\
\hline
\end{tabular}

Amount of joint costs allocated to joint products is R40 \(000-\mathrm{R} 1000=\mathrm{R} 39000\).
Inventories in the statement of financial position (SFP):
- Any unsold joint products based on the allocation of R39 000 between units sold (cost of sales) and those still in inventory
- No by-products

\section*{Scenario 2}

Assuming only 50 units of by-product production are sold in the same period (100 units produced by joint process; further processing occurred on all by-product units min 50 units sold \(=50\) units closing inventory for by-products):

\section*{In period 1:}
1. Note that the NRV of ALL the by-product units produced is STILL credited to the WIP account for the joint products, because there is a regular market for the byproducts:
Dt WIP (by-products) (R10 x 100)
R1 000
Ct WIP (joint process)
R1 000
2. When the further processing for the 100 units occur the accounting entry is as follows:

> Dt WIP (by-products) with all the further processing costsR800 Ct Bank/creditors
3. When the sales for the 50 units occur the accounting entry is as follows:

Dt Bank (net) (R1 \(000-\mathrm{R} 100)\)
Ct WIP (by-products) with the net proceeds of the sale
Ct WIP (by-products) with the net proceeds of the sale R900
4. The 50 by-product units of closing inventory are then valued at \(N R V=\) \(50 \times R 10=\) R500.
In order to achieve that balance, the following entry is made:
Dt Unrealised profit [(R20 - R2) R10] x \(50 \quad\) R400
Ct WIP (by-products)
R400

The result in the by-products WIP account is then as follows:
\begin{tabular}{|l|r|r|r|}
\hline \multicolumn{5}{|c|}{ WIP (byproducts) } \\
\hline 1. WIP (joint products) & 1000 & \(3 . \quad\) Bank & 900 \\
\hline 2. Bank/Creditors & 800 & \(4 . \quad\) Unrealised profit & 400 \\
\hline & & Closing balance & 500 \\
\hline & 1800 & & 1800 \\
\hline Opening balance & 500 & & \\
\hline
\end{tabular}

Amount of joint costs allocated to joint products is R40 \(000-\mathrm{R} 1000=\mathrm{R} 39000\).
Inventories in the SFP:
- Any unsold joint products based on the allocation of R39 000 between units sold (cost of sales) and those still in inventory.
- By-products \(=\) R500 + unrealised profit R400 \(=\) R900

\section*{NOTE}

The R900 in effect represents the net proceeds that will be received when the 50 units are sold in the next period. You should not have a problem carrying this on your SFP, because R900 is the NRV you would have used to value by-product inventory where no further processing occurred (R18 \(\times 50\) units). Since you are assuming a regular market, the recoverability of the NRV is not in doubt.

In period 2:
1. When the sales for the remaining 50 units occur, the accounting entry is as follows:
\[
\begin{array}{lll}
\text { Dt Bank (net) (R1 000 - R100) } & \text { R900 } & \\
\text { Ct WIP (by-products) with the net proceeds of the sale } & \text { R900 }
\end{array}
\]
2. The unrealised profit account is then reversed:
Dt WIP (by-products)
R400
Ct Unrealised profit
R400

The result in the by-products Inventory account is then as follows:
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{5}{|c|}{ WIP (by-products) } \\
\hline & Opening inventory & 500 & \(1 . \quad\) Bank \\
\hline 2. Unrealised profit & 400 & & 900 \\
\hline & & 900 & \\
\hline
\end{tabular}

NOTE

In period 2 there is no impact on the joint costs of the joint products due to the fact that some of the by-product from period 1 was only sold in this period.

Irrespective of how much of the by-product is sold, the total NRV of all by-product units is credited to the WIP account for the joint process. The NET joint costs to be allocated to the joint (main) products, using any of the four methods described in study unit 19, section 6 will therefore be determined as follows:

Total joint costs incurred
RXXXX
Less: NRV of by-product produced in the period
Net joint costs to be allocated to joint products

\section*{NOTE}

The accounting entries relating to the treatment of the by-products were provided to give you a better understanding of cost flow. You will not be expected to draw up the journals and T-accounts for by-products.

4 Costing of by-products: where no regular market exists (waste/ scrap)
What does one do with waste, or by-products for which no market exists? It is dumped, destroyed or discarded. Two scenarios should once again be considered. It is important to make a distinction between cases where there is an occasional sale of the waste/ scrap and cases where the organisation has to incur further costs to dispose of waste/ scrap safely etc and NO SALES take place.

\subsection*{4.1 Occasional waste/scrap sales}

Although there is no regular market for the waste, there may be incidental (totally irregular and rare) sales of this waste, in which case proceeds (revenue) will be received. Further occasional processing costs may also be incurred in order to facilitate the waste/ scrap sale transaction (eg cleaning the products, bottling/packing, etc).

The approach taken in this case is that the net proceeds (after any occasional further processing costs or other incidental costs, if any) are NOT APPLIED to reduce the total joint costs. The total joint costs will therefore be assigned to joint (main) products in exactly the same manner as set out in the methods shown in study unit 19, section 6.

The net result for the waste/scrap trade (which would be scarce) is merely accounted for as a single line item in the SCI. Various alternatives are available for the net proceeds of such incidental transactions. These options are:

Method 1: As part of revenue, sales or turnover
Method 2: Offset against the cost of goods (joint products) sold
Method 3: As other income

NOTE

In method 2, we are not talking about setting waste/scrap trade off against the WIP joint process account, which we did where the by-products had a regular market. Instead, in
method 2 , the joint process costs are UNAFFECTED by the incidental sales. It is only in the grouping of the general ledger accounts making up the "Cost of sales" line item in the SCl that the net income from the waste sales are grouped together with the cost of sales of the main (joint) products, resulting in a netting off.

Refer to the example in section 3. Assume that the by-products are now classified as waste units and need to be washed before the sale. The washing costs would now constitute the further processing cost of R8 per unit.

In this case, the joint process cost will remain unchanged at R40 000 and will be allocated to the respective joint products. The R1 000 net proceeds from the sale of the waste products will be treated using any of the three methods described above.

\subsection*{4.2 No waste/scrap sales further treatment or disposal costs required}

In this case, the safe disposal/treatment costs are debited to the WIP joint process account based on the units of scrap/waste produced. This is the inverse of the NRV treatment where a regular market exists. Instead of the NRV of the by-products being credited to the WIP joint process account, the total estimated disposal/treatment cost for the waste/scrap units generated is DEBITED to the WIP joint process account. The rationale is that these waste/scrap units are the result of the joint process and therefore the joint process should carry the cost of disposing the waste/scrap units safely or treating the units before disposal.

Refer to the example in section 3. Assume that the by-products are now classified as waste units and that they need to be treated before being removed from the premises. Treatment and removal cost is R8 per unit. However, there are no sales in this case.

In this case, the joint process cost of R40 000 will be debited with the R800 treatment and disposal costs. R40 800 will be allocated to the joint products.

\section*{NOTE}

The NRV from a by-product is normally used to reduce the joint cost of the joint products, because the assumption is that a regular market exists for the byproduct. If a question is silent on the treatment of by-product sales, you should offset the NRV of the by-product against the joint process cost; otherwise follow the instructions given in the question. Indications that you should NOT offset the by-product NRV are words such as 'occasional', 'incidental', 'sporadic', 'in this period', etc. All such words are clear indications that a regular market does not exist.

NB: You may encounter other approaches (treatments) of by-products in other textbooks, but for the purposes of this module, we will limit the approaches explained above.

\section*{Activity 20.1}

Refer to the information in Activity 19.2 (Videira Butchers). The following additional information is provided:

When the carcasses are processed, two separate joint products are produced: good quality meat (grade A), which is processed further to produce steak, and poorer quality meat (grade B), which is processed further to produce mince. The bones yielded from the process represent a by-product, each carcass yielding 75 kg of bones.

The selling price of the bones at the split-off point amounts to R4 per kilogram. In the course of a month 150 carcasses were processed at a joint cost of R300 000. The processing of the carcasses in the joint process yielded 18000 kg of grade A and 15750 kg of grade B meat.

All joint products were processed further before being sold as finished products. However, further processing is only initiated once an order is received for the finished product. The sales of finished products during the month were:
\(\begin{array}{ll}\text { Steak } & 16000 \mathrm{~kg} \\ \text { Mince } \\ 13750 \mathrm{~kg}\end{array}\)

There was no opening inventory and the total production of final products (steak and mince) for the month was sold.

10250 kg bones were sold this month.
Other relevant revenue and cost information is as provided in Activity 19.2.
Company policy regarding by-products is that joint process costs are allocated based on the physical standard method.

You may assume that no losses (in yield) occur in the further processing (ie 1 kg into the process \(=1 \mathrm{~kg}\) out from the process).

\section*{REQUIRED}

Draft the SCI for the month, assuming each of the following assumptions for the byproduct (each case is independent):
a. A regular market exists for the byproduct.
b. No regular market exists for the byproduct and proceeds are regarded as 'other income' (separate income item) directly in the SCI.
c. No regular market exists for the byproduct and proceeds are regarded as 'a reduction of the cost of sales', directly in the SCI.

Solution to Activity 20.1
Statement of comprehensive income (combined) for the month (a.-c.)

Sales - joint products
Less: Cost of sales (net)
Less: Proceeds from by-products
Cost of sales (gross)
Joint costs
Less: Proceeds from byproducts

Less: Closing inventory joint products
Plus: Further processing costs

Gross profit
Less: Sales and distribution costs
Net profit
Plus: Income from by-products
Net operating profit
b.
c.
\begin{tabular}{|c|c|c|}
\hline Reduction of joint costs R & \begin{tabular}{l}
Separate income item \\
R
\end{tabular} & Reduction of the cost of sales R \\
\hline (1) 810000 & (1) 810000 & (1) 810000 \\
\hline 430778 & 470445 & 429445
(1) \((41000)\)
470445 \\
\hline \[
\begin{array}{r}
300000 \\
\text { (2) } 45000
\end{array}
\] & 300000 & 300000 \\
\hline 255000 & 300000 & 300000 \\
\hline (4) 30222 & 35555 (6) & 35555 (6) \\
\hline 224778 & 264445 & 264445 \\
\hline (5) 206000 & (5) 206000 & (5) 206000 \\
\hline 379222 & 339555 & 380555 \\
\hline 50000 & 50000 & 50000 \\
\hline 329222 & \[
\begin{array}{r}
289555 \\
\text { (1) } 41000
\end{array}
\] & 330555 \\
\hline 329222 & 330555 & 330555 \\
\hline
\end{tabular}

\section*{Calculations}
(1) Steak (16 \(000 \mathrm{~kg} \times \mathrm{R} 30)+\) mince (13 \(750 \mathrm{~kg} \times\) R24)
\(=R 480000+R 330000\)
\(=\mathrm{R} 810000\)
\(=10250 \mathrm{~kg} \times \mathrm{R} 4=\mathrm{R} 41000\) (bones)
\begin{tabular}{lcc} 
(2) & Sales value of bones & \(150 \times 75 \mathrm{~kg} \mathrm{x} \mathrm{R4}=\) \\
Further processing costs & 45000 \\
NRV of bones (based on production per kilogram, not sales) & \(\underline{-}\) \\
\hline Total joint costs & \(\underline{35000}\) \\
Therefore net joint cost to assigned to joint products & \(\underline{\underline{355000}}\)
\end{tabular}

NOTE

Did you notice we are crediting the joint process costs with the total NRV of the bones yielded ( 11250 kg ), even though only 10250 kg bones were sold in the period?
(3) Allocation of joint costs (physical standard method)

Grade A R255000 (2) \(\times 18000 \mathrm{~kg} / 33750 \mathrm{~kg}=\quad 136000\)
Grade B R255000 (2) \(\times 15750 \mathrm{~kg} / 33750 \mathrm{~kg}=\quad \underline{119000}\) Total joint costs
\(\underline{255000}\)

NOTE

The allocation is based on the physical output yielded, not the kilograms sold.
(4) Value of unprocessed inventory on hand at end of period

Grade A R136 \(000 / 18000 \mathrm{~kg} \times 2000 \mathrm{~kg}=\quad\) R15 111
Grade B R119 \(000 / 15750 \mathrm{~kg} \times 2000 \mathrm{~kg}=\quad \underline{\text { R15 } 111}\)
Value of inventory of unprocessed joint products R30 222\#
Bones at NRV (11 25010 250) \(1000 \mathrm{~kg} \times \mathrm{R} 4=\quad \mathrm{R} 4000\) Total inventory on hand at end of period in SFP \(\quad \underline{\underline{\text { R34 222 }}}\)
\# The physical standard method is used, which means that each kilogram has the same unit cost:
R 255000 / \(33750 \mathrm{~kg}=\mathrm{R} 7,55556 / \mathrm{kg} \times 4000=\mathrm{R} 30222\)
(5) (16 \(000 \mathrm{~kg} \times \mathrm{R} 6)+(13750 \mathrm{~kg} \times \mathrm{R} 8)\) = R206 000
(6) Physical standard method is used, hence each kilogram has the same unit cost:
R300 000 / \(33750 \mathrm{~kg}=\mathrm{R} 8,88889 / \mathrm{kg} \times 4000 \mathrm{~kg}=\mathrm{R} 35555\)

\section*{NOTE}

For parts \(b\). and \(c\)., where no regular market exists, the total joint costs will NOT BE REDUCED by the proceeds from the bones. The net proceeds of R41 000 of the bones actually sold will merely be shown in the SCl as a separate item. Also, for parts b . and c ., the total joint costs will be allocated to grade A meat and grade B meat (as done in part a. of Activity 19.2 previously), namely R160 000 for grade A and R140 000 for grade B meat.

The only inventory valued the end of the period will be:
\begin{tabular}{lcc} 
& & R \\
Grade A & R160 000 / 18 \(000 \mathrm{~kg} \times 2000 \mathrm{~kg} \mathrm{=}\) & 17778 \\
Grade B & R140 000 / 15 \(750 \mathrm{~kg} \times 2000 \mathrm{~kg}=\) & \(\underline{17778}\) \\
(6) Total joint product inventory at split-off point & \(\underline{\underline{35556}}\)
\end{tabular}

Bones - no value, because it is assumed that no market exists \(=\) Rnil

A breakdown of the joint products' gross profit in the SCI a. is as follows:
\begin{tabular}{|c|c|c|c|}
\hline & Steak R & Mince R & Total R \\
\hline Sales & 480000 (1) & 330000 (1) & 810000 \\
\hline Less: Cost of sales & (216 889) & (213 889) & (430 778) \\
\hline Joint cost & 136000 (3) & 119000 (3) & 255000 \\
\hline Less: Unprocessed inventory (4) & \((15\) 111) & (15 111) & (30 222) \\
\hline & 120889 & 103889 & 224778 \\
\hline Add: Further processing (5) & 96000 & 110000 & 206000 \\
\hline Gross profit & 263111 & 116111 & 379222 \\
\hline
\end{tabular}

A breakdown of the joint products' gross profit in the SCl b . is as follows:
\begin{tabular}{|c|c|c|c|}
\hline & Steak R & Mince R & Total R \\
\hline Sales & 480000 (1) & 330000 (1) & 810000 \\
\hline Less: Cost of sales & (238 222) & (232 222) & (470 444) \\
\hline Joint cost & 160000 (3) & 140000 (3) & 300000 \\
\hline Less: Unprocessed inventory (4) & (17 778) & (17 778) & (6) (35 556) \\
\hline & 142222 & 122222 & 264444 \\
\hline Add: Further processing (5) & 96000 & 110000 & 206000 \\
\hline Gross profit & 241778 & 97778 & 339556 \\
\hline
\end{tabular}

In the SCl c. the combined cost of sales is reduced by R41 000 resulting in a gross profit of R380 556.

\section*{Activity 20.2}

Do the same as in Activity 20.1, but assume that:
- the bones are first cleaned at R0,20 per kilogram, before being sold;
- all the bones produced by the joint process underwent further processing (cleaning) during the month; and
- only10 250 kg bones were then sold at R4,50 per kilogram.

Assume further that a regular market exists for the cleaned bones for a. only

Solution to Activity 20.2
Statements of comprehensive income for the month

Sales - joint products
Less: Cost of sales (net)
Less: Proceeds from by-products

Joint costs
Less: Proceeds from by-products
Less: Closing inventory of unprocessed joint products

Plus: Further processing costs
Gross profit
Less: Sales and distribution costs
Net profit
Plus: Income from by-products
Net operating profit
b.
c.
a.
\begin{tabular}{|c|c|c|}
\hline Reduction of joint costs R & Separate income item
\[
\mathbf{R}
\] & Reduction of the cost of sales R \\
\hline 810000 & 810000 & 810000 \\
\hline 427803 & 470445 & \[
\begin{aligned}
& 429445 \\
& (43875)(3) \\
& 470445
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
300000 \\
48375 \text { (1) }
\end{array}
\] & 300000 & 300000 \\
\hline 251625 & 300000 & 300000 \\
\hline 29822 (2) & 35555 & 35555 \\
\hline 221803 & 264445 & 264445 \\
\hline 206000 & 206000 & 206000 \\
\hline 382197 & 339555 & 383430 \\
\hline 50000 & 50000 & 50000 \\
\hline 332197 & \[
\begin{array}{r}
289555 \\
43875 \text { (3) }
\end{array}
\] & 334430 \\
\hline 332197 & 334430 & 333430 \\
\hline
\end{tabular}
(1) NRV of clean bones:
\begin{tabular}{llr} 
Sales value of bones \(\quad 150 \times 75 \mathrm{~kg} \times \mathrm{R} 4,50=\) & R50 625 \\
Further processing costs \(\quad 150 \times 75 \mathrm{~kg} \times \mathrm{RO}, 20=\) & \((250)\) \\
NRV of clean bones (total yield) & R48 375 \\
Total joint costs & R300 000 \\
Hence, total joint cost to assigned to joint products & R251625
\end{tabular}
(2) Closing inventory grade \(A+\) closing inventory grade \(B \quad\) Total production \(x \frac{\text { Net joint costs }}{1}\)
\[
=\frac{2000 \mathrm{~kg} \text { grade } A+2000 \mathrm{~kg} \text { grade } B}{(18000+15750) \mathrm{kg}} \times \frac{\mathrm{R} 251625}{1}
\]
\(=\frac{4000 \mathrm{~kg}}{33750 \mathrm{~kg}} \mathrm{x} \frac{\mathrm{R} 251625}{1}\)
\(=\quad \mathrm{R} 29822\)
R
\begin{tabular}{lrc} 
(3) Sales & \(10250 \mathrm{~kg} \times \mathrm{R} 4,50=\) & 46125 \\
Costs & \(11250 \mathrm{~kg} \times \mathrm{RO}, 20=\) & \(\underline{(2) 250)}\) \\
Incidental net income from by-product during the year & \(\underline{43875}\)
\end{tabular}

Byproduct inventory are valued at NIL.

\section*{5 Summary}

In this study unit, you have learned the following about joint and by-products:
- By-products often result from a joint manufacturing process, but their NRV is insignificant in comparison to the total realisable value of the joint products.
- The NRV of by-products can be reflected in the accounts in various ways.

\section*{VERY IMPORTANT NOTE}

After you have passed this module, you should not get rid of your study guides and other study material (like tutorial letters). You may have to refer back to these in your future studies. The principles that are dealt with in this module will not be repeated in subsequent modules! In subsequent modules it is assumed that you completely got the hang of the learning outcomes of prior modules.

REMEMBER THAT THERE ARE TWO STUDY GUIDES FOR THIS MODULE!

Self-assessment Activity

\section*{QUESTION 1}

The following information regarding joint product production of Go-Go Oil Company at split-off point for April is available:

\section*{Petroleum}

Motor oil
Grease
Petroleum jelly
\begin{tabular}{|c|c|}
\hline Yield & Selling price per litre \\
\hline Litres & R \\
\hline 2560000 & 3,25 \\
\hline 40000 & 13,00 \\
\hline 25000 & 20,80 \\
\hline 32000 & 32,50 \\
\hline
\end{tabular}

In the course of the month, these products were processed at a joint cost of R9 360000. It is policy to allocate joint costs in terms of market value at split-off point.

During the joint manufacturing process a by-product, \(A B\) gel is produced and for April the process yielded 2000 kg of AB gel. There is no regular market for the by-product. However, in April all of the by-product was sold and generated R40 000 in net proceeds. Byproduct sales are treated as "Other income" as and when they occur.

The joint products can also be processed further beyond the split-off point, in which case the following information is applicable:

Petroleum
Motor oil
Grease
Petroleum jelly
\begin{tabular}{|r|}
\hline \begin{tabular}{r} 
Total additional \\
processing costs
\end{tabular} \\
\hline \(\mathbf{R}\) \\
\hline 325000 \\
75000 \\
100000 \\
90000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{r} 
Selling price \\
per litre
\end{tabular} & \begin{tabular}{c} 
Litres lost during \\
further processing
\end{tabular} \\
\hline \(\mathbf{R}\) & \\
\hline 4,00 & 256000 \\
15,00 \\
24,00 \\
37,50 & - \\
& 1000 \\
\hline
\end{tabular}

\section*{REQUIRED}
a. Calculate the profit or loss per product for April if all the products were sold at split-off point.
b. Calculate the profit or loss of each product for April if all the products were processed beyond the split-off point. All of these final products were then sold after some losses had been occurred during further processing.
c. A buyer has expressed interest in buying the monthly production of \(A B\) gel for the next five years. Assume the joint product, grease, was not processed further, but sold at the split-off point, whilst all three other products were processed further. At the end of April there were 5000 litres of grease in the inventory. Determine the value of the grease inventory.

Solution to Self-assessment Activity

\section*{QUESTION 1}
a. Calculation of the profit or loss per product if the products are sold at split-off point and joint costs are allocated according to the potential market value of the products at split-off point
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Total & Petroleum & Motor oil & Grease & Petroleum jelly \\
\hline Yield (litres) & 2657000 & 2560000 & 40000 & 25000 & 32000 \\
\hline Selling price per unit at split-off point & R & R
\[
3,25
\] & R
\[
13,00
\] & \[
\begin{aligned}
& \text { R } \\
& 20,80
\end{aligned}
\] & \[
32,50
\] \\
\hline Sales value of yield at split-off point Less: Joint cost & \[
\begin{array}{r}
10400000 \\
9360000
\end{array}
\] & \[
\begin{array}{r}
8320000 \\
\text { (1) } 7488000
\end{array}
\] & \[
\begin{array}{r}
520000 \\
\text { (2) } 468000
\end{array}
\] & \[
\begin{array}{r}
520000 \\
\text { (3) } 468000
\end{array}
\] & \[
\begin{array}{r}
1040000 \\
\text { (4) } 936000
\end{array}
\] \\
\hline Net profit & 1040000 & 832000 & 52000 & 52000 & 104000 \\
\hline
\end{tabular}

Joint costs are allocated according to potential market value at split-off point (units yielded \(x\) selling price):
(1) Petroleum: R8 320 000/R10 \(400000 \times R 9360000=R 7488000\)
(2) Motor oil: \(\quad\) R 520 000/R10 \(400000 \times\) R9 \(360000=R 468000\)
(3) Grease: \(\quad\) R 520 000/R10 \(400000 \times\) R9 \(360000=R 468000\)
(4) Petroleum jelly: R1 040 000/R10 \(400000 \times\) R9 \(360000=R 936000\)

The profit for the by-product is R 40000 .
b. Calculation of profit or loss of each product if processed further after split-off point
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Total & Petroleum & Motor oil & Grease & Petroleum jelly \\
\hline & R & R & R & R & R \\
\hline \multicolumn{6}{|l|}{Sales} \\
\hline Less: Cost of sales & 11592000 & 9216000 & 600000 & 576000 & 1200000 \\
\hline & 9950000 & 7813000 & 543000 & 568000 & 1026000 \\
\hline \multirow[t]{2}{*}{Joint costs (in a.) Further processing costs (given)} & 9360000 & 7488000 & 468000 & 468000 & 936000 \\
\hline & 590000 & 325000 & 75000 & 100000 & 90000 \\
\hline Net profit & 1642000 & 1403000 & 57000 & 8000 & 174000 \\
\hline
\end{tabular}
(1) 2560000 litres - 256000 litres \(=2304000\) litres \(x R 4,00=R 9216000\)
(2) 40000 litres \(x\) R15 \(=\) R600 000
(3) 25000 litres -1000 litres \(=24000\) litres \(\times\) R24 \(=\) R576 000
(4) 32000 litres \(x 37,50=\) R1 200000

The profit for the by-product is R 40000 .

NOTE

Did you notice that the net profit of the joint product, grease, only declined when this joint product was processed further? The total net profit improved by R602 000.
c. Determining closing value of grease inventory after split-off point

The treatment of the byproduct should now change, because a regular market now exists owing tothe five-year contract. The net proceeds from the by-product should now be used to reduce the joint process costs.

\section*{R}

Total joint process cost
Less: Net proceeds of by-products Net joint process cost to be allocated

9360000
40000
9320000

Joint costs are still allocated based on potential sales value at split-off point:
Per a. grease is:
R 520 000/R10 \(400000 \times\) R9 320000 = R 466000

\section*{NOTE}

The fact that there are 5000 litres in the closing inventory means that only 20000 litres of the 25000 litres produced were actually sold. However, we still apply the joint cost allocation as determined in a. because the joint costs are always allocated based on the potential sales value of the OUTPUT (units yielded at split-off point) and not the actual units sold.

Joint cost per litre of grease is: R466 000 / 25000 litres \(=\) R18,64
Therefore, closing inventory of grease is valued at 5000 litres \(\times \mathrm{R} 18,64=\mathrm{R} 93200\).
\begin{tabular}{|l|l|}
\hline TERM/CONCEPT & DEFINITION/EXPLANATION \\
\hline \begin{tabular}{l} 
ABC (ACTIVITY-BASED \\
COSTING)
\end{tabular} & \begin{tabular}{l} 
ABC - a more accurate system than traditional costing - \\
was designed to improve the allocation of overheads. \\
ABC assumes that activities cause or drive the cost \\
and that products are created by activities. The \\
allocation of costs is therefore based on the utilisation \\
of activities. The purpose of ABC is to allocate cost \\
based on the cause of the cost.
\end{tabular} \\
\hline ABNORMAL LOSSES & \begin{tabular}{l} 
Controllable losses avoidable in the manufacturing \\
process. Indicate that a part/parts of the process is/are \\
ineffective.
\end{tabular} \\
\hline \begin{tabular}{ll} 
ABSORPTION COSTING \\
METHOD
\end{tabular} & \begin{tabular}{l} 
The absorption costing method includes both variable \\
and fixed manufacturing costs in the product cost. It \\
excludes all non-manufacturing costs, which are treated \\
as period costs.
\end{tabular} \\
\hline ACTIVITY & \begin{tabular}{l} 
An activity is a task, action, or unit of work that is carried \\
out in the organisation.
\end{tabular} \\
\hline ACTUAL OVERHEADS & \begin{tabular}{l} 
These are the actual overhead costs incurred during a \\
period.
\end{tabular} \\
\hline ALLOCATION & \begin{tabular}{l} 
A statement that links the equivalent unit input costs in \\
the production cost statement to the output from the \\
quantity statement in order to value inventory, abnormal
\end{tabular} \\
STATEMENT/COST \\
losses and production for the period, including any \\
normal losses for the period.
\end{tabular}\(|\)
\begin{tabular}{|c|c|}
\hline BRANCH & A branch connects one node to the following. In MAC2601, a branch will be represented by a solid line. \\
\hline BREAKEVEN POINT & The breakeven point is the point where the total contribution is equal to total fixed costs (the point where profit is zero). \\
\hline BREAKEVEN VALUE & The breakeven value is the sales value of the breakeven units or quantity. \\
\hline BUDGET & A budget is a short-term operational plan (presented in an approved document), expressed in monetary (rand) value and non-monetary terms, which the organisation endeavours to adhere to in order to achieve its short-term goals (which are aligned with the organisation's long-term goals). \\
\hline BUDGETED LABOUR RECOVERY RATE & The budgeted labour recovery rate is the expected/ budgeted labour cost per hour. \\
\hline BUDGETED OVERHEADS & These are overhead costs estimated before, or at the start of a financial year. \\
\hline BY-PRODUCTS & When a product is insignificant in value to the joint products, it is classified as a by-product i.e. by-products have a limited sales value. They are incidental to the manufacturing process. In some cases the by-products may not even have a sales value at all, but they are nevertheless by-products arising from the manufacturing of the principal product(s). The organisation's survival is not dependent on the sales of the by-products! \\
\hline CASH BUDGET & The cash budget provides an estimate of all payments and receipts for a given period and determines an organisation's cash and cash equivalent position. \\
\hline CLOCK HOURS & Clock hours are the hours that the employees clock in to be on the premises. Gross remuneration is normally based on hours clocked by the employee. Clock hours would include normal working hours as well as any overtime hours actually worked. \\
\hline COMMITTED (UNAVOIDABLE) COSTS OR INCOMES & These are future cash flows that arise as a result of a decision or action taken in the past. They are unaffected by the decision that needs to be taken now and cannot be prevented by selecting any one of the available alternatives. \\
\hline CONSUMABLES & Consumables refer to smaller items kept in the stores that are used by all departments (manufacturing, support and administrative). Consumables are items which, as the term suggests, are consumed. They can be destroyed, wasted or spent. \\
\hline CONTRIBUTION & Contribution is the amount remaining after the deduction of all variable cost from sales. (Amount for which product is sold less all variable costs.) This amount contributes towards covering the organisation's fixed cost. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline TERM/CONCEPT & DEFINITION/EXPLANATION \\
\hline CONTRIBUTION RATIO & The ratio of the contribution to total sales is known as the contribution ratio (also referred to as the profit-volume ratio or contribution margin ratio). This ratio ban be expressed as a \%. \\
\hline CONTROLLABLE COSTS & Controllable costs are costs that the responsible person can influence directly or for which a person can be held accountable. An example of such a cost is the usage of raw material by the production manager or delegated shift supervisor. The production manager or shift supervisors are responsible for ensuring that the correct type and quantity of material is used efficiently during the production process. \\
\hline CONVERSION COST & Conversion cost is the total cost incurred when converting raw material into finished products. It is the total of the direct labour costs and manufacturing overheads. \\
\hline CONVERSION TAKING PLACE "EVENLY THROUGHOUT THE PROCESS" & The activity of converting process inputs into outputs and does not mean that the cash outflows involved take place evenly throughout the process. \\
\hline COST OBJECT & A cost object is any activity, unit or phenomenon for which cost can be accumulated and measured. \\
\hline COST TO COMPANY (CTC) & This represents the total amounts expended by the employer to and on behalf of the employee. It is equal to the gross remuneration plus employer contributions to retirement funds and medical aid schemes, memberships of professional bodies etcetera. \\
\hline COST-VOLUME-PROFIT ANALYSIS & \begin{tabular}{l}
The cost-volume-profit analysis investigates the change in profit that results from changes in \\
- activity levels (units produced and sold); \\
- per unit selling prices; \\
- per unit variable costs; and \\
- total fixed costs. \\
The CVP analysis is a powerful tool that management uses for short-term decision-making and planning to investigate the impact of decisions on profit.
\end{tabular} \\
\hline CRITERIA FOR RELEVANCE & \begin{tabular}{l}
To be relevant to a specific decision, a cost or income should meet all of the following criteria: \\
- It relates to the future (should not be a sunk cost). \\
- It is payable or receivable in cash. \\
- It is directly determined by the alternative selected (differs between alternatives). \\
- It arises as a result of the decision.
\end{tabular} \\
\hline DECISION TREE & A graphic representation of decisions to be made and the uncontrollable events that could affect these decisions. \\
\hline DEPARTMENTAL OVERHEAD RATE & Overhead recovery rates are determined for each department separately, based on the individual department's overhead costs and an appropriate allocation basis, depending on the type of activity that takes place in that specific department. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline DIFFERENTIAL & \begin{tabular}{l} 
When we use the differential approach, we calculate the \\
net relevant income or cost associated with choosing \\
RELEVANT COSTING \\
one alternative rather than another. If the result is a net \\
cash inflow, it would be appropriate to select that specific \\
alternative (purely from a quantitative perspective). If the \\
result is a net cash outflow, the other alternative would be \\
the better option, because this will result in a higher profit \\
for the organisation (expressed in cash terms).
\end{tabular} \\
\hline DIRECT COST & \begin{tabular}{l} 
Direct costs can be traced easily or physically to a \\
particular cost object.
\end{tabular} \\
\hline \begin{tabular}{l} 
DIRECT COSTING \\
METHOD (OR VARIABLE \\
MARGINAL
\end{tabular} & \begin{tabular}{l} 
Only variable manufacturing costs, namely direct \\
materials, direct labour and variable manufacturing \\
overheads, are taken into account when inventory is \\
valued. Variable selling and distribution costs are \\
added to arrive at the total variable cost. All variable costs \\
are therefore accounted for to arrive at marginal income. \\
Variable non-manufacturing costs, as well as ALL fixed \\
costs, will be treated as period costs.
\end{tabular} \\
\hline DIRECT LABOUR & \begin{tabular}{l} 
Direct labour is the work needed to convert direct \\
materials into an individual finished product.
\end{tabular} \\
\hline IIRECT MATERIALS & \begin{tabular}{l} 
The term direct labour cost is reserved for those labour \\
costs that can be physically and conveniently traced to \\
individual units of products.
\end{tabular} \\
\hline \begin{tabular}{l} 
Direct materials are all materials that can be identified as \\
forming part of the individual, finished product and can be \\
included directly in calculating the cost of the product.
\end{tabular} \\
\hline FISCRETIONARY COSTS & \begin{tabular}{l} 
Discretionary costs are costs over which management \\
has some form of control. Examples include advertising, \\
training and development costs.
\end{tabular} \\
\hline EXPECTED VALUE & \begin{tabular}{l} 
Duration drivers represent the length of time required to \\
perform an activity.
\end{tabular} \\
\hline EQRATION DRIVERS & \begin{tabular}{l} 
The expected value is a weighted average of all the \\
outcomes, where each weight is determined by the \\
probability of the specific outcome.
\end{tabular} \\
\hline EOQ (ECONOMIC ORDER & \begin{tabular}{l} 
The EOQ is the quantity of inventory to be ordered at one \\
time in order to minimise annual ordering and carrying \\
costs.
\end{tabular} \\
\hline QUANTITY) & \begin{tabular}{l} 
According to the FIFO method, the accounting assump- \\
tion is that materials received or purchased first are \\
issued first. We assume that the units are issued in the \\
for the partially completed units in a process costing \\
syster received: the oldest units first and then the units \\
received from the next batch etcetera.
\end{tabular} \\
on the factory floor, int the finished goods store, in transit, \\
at warehouse distribution points and in retail outlets. \\
These goods are ready for sale.
\end{tabular}\(|\)
\begin{tabular}{|l|l|}
\hline TERM/CONCEPT & DEFINITION/EXPLANATION \\
\hline FIXED BUDGET & \begin{tabular}{l} 
A fixed budget is the approved plan of action for \\
achieving a predetermined goal (e.g. total revenue of \\
R30m, or net profit of R5m). In the context of this topic, a \\
fixed budget is also referred to as the original budget.
\end{tabular} \\
\hline FIXED COST & \begin{tabular}{l} 
Fixed cost is a cost that remains constant, in total, \\
regardless of changes in the level of activity or volume \\
within the relevant range and in a specific time frame.
\end{tabular} \\
\hline FLEXIBLE BUDGET & \begin{tabular}{l} 
A flexible budget is one that restates the position if a \\
variation from the expected sales and production \\
volume occurs on which the fixed budget is based. In \\
other words, a flexible budget is a budget that calculates \\
budgeted income and budgeted costs according to \\
actual production volume; it also recalculates the \\
budgeted net profit or loss.
\end{tabular} \\
\hline FURTHER PROCESSING & \begin{tabular}{l} 
These are the costs incurred to further process (convert) \\
the separated joint products into final products. This \\
would also include costs to prepare by-products for sale.
\end{tabular} \\
COSTS & \begin{tabular}{l} 
Gross remuneration is an amount earned by the employ- \\
ee for total hours worked. It includes overtime wages or \\
earnings, and other allowances that the employee is \\
entitled to in terms of the employment contract, such as a \\
travel allowance, or a guaranteed bonus/13th cheque. \\
These amounts are amounts due to the employee.
\end{tabular} \\
\hline GROSS REMUNERATION
\end{tabular}
\begin{tabular}{|c|c|}
\hline INVENTORY CARRYING OR HOLDING COSTS & Inventory carrying or holding costs are the relevant costs of keeping inventory on the organisation's premises until it is used and includes costs such as handling costs, warehouse or storage costs, insurance and obsolescence costs. The relevant costs are only those costs that change with a change in inventory levels. The interest incurred or forfeited as a result of the unit's purchase is usually expressed as a percentage of the unit purchase price. \\
\hline INVENTORY VALUATION & Inventory valuation is the process of assigning costs to inventory. \\
\hline JOB CARD & Each employee receives a job card showing the work to be done and the expected time it should take. The employee records the starting time and finishing time for each job. Breaks for tea and lunch may be noted on the card as standard times. \\
\hline JOB COSTING & This method of calculating the cost per unit (unit costing) is used where goods are manufactured according to a client's specifications, that is, where heterogeneous (different) products are manufactured using the same production facilities. \\
\hline JOINT COSTS & All the common costs incurred prior to the split-off point are known as joint costs. These include all materials, labour and overheads incurred to yield the products at the split-off point. \\
\hline JOINT PROCESS & \begin{tabular}{l}
In a joint production process: \\
- two or more different products, which are not separately identifiable until this process is completed, emerge from the joint process; and \\
- the output cannot be manipulated to yield only one or more desired products, but not the rest.
\end{tabular} \\
\hline JOINT PRODUCTS & Products arising from the joint process which have significant value are known as joint products. The joint process is intentionally completed to obtain these products. These are the main products on which the survival of the organisation depends. \\
\hline LIMITING FACTOR/ CONSTRAINT & \begin{tabular}{l}
A limiting factor/constraint exists when: \\
- the availability of a resource is limited, i.e. the resource is scarce, or is a physical restriction; AND \\
- the scarcity/constraint prevents the company from manufacturing (buying in the case of retailers) all the products it would be able to sell.
\end{tabular} \\
\hline MANUFACTURING COST & Manufacturing costs, also called factory costs or production costs, are the total of the costs incurred in the manufacturing or production process: direct material, direct labour, direct expenses and manufacturing overheads. \\
\hline MANUFACTURING OVERHEADS & Manufacturing overheads are the total costs of indirect materials, indirect labour and all other indirect manufacturing costs that cannot be traced directly to specific individual products. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline TERM/CONCEPT & DEFINITION/EXPLANATION \\
\hline MANUFACTURING PROCESS & Mainly consists of physical inputs (material or partially completed units), working on those inputs, ie converting them using labour and overheads (eg electricity and machine time) and the fully or partially completed units, or physical output. \\
\hline MARGIN OF SAFETY & The margin of safety is the excess of budgeted (or actual) sales over the breakeven sales, that is, the amount or percentage by which sales revenue may decline before losses commence. \\
\hline MARGIN OF SAFETY RATIO & The margin of safety can also be expressed as a percentage of the total sales value or sales units, which is known as the margin of safety ratio. \\
\hline MATERIAL & Material refers to the group of costs that includes all the physical materials converted into products during the manufacturing process, indirect material, and other consumables used by the organisation. \\
\hline MOST LIKELY TO OCCUR & The individual outcome that is most likely to occur is the outcome with the highest probability of occurring. \\
\hline NET REMUNERATION & Net remuneration is the amount remaining after all deductions from gross remuneration. This is also referred to as the 'take home pay'. \\
\hline NODE & A node represents a decision that needs to be made or an external event (uncontrollable) that will be taking place and that could lead to different outcomes. \\
\hline NON-MANUFACTURING COST & \begin{tabular}{l}
Non-manufacturing costs fall into two categories: \\
- Marketing costs (selling and distribution costs) include all the costs related to the sale and delivery of products. \\
These costs start once the manufacturing of the products is completed. Examples of marketing costs are advertising, sales commission, sales salaries and shipping (distribution). \\
- Administrative costs are the costs incurred in directing and controlling the organisation. \\
Administrative costs include compensation of executives, general accounting costs, secretarial costs and similar costs relating to the general management of an organisation. Note that products can be produced without incurring these costs.
\end{tabular} \\
\hline NORMAL LOSSES & Unavoidable losses inherent in the manufacturing process. Do not indicate that a process is ineffective. \\
\hline NORMAL WAGE & Normal wage is the amount of money paid or payable to an employee in respect of ordinary hours of work or, if they are shorter, the hours an employee ordinarily works in a day or week. \\
\hline OPPORTUNITY COSTS & An opportunity cost is represented by the net amount of cash inflow that will have to be given up (forfeited) if a specific alternative is selected. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ORDERING COSTS & Ordering costs are the relevant costs of ordering inventory and may include delivery and transport costs, as well as the administrative cost of preparing and processing the order. Again, these costs only include the costs that will fluctuate if order numbers/quantities fluctuate. \\
\hline OVERTIME PREMIUM & An overtime premium is an additional amount paid over and above the normal rate/time. \\
\hline PERIOD COSTS (EXPENSES) & Period costs are costs that are not included in product costs. \\
\hline PRECAUTIONARY MOTIVE FOR HOLDING INVENTORY & This refers to holding extra inventory when future demand is uncertain and/or the supply is unreliable. \\
\hline PRIME COST & Prime cost is the total of all the direct costs. It is the costs for direct materials and direct labour. \\
\hline PROBABILITY & Probability refers to the chance that a future event will result in a specific outcome or range of specific outcomes. A probability is usually expressed as a percentage or a fraction. \\
\hline PROCESS COSTING SYSTEM & A costing system used to obtain, record and report cost data in industries where large quantities of similar products pass through a single process or consecutive processes in the course of production. \\
\hline PRODUCT COST (ABSORPTION COSTING SYSTEM) & Product cost is the variable plus the fixed costs incurred in the manufacturing of a product. \\
\hline PRODUCT COST (DIRECT COSTING SYSTEM) & Product cost is the variable cost incurred in the manufacturing of a product. \\
\hline PRODUCTION COST STATEMENT & \begin{tabular}{l}
A summary of the following: \\
- Total manufacturing cost for a specific period \\
- Number of units produced in the specific period equivalent units from the quantity statement \\
- Resultant average cost per unit for each category of input
\end{tabular} \\
\hline PRODUCT COSTING SYSTEM & A product costing system represents a specific method according to which the manufacturing cost of a single product, job or group of products or jobs is accumulated, processed and recorded. \\
\hline PRODUCTIVE WORK HOURS & Productive work hours are the hours that the employees are expected to be physically working in the production process or on jobs. These hours correspond to the job card hours. \\
\hline PROFIT & Profit is the amount left after all costs are covered. \\
\hline QUALITATIVE FACTORS (INCLUDING SUSTAINABILITY) & These are non-financial factors that should also be taken into consideration. They usually relate to the impact on the rest of the business, existing customers and the social, environmental and governance impacts of a decision. The risks associated with each decision should also be taken into consideration. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline TERM/CONCEPT & DEFINITION/EXPLANATION \\
\hline QUANTITY STATEMENT/ PRODUCTION STATEMENT & A summary of the flow of physical units in a process costing system. Will include information about the number of units placed into the system and what happened to them, but no information about cost or rand values. \\
\hline RAW MATERIALS & Raw materials are the inventory used in the manufacturing process. Raw materials are natural, unprocessed or partially processed materials that are converted into a more refined product. \\
\hline RELEVANT INFORMATION & This is the information that should be taken into account in order to choose an appropriate course of action from a set of possible options (alternatives). \\
\hline RELEVANT RANGE (context: cost-volumeprofit analysis assumptions) & The relevant range is the upper and lower levels of production (= sales) activity levels within which the organisation normally operates and for which cost and revenue behaviour are known and can be predicted. \\
\hline RELEVANT RANGE (context: cost behaviour) & The relevant range is normally defined by the production capacity (number of units) within which the organisation normally operates. \\
\hline REMUNERATION & Remuneration is the amount an employer pays to an employee or on behalf of an employee (eg employer contributions to a medical aid scheme) for services rendered in terms of the employment agreement. \\
\hline RISK AVERSE & When a person/company tries to avoid risk as far as possible \\
\hline RISK NEUTRAL & When a person/company is indifferent to risk neither risk averse, nor risk seeking. \\
\hline RISK SEEKING & When a person/company likes/prefers to take risks. \\
\hline SELLING PRICE VARIANCE & The selling price variance is the difference between the actual selling price per unit and the standard/budgeted selling price per unit for the actual volume sold. \\
\hline SEMI-FIXED (STEPPED) COST & Certain kinds of fixed costs increase or decrease only in fixed increments or in steps. \\
\hline SEMI-VARIABLE COST & Semi-variable or mixed cost contains both fixed and variable cost. The mixture of cost includes a fixed amount within a relevant range of output and an amount that varies proportionately with output changes. \\
\hline SPECULATIVE MOTIVE FOR HOLDING INVENTORY & This refers to holding more or less inventory than usual, because a change in the supplier's price is anticipated. \\
\hline SPLIT-OFF POINT & The split-off point is the point in the production process where the separate joint products can be identified for the first time (eg the hide and a carcass are identified). There can be various split-off points before all joint products can be identified (eg the carcass is cut up into smaller pieces to yield various grades of meat, bones and blood). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline STANDARD COSTING SYSTEM & A standard costing system is a tool used for control (financial AND operational) and inventory valuation purposes. This system enables deviations from the budget to be analysed in detail, thus enabling costs to be controlled more effectively. Inventory can be valued at a standard. \\
\hline STANDARD COSTING VARIANCE PER UNIT & A standard costing variance per unit is the difference between the standard input cost and quantity used per unit and the actual input cost and quantity used per unit. When used for income items, it relates to the difference between the standard selling price per unit and the actual selling price per unit. \\
\hline STANDARD COSTING VARIANCE TOTALS & A standard costing variance total is the difference between the standard costs in total for a specific input and the actual costs in total for that input based on the actual volume of product manufactured. It also applies to the difference between the standard sales income in total and the actual sales income in total for the actual volume of units sold. \\
\hline STANDARDS & Standards are predetermined targets; they are target inputs/variables that should be achieved under efficient operating conditions. \\
\hline SUNK COSTS & \begin{tabular}{l}
The following are characteristics of a sunk cost. \\
- It has been incurred in the past (no future cash flow involved). \\
- It cannot be changed by any future decision.
\end{tabular} \\
\hline TAXABLE INCOME & Taxable income is the balance of the gross remuneration remaining after deducting any contribution by the employee concerned to any pension fund (provident funds are excluded). \\
\hline TIME CLOCK CARDS & Time clock cards record the arrival and departure times of each employee. Each employee takes the card with his/her number from the rack and punches it in. This may also be done electronically (with or without fingerprint identification). \\
\hline TIME SHEETS OR TICKETS & Employees fill in time sheets or tickets for hours worked on each job (job code) or area of work (area code). The time ticket shows the specific use that has been made of the time acquired from the employee and is similar to the materials requisition card. \\
\hline TRADITIONAL COSTING & In the traditional costing method, fixed production overhead cost is allocated to products by linking it to only one volume-driven allocation base (eg labour hours or machine hours). In this method, fixed production overhead cost is assumed to be the most significant cause for the production cost (refer to topic 2 ). \\
\hline TRANSACTION DRIVERS & Transaction drivers count the number of times that an activity is performed. They are the least expensive to determine, but they are also likely to be the least accurate. \\
\hline
\end{tabular}
\(\left.\left.\begin{array}{|l|l|}\hline \text { TERM/CONCEPT } & \text { DEFINITION/EXPLANATION } \\
\hline \begin{array}{l}\text { TRANSACTION MOTIVE } \\
\text { FOR HOLDING } \\
\text { INVENTORY }\end{array} & \begin{array}{l}\text { This refers to holding inventory for day-to-day use in the } \\
\text { production process or for sales, where the supplier might } \\
\text { not be able to supply at short notice. }\end{array} \\
\hline \begin{array}{ll}\text { TYPES OF } \\
\text { RESPONSIBILITY } \\
\text { CENTRES }\end{array} & \begin{array}{l}\text { COST CENTRE } \\
\text { An account for costs only (e.g. a production or } \\
\text { maintenance department) }\end{array} \\
\text { INCOME CENTRE } \\
\text { An account for income only (e.g. a sales department) }\end{array} \right\rvert\, \begin{array}{l}\text { PROFIT CENTRE } \\
\text { An account for income and costs (e.g. a specific branch } \\
\text { or production site) }\end{array}\right\}\)\begin{tabular}{l} 
INVESTMENT CENTRE \\
An account for profits and assets invested (e.g. a \\
geographical area or broad category of products)
\end{tabular}\(|\)
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
VARIABLE SALES AND \\
DISTRIBUTION COST \\
RATE VARIANCE
\end{tabular} & \begin{tabular}{l} 
The variable sales and distribution cost rate variance is \\
the difference between the actual variable sales and \\
distribution cost incurred and the standard variable sales \\
and distribution cost allowed for units actually sold.
\end{tabular} \\
\hline \begin{tabular}{l} 
WASTE (SCRAP) \\
PRODUCTS
\end{tabular} & \begin{tabular}{l} 
A by-product with no sales value is also regarded as \\
waste or scrap products. The organisation may some- \\
times even have to incur costs to get rid of the waste or \\
scrap products in terms of health or environmental \\
regulations!
\end{tabular} \\
\hline \begin{tabular}{l} 
WEIGHTED AVERAGE \\
METHOD
\end{tabular} & \begin{tabular}{l} 
The weighted average method makes no assumptions \\
about the flow of materials. The issuing of materials at a \\
weighted average cost assumes that each batch taken \\
from the storeroom is made up of the same quantities \\
from each consignment in inventory at the date of issue. \\
No attempt is made to identify when the units were \\
purchased.
\end{tabular} \\
\hline \begin{tabular}{l} 
WORK-IN-PROCESS \\
(WIP)
\end{tabular} & \begin{tabular}{l} 
Work-in-process inventory refers to partially completed \\
products or components that cannot be classified as \\
finished products.
\end{tabular} \\
\hline
\end{tabular}

\section*{VERY IMPORTANT NOTE}

After you have passed this module, you should not get rid of your study guides and other study material (like tutorial letters). You may have to refer back to these in your future studies. The principles that are dealt with in this module will not be repeated in subsequent modules! In subsequent modules it is assumed that you completely got the hang of the learning outcomes of prior modules.

Your separate Study Guide 2 will contain the following:
PART 3: PLANNING, BUDGETING AND CONTROLLING PERFORMANCE
Topic 9 - Budgeting techniques
Study unit 21: The budgeting process
Study unit 22: Flexing the budget
Topic 10 - Standard costing
Study unit 23: The standard costing system
Study unit 24: Calculating selected variances
Study unit 25: Reconciliation and analysis of variances

\section*{PART 4: RELEVANT INFORMATION FOR SHORT-TERM DECISIONS}

Topic 11 - Relevant costing
Study unit 26: Relevant versus irrelevant costs
Study unit 27: Short-term decision-making (special orders)
Study unit 28: Limiting factors and the allocation of resources
Topic 12 - Sensitivity analysis
Study unit 29: Cost-volume-profit analysis (CVP)
Study unit 30: Probabilities
Study unit 31: Decision trees```

