2014
State Competition Countdown Round Problems 1-80

This booklet contains problems to be used in the Countdown Round.

National Sponsors
Raytheon Company
Northrop Grumman Foundation
U.S. Department of Defense

1. \qquad What is the least possible denominator of a common fraction that lies strictly between $\frac{1}{3}$ and $\frac{1}{2}$?
2. \qquad In a list of 30 integers, 18 of the integers are multiples of 5 . If 10 of the multiples of 5 are odd integers, what is the maximum number of even integers in the list?
3. \qquad What is the largest possible area, in square units, of a triangle with perimeter 6 units? Express your answer in simplest radical form.
4. \qquad A library system with 6 branches employs 60 workers. If no branch has fewer than 7 workers and no more than 11 workers, what is the minimum number of total workers in any two of the branches?
5. \qquad (classes)

At a school, grade point averages are calculated by making an A worth 4 points, a B worth 3, etc., and all courses are equally weighted. After 20 courses, Zach has a grade point average of exactly 3.9. If he can get As in all of his future classes, how many more classes must Zach take to raise his average to exactly 3.95?
6. \qquad A rectangle of area $9 \mathrm{ft}^{2}$ is made by placing square A next to half of square B, as shown. In feet, what is the side length of square A ? Express your answer in simplest radical form.

7. \qquad If $b=\frac{3}{a}$, where $a \neq 0$ and $b \neq 1$, then $\frac{a-3}{b-1}=k a$. What is the value of k ?
8. \qquad How many positive integers divide 6^{2014} but not 6^{2013} ?
9. \qquad What is the sum of all integer values of x that satisfy $|x+4|<4$ and $-x<3$?
10. \qquad What integer is closest to $\sqrt{9800}$?
11. \qquad The mean, median and mode of a collection of five positive integers are all 5. What is the largest possible number in the set?
12. \qquad For what nonzero integer a is the point (a, a) on the graph of $f(x)=x^{2}+6 x$?
13. \qquad Centered at each vertex of a regular decagon of side length 2 units, a circle of radius 1 unit is drawn. In square units, what is the total area of the parts of the circles that are inside the decagon? Express your answer in terms of π.
14. \qquad If $x+\frac{1}{x}=6$, what is the value of $x^{3}+\frac{1}{x^{3}}$?
15. \qquad A wallet contains exactly two each of $\$ 5, \$ 10$ and $\$ 20$ bills. Two bills are randomly selected from the wallet. How many different dollar values are possible?
16. \qquad Triangle ABC has B at the origin and $\overline{\mathrm{AC}}$ is parallel to the x-axis. $\mathrm{AC}=5$ units, $\mathrm{BC}=7$ units and the y-axis bisects $\overline{\mathrm{AC}}$. What is the length of $\overline{\mathrm{AB}}$, in units?
17. \qquad How many digits are in the value of the product $8^{5} \cdot 5^{8}$?
18. \qquad Pencils can be purchased in packages of 12 or 25 . If Masi purchased 8 packages to get 135 pencils, how many packages of 12 did he buy?
19. \qquad Caleb's Cupcakes sells red velvet, vanilla cream and chocolate chip cupcakes. How many different combinations are possible for a dozen cupcakes at Caleb's?
20. \qquad For $y=k x^{3}, y=36$ when $x=2$. What is the value of y when $x=4$?
21. \qquad If $A B C D E F$ is a regular hexagon of area 36 units 2, what is the area of $\triangle \mathrm{ACE}$, in square units?
22. \qquad In a one-mile race, Blue Streak finished 30 seconds after The Flash. If Blue Streak had been given a $\frac{1}{8}$-mile head start, Blue Streak would have finished 30 seconds before The Flash. How many minutes did it take for Blue Streak to run one mile?
23. \qquad What is the absolute difference between the two real numbers x for which $(x+1)(x-1)(x-2)=(x+2)(x+3)(x-3)$? Express your answer in simplest radical form.
24. \qquad tations)
25. \qquad (meters)
26. \qquad (in ${ }^{2}$)
27. \qquad The result of multiplying a number by m is the same as adding it to m. In terms of m, what is the number? Express your answer as a common fraction.
28. \qquad What is the greatest positive 4-digit integer n for which the sum of its proper divisors is $n-1$?
29. \qquad If $3 x+y+z=15$ and $x-2 y-z=30$, what is the value of $5 x-3 y-z$?
30. \qquad The fourth and fourteenth terms of an arithmetic progression are -14 and -4 , respectively. What is the $2014^{\text {th }}$ term?
31. \qquad When $(a+2 b+3 c)^{6}$ is expanded, what is the coefficient of $a^{3} b^{2} c$?
32. \qquad A number equals its double decreased by 1 . What is the number?
33. \qquad

For the isosceles trapezoid shown, three of the vertices are $(0,0)$, $(2 a, 2 b)$ and $(2 a+c, 2 b)$. The coordinates of point D are $x(r a+s b+t c, 0)$. What is the value of $r+s+t ?$
34. \qquad The quadratic equation $x^{2}+a x+b=0$ has roots -3 and -7 . What is the value of $a+b$?
35.
36. \qquad The sum of the first 14 terms of an arithmetic sequence is 2014 . If the sum of the first 28 terms of the same sequence is 2014 , what is the sum of the first 42 terms of the sequence?
37. \qquad If two of the people in Demi's family are selected at random, there is a 50% chance that both people will have brown eyes. What is the minimum number of people in Demi's family?
38. \qquad In a class of 99 students, 1 student represents 1% of the class (rounded to the nearest whole percent) and 99 students represent 100% of the class. What positive integer between 1 and 100 cannot be represented as a percentage of the class?
39. \qquad Michael is two years older than three times Jennifer's age. If Jennifer is x years old, then, in years, Michael's age can be expressed as $m x+b$. What is the value of $m+b$?
40. \qquad Alex has 3 books, and Eli has 4 books. If the 7 books are all different, in how many ways can they place their books on a shelf so that all of Alex's books are next to one another?
41. \qquad The product $\left(x^{-2} y^{3} z^{-\frac{2}{3}}\right)\left(x y z^{\frac{5}{3}}\right)$ is equivalent to what common fraction that has only positive exponents?
42. \qquad A store sells fancy letters. There are no prices on the individual letters, but ADI buys the letters in her name for $\$ 15$, DIANE buys the letters in her name for $\$ 21$ and NADIA buys the letters in her name for $\$ 23$. In dollars, how much will ANNE pay for the letters in her name?
43. \qquad What is the value of $9\left(\frac{1}{3}+2-\frac{2}{3}\right)$?
44.

Triangles ABC and BDC , shown here, are 30-60-90 right triangles, and $\mathrm{AC}=12 \mathrm{~cm}$. The area of $\triangle \mathrm{BDC}$ can be written in simplest radical form as $\frac{a \sqrt{c}}{b} \mathrm{~cm}^{2}$, where a, b and c are positive integers. What is the value of $a+b+c ?$
45. \qquad (students)

The mean score on a physics test for all students in the class was exactly 77. When Albert's score of 100 was removed, the mean decreased to exactly 76. How many students are in the class?
46. \qquad
47. \qquad The two congruent sides of an isosceles triangle are each 3 inches longer than the base. The perimeter is 30 inches. What is the product of the numerical values of the lengths of the three sides of the triangle?
48. \qquad Betty was counting the diagonals of a regular polygon with n sides. She stopped counting after 48 diagonals. What is the least possible value of n ?
49. \qquad A weighted die has six sides, labeled 1 through 6, where the probability of rolling an n is directly proportional to n. What is the probability of rolling a 3 ? Express your answer as a common fraction.
50. \qquad If x and y are nonzero real numbers such that $x^{2}-4 x y+4 y^{2}=0$, what is the value of $\frac{y}{x}$? Express your answer as a common fraction.
51. \qquad Jack and Jill both rolled two standard dice. What is the probability that Jill got the same two numbers as Jack, though not necessarily in the same order? Express your answer as a common fraction.
52. \qquad A regular pentagon has two interior diagonals originating at a vertex. What is the degree measure of the acute angle between the two diagonals?
53. \qquad (ways)

In how many ways can five integers from 1 to 7 , inclusive, be placed in the boxes shown so that the row entries increase from left to right and the column entries increase from top to bottom?

54. \qquad Simeon calculated the sum of the first n positive integers, but he accidentally added one of those integers twice. If Simeon calculated the sum to be 100, what integer did he add twice?
55. \qquad (reports)

A 24-hour news station gives a weather report every 10 minutes. How many weather reports are given at the station each day?
56. \qquad What is the value of $\sqrt{1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}+7^{3}+8^{3}+9^{3}+10^{3}}$?
57. \qquad A car travels 33 feet in $\frac{1}{4}$ second. How many miles will it travel in 10 minutes?
58. \qquad If $f(x)=3 x-10$ and $g(x)=2 x^{2}-10$, what is the value of $g(f(2))$?
59. \qquad In the figure, chords AY and BX intersect at $\mathrm{O}, \mathrm{AO}=6$ units, $\mathrm{BO}=5$ units and $\mathrm{YO}=15$ units. What is XO , in units?

60. \qquad One way to represent 60 as the sum of consecutive positive integers is $19+20+21$. Including this example, how many ways are there to represent 60 as the sum of two or more consecutive positive integers?
61. \qquad (problems)

Donald solved 5 more MATHCOUNTS problems than Janet. Janet solved 3 more than Ann. Ann solved twice as many as Randy. If Randy solved 7 problems, how many problems did Donald solve?
62. \qquad The graphs of $y=-|x|$ and $y=|x|+a$ enclose an area of 72 units 2, on a coordinate plane. What is the value of a ?
63. \qquad A sack contains 7 red marbles and 3 black marbles. Two marbles are randomly selected, with replacement. What is the probability of choosing a red marble and then a black marble? Express your answer as a common fraction.
64. \qquad If $2^{x}=8,388,608$, what is the value of x ?
65. \qquad (cents)

Marika paid $\$ 28.80$ for a pound of gourmet coffee beans. One ounce of coffee beans makes 64 fluid ounces of brewed coffee. What is her cost, in cents, for 16 fluid ounces of brewed coffee?
66. \qquad What is the units digit of the product $2^{2014} \cdot 3^{2014}$?
67. \qquad When x is multiplied by 28 , the result is a perfect square. If x is a positive integer, what is the smallest possible value of x ?
68. \qquad (integers)

How many positive integers are not less than the sum of their positive divisors?
69. \qquad If x and y are integers and $y<10$, for how many different ordered pairs (x, y) is $x^{2}=y$?
70. \qquad
71. \qquad
72. \qquad
73. \qquad A set of consecutive even integers starts with -2 and ends with x. If the sum of the integers in the set is 108 , what is the value of x ?
74. \qquad
75. \qquad What is the sum of the prime factors of 102,102 ?
76. \qquad In isosceles trapezoid ABCD , with diagonals intersecting at $\mathrm{E}, \mathrm{AB}=6$ units, $\mathrm{AE}=\mathrm{BE}=4$ units and $\mathrm{CE}=\mathrm{DE}=10$ units. What is CD , in units?
77. \qquad ments)
78. \qquad The squares in the figure are each to be painted either yellow or green. How many different ways can the five squares be painted?

79. \qquad In the primary election, candidates Adams, Buchanan and Cleveland received votes in the ratio of 13:15:19, respectively. If there were 9447 votes cast, how many votes did Adams receive?
80. \qquad A particular rectangle has length 7 units and perimeter 21 units. What is the ratio of its width to its length? Express your answer as a common fraction.

