

Center for Energy-Smart Electronic Systems

2017 NSF IUCRC Biennial Meeting ARLINGTON, VA• JULY 27, 2017

Multi-Site Centers Student-centric Collaborative Experiences

Dereje Agonafer, Jenkins Garrett Professor The National Science Foundation Center for Energy Smart Electronic Systems (ES2)

2017 NSF IUCRC Biennial Meeting

Outline

- Background & Motivation
- Infrastructures
- History of Working Relationships of Center Directors
- Managing Director
- Projects
- ES2 2016 2017 Projects 21 projects all led by students
- Sample Project
- ES2 Student collaboration on projects
- Monthly Project Meetings led by students
- Quarterly Project Meetings led by students

Outline - cont

- IAB Meeting led by students
- Sample Project
- Student collaboration on projects example
- Students conference attendance
- Students internship
- Posters
- IAB Meetings
- Thesis Example
- Jobs Recent PhD's graduates

Energy Usage in Typical Data Center

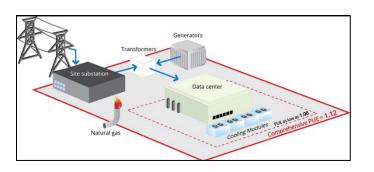


Figure 3: Typical Data Center Layout¹

- Data centers are big consumers of electricity
- ➢ In 2014, 70 billion kWH electricity^³
- > 1.8% of total U.S. electricity consumption
- Cooling energy typically contributes 30-50% of Data Center overall energy consumption
- Environmental design criteria is important

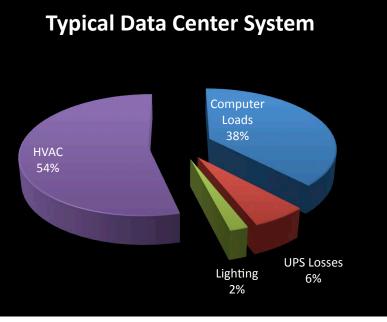
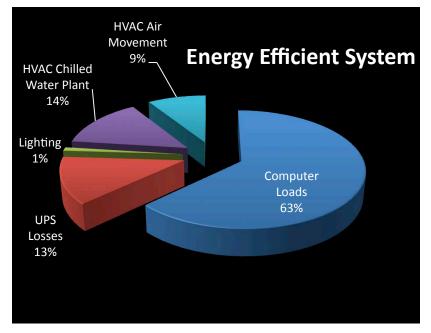



Figure 4: Electrical Consumption Distribution in two data centers²

Source¹: Google Data Center PUE estimation, 2008 Source²: Data Center Best Practices Guide, 2012 Source³: Lawrence Berkeley National Laboratory, United States Data Center Energy Usage Report, 2016

Infrastructure – built in Phase I

Panoramic view of one of the cold aisles in ES2 Data Center Laboratory at Binghamton University

Villanova Two-Phase Server Cooling Facility

UTA ES2 Data Center Lab

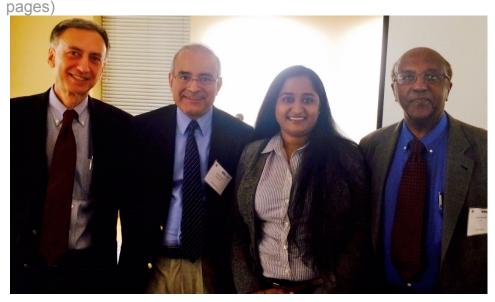
Facebook Opencompute Servers

Yahoo Servers

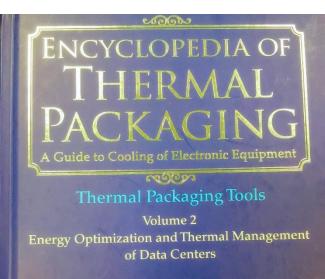
Cisco Liquid Cooled Servers UTA's research modular data center facility in Dallas, Texas

UTA's research modular data center facility in Dallas, Texas

Villanova Organic Rankine Cycle Facility



History of Working Relationships of Center Directors


Over 25 years of working relationship

A Brief Overview of Recent Developments in Thermal Management in Data Centers

Sami Alkharabsheh, John Fernandes, Betsegaw Gebrehiwot, Dereje Agonafer, Kanad Ghose, Alfonso Ortega, Yogendra Joshi and Bahgat Sammakia J. Electron. Packag 137(4), 040801 (Sep 10, 2015) (19

IAB Meeting, UTA 2016 (alum Suma Kuravi)

Bahgat Sammakia • Yogendra Joshi Dereje Agonafer • Emad Samadiani

Editor-in-Chief Avram Bar-Cohen

History of Working Relationships of Center Directors – SemiTherm 2017

Discussion: led by Bahgat Sammakia, BU Panelist: Dereje Agonafer, UTA Kanad Ghose, BU Yogendra Joshi, Georgia Tech Al Ortega, Villanova

2017 Thermi Award Presented to Chandrakant Patel Chief Engineer and Senior Fellow of HP Inc.

Presenters Dereje Agonafer, UTA (Nominator) Dr. Veerendra Mulay, General Chair Facebook

Managing Director of ES2

- Andrea Palmeri serves as the Managing Director of ES2. In my opinion, she is critical to the functioning of the center and Phase II would not have happened without her leadership. As a Managing Director, Andrea is responsible for all of the Center's operations, including
 - proposal coordination,
 - business development,
 - marketing, website,
 - Center communications,
 - development of policies and procedures,
 - NSF reporting, and
 - serving as the liaison between the university partners and industry members.

Projects

- ES2 2016 2017 Projects 21 projects all led by students
- Sample Project
- ES2 Student collaboration on projects
- Monthly Project Meetings led by students
- Quarterly Project Meetings led by students
- IAB Meeting led by students

ES2 2016-2017 Projects

ES2 2016-2017 Projects, PIs and Mentors

Project	Project Name	PI	Site	Mentors
1	Exergy-based Approaches for Holistic Design of Energy Efficient Data Centers	Wemhoff, Ortega	VU	Dave Mendo, Comcast; Jim Jagers, Mestex; Andrew Calder, Mahmoud Ibrahim, Elsa Madrigal, Bharath Muralidharan, Panduit; Mark Seymour, Kourosh Nemati, Future Facilities; Russ Tipton, Vertiv
2	Energy Proportionality in Data Centers and Benchmarking: Synergistic Management of Workload, Servers and Cooling System (combines former projects 2&8)	Ghose	BU	Mark Seymour, Dave King, Kourosh Nemati, Future Facilities; Shane Case, Bloomberg; Mahmoud Ibrahim, Panduit; Russ Tipton, Vertiv; Gamal Refai-Ahmed, Xilinx
3	Rapid Modeling Tools for Thermal Management of Modular Data Centers (project completed)	Joshi	GT	project completed
4	Direct and Indirect Evaporative Cooling for IT Pods (Phase II)	Agonafer	UTA	Tom Craft, CommScope; Jim Jagers, Mestex; Bharath Muralidharan, Mahmoud Ibrahim, Panduit; Mark Seymour, Kourosh Nemati, Future Facilities, Mike Kaler - Mestex; Russ Tipton, Vertiv
6	Dynamic Cold Plates for Effective Cooling of Multi- Core High-End Chip Scale Packages (Phase II)	Agonafer	UTA	Steven Schon, QuantaCool; Mahmoud Ibrahim, Andrew Calder, Panduit ; Chris Aldham, Mark Seymour, Kourosh Nemati, Future Facilities; Russ Tipton, Andrew Cole, Vertiv
7	Models and Metrics for Dynamic Air and Hybrid Liquid Cooled Data Centers Based on Computational and Experimental Approaches – Phase II	Ortega, Sammakia, Bowling,	VU, BU, UTA	Vidhya Shankar, Dave Mendo, Simpson Cumba, Commcast; Tom Craft, CommScope; Mahmoud Ibrahim, Panduit; Mark Seymour, Mark Fenton, Kourosh Nemati, Future Facilities; Russ Tipton, Vertiv; Bill, Skinner, Joe Citarella, Bloomberg; Gamal Refai-Ahmed, Xilinx
9	High Bandwidth Integrated Parallel Optical Communication Links for Power Efficient, Cost Effective Data Center Interconnects, Phase II	Ghose	BU	Doug Butler, Corning; Mahmoud Ibrahim, Panduit; Mark Seymour, Kourosh Nemati, Future Facilities
10	Impacts of Particulate and Gaseous Contamination on IT Equipment Where Air-Side Economizers are Implemented, Phase II	Agonafer	UTA	Tom Craft, CommScope; Bharath Muralidharan, Camelia Mititelu, Mahmoud Ibrahim, Panduit; Mike Kaler, Jim Jagers - Mestex; Gamal Refai-Ahmed, Xilinx; Russ Tipton, Vertiv; Mark Seymour, Kourosh Nemati, Future Facilities
11	Two-Phase Cooling Coupled with Waste Heat Energy Capture for Data Center Environments – Fleischer/Jones (follow on to project 11)	Fleischer/Jones	VU	Steven Schon, QuantaCool; Mark Seymour, Kourosh Nemati, Future Facilities; Russ Tipton, Vertiv; Camelia Mititelu, Mahmoud Ibrahim, Panduit; Tom Craft, CommScope

ES2 2016-2017 Projects (cont)

13	Transient Thermal Response and Control of Data Centers	Joshi/Yoda	GT	Mark Seymour, Dave King, Mark Fenton, Kourosh Nemati, Future Facilities; Mahmoud Ibrahim, Tom Peddle, Panduit; Gamal Refai-Ahmed, Xilinx; Russ Tipton, Vertiv
14	Experimental and Analytical Studies on Transport in Fully and Partially Enclosed Cold Aisles in Air Cooled Data Centers	Sammakia	BU	Mahmoud Ibrahim, Panduit; Mark Seymour, Dave King, Kourosh Nemati, Future Facilities; Russ Tipton, Vertiv; Veerendra Mulay, Facebook; Gamal Refai-Ahmed, Xilinx
15	Warm Water Cooling in Data Centers Including Water Storage Systems	Fleischer/Chiarot/ Sammakia/	VU, BU	Tom Craft, CommScope; Mark Seymour, Kourosh Nemati, Future Facilities; Mahmoud Ibrahim, Panduit; Steve Schon, QuantaCool; Gamal Refai-Ahmed, Xilinx; Russ Tipton, Arash Golafshan Vertiv; Vadim Gektin, Huawei
16	An In-Depth Understanding of Oil Immersion Cooling strategies for Data Centers	Agonafer	UTA	Mark Seymour, Kourosh Nemati, Future Facilities; Tom Craft, CommScope; Veerendra Mulay, Facebook; Mahmoud Ibrahim, Panduit; Russ Tipton, Vertiv; Herb Zien, Harsh Patel, Rick Tufty and David Roe, LiquidCool Solutions
17	Data Center Temperature Monitor Analysis System	Jabade	VIT	Chetan Khare, Logicare; Mark Seymour, Future Facilities
18	Investigations on FCMA Soft Starter-Based Compressor Employed in Refrigeration System for Data Center Cooling	Sant	VIT	Sanjay Bhade, Innovative Technomics; Mark Seymour, Future Facilities
19	Thermal Analysis of Data Center Using Hybrid (Air and Water) Cooling	Chaudhari	VIT	Vikas Kumar, CDAC; Mark Seymour, Future Facilities
20	Environmental Acclimation of IT Equipment	Agonafer	UTA	Jim Jagers, Mestex; Mahmoud Ibrahim, Andrew Calder, Panduit; Gamal Refai-Ahmed, Xilinx; Mark Seymour, Kourosh Nemati, Future Facilities

Project 4: Maximizing Use of Efficient Air–Side Economization in Modular, Large Data Centers and **Datacom Housing Units**

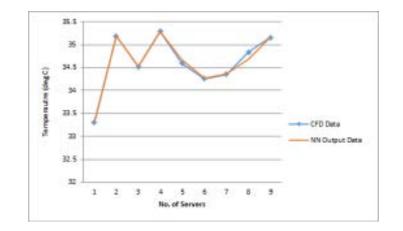
Area of expertise: Thermal transport and fluid dynamics modeling, experimental measurements of heat transfer and fluid flow

PI: Dereje Agonafer (UTA)	Collaborator: Bahgat Sammakia (BU)				
	Mentors				
UTA Students	David Mendo and Simpson Cumba	Comcast			
Dr. Betsegaw Gebrehiwot (Intel) Dr. Manasa Sahini	Deepak Sivanandan, Mark Hendrix, and Tom Craft	CommScope			
(Intel)	Veerendra Mulay	Facebook			
Vishnu Sreeram	Akhil Docca and Mark Seymour	Future Facilities			
Suhas Sathyanarayan Digvijay Sawant	Saurabh Shrivastava and Yasin Makwana Panduit				
BU Student	Naveen Kannan, James Hoverson, Jim Jagers, and Mike Kaler	Mestex			
Dr. Husam Alissa (Microsoft)	Richard Craig and Robert Yurcik	Verizon Wireless			

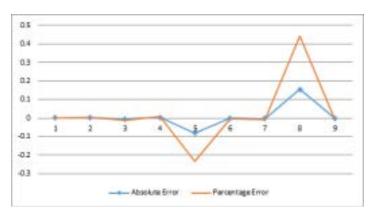
The Center for Energy–Smart Electronic Systems

ES2 Student collaboration on projects, Example 1

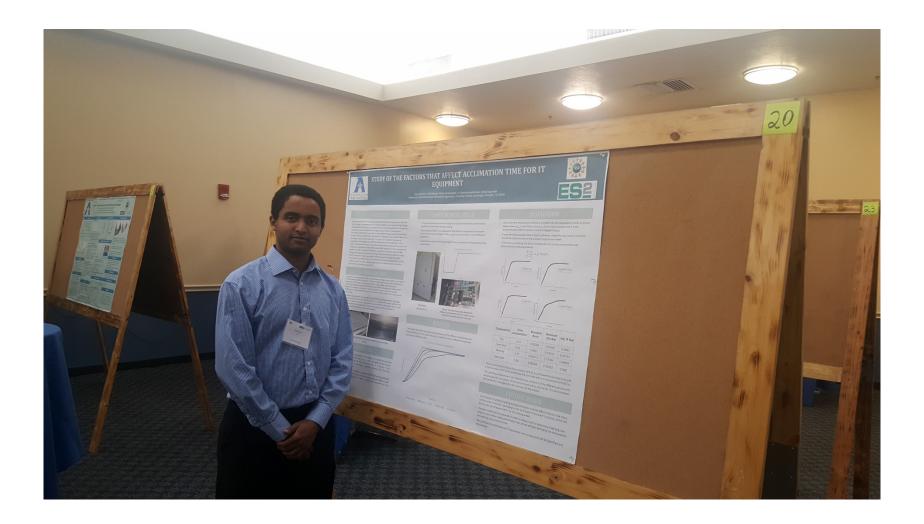
- Data Center Lab with raised- floor hot aisle containment configuration.
 - CRAC Units equipped with Variable Speed Drives
 - SynapSense Wireless sensors to monitor temperature, humidity and static pressure
 - Remote connection that facilitates data logging from all servers for experimental analysis
- Collaboration with ES2 students in Binghamton University
 - Interdisciplinary collaboration (CS, ME etc.) between ES2 graduate students
 - Access to research facilities and laboratories for all ES2 research projects



Data Center Lab at UTA


ES2 Student collaboration on projects, Example 2

- Artificial Neural Network applications in data center control systems
- A neural network developed and trained with CFD data modelling the BU data center lab.
- ANN technique successful in predicting the output of the data center in both steady state and transient cases.



Prediction of server temperature using Neural Network

Output error when compared to CFD data

Presentation of Project 20 at IAB Meeting Villanova, 2017 Abel Misrak, PhD student (accepted internship at Tesla)

IAB Meeting - April 29 - 30, 2015, Steel ORCA, NJ

Experimental Setup for Dynamic Liquid-Cooled MCM (Project 6) R. Kokate (Google), J. Fernandes (Facebook), M. Sahini (Intel) and D. Agonafer Department of Mechanical & Aerospace Engineering, University of Texas at Arlington, Arlington, TX - 76019

Center for Energy-Smart Electronic Systems

Abstract

Continuing trends of increasing microprocessor power densities and nonuniform temperature distributions pose a significant challenge to the cooling requirements of a data center environment. With a view to minimizing energy consumption of cooling infrastructure, the objective is to design a dynamic, energy-efficient and practical cooling solution for high-power equipment. A multi-chip module (MCM) is chosen as the platform to base the design of such a liquid-cooled solution.

Determining practical application of the dynamic cold plate necessitates experimental testing. In the absence of a MCM thermal test vehicle (TTV), an assembly consisting of copper blocks embedded with thick-film heaters installed in a plastic substrate will serve to simulate a functioning module. Operation of the mock-MCM and control of pumps will be previewed through a representative, but simplified, air-cooling setup. Results show great promise for application to the TTV and suggested control schemes are discussed.

Background/Need of Study

The International Technology Roadmap for Semiconductors (2010) predicts

- Power density of high performance processors to more than double by 2024
- Allowable junction temperature to decrease from 90°C to 70°C
- Total thermal resistance will need to decrease by almost a factor of fo
- Non-uniform power distribution at the die

Need to cool for maximum chip temperature

Unitern Parkap

Source: R. Mahajan, Proc. IEEE,

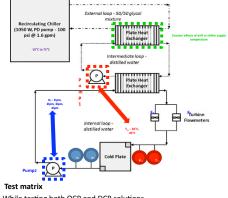
- Energy efficiency of servers
- High efficiency near maximum utilization only
 Cooling accounts for 30% of overall power (S. Pelly, 2009)
- Cooling accounts for 30% of overall power (S. Pelly, 2

Goals

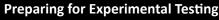
- Develop an extendable, dynamic and practical cold plate for energyefficient thermal management of high power devices
- Introduce controls and instrumentation to create a smarter solution with
- targeted delivery of cooling resources based on local heat dissipation
- Optimize cooling infrastructure to reduce energy consumption and boost
 the overall system efficiency

Platform

- Agreed-upon benchmark device platform for investigation
- High-power MCM layout as reference(courtesy
- of Endicott Interconnect)Around 500W of power dissipation in a 78mm x 78mm (60 sq.cm) footprint



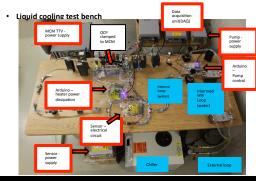
Preparing for Experimental Testing


Objectives

- Compare performance of original and dynamic solutions
 - Critical measurements
 - Pumping power (P_p)
 - Component temperatures
 - Component power dissipation
- MCM TTV is subjected to different loading schemes
- Uniform power distribution
- Non-uniform power distribution
- Including dynamic loading
- Cool for the highest temperature across all devices
 OCP Run tests at different flow rates
- DCP Set target temperature in dead-band control scheme

Coolant circuit for testing both original and dynamic cold plates

- While testing both OCP and DCP solutions
 - MCM TTV is subjected to different loads
 Uniform loading (5 cases)
 - Uniform loading (5 cases)
 - Idling: ASICs and FPGA each dissipate 5W
 Higher loads: ASICs each dissipate 10, 20, 30 and 40W
 FPGA power dissipation is always 5W
 - Non-uniform loading (12 cases)
 - Each block is set to dissipate 40W in isolation
 Remaining blocks are set to idling power (5W)
- While testing OCP
- Maximum permissible device temperature is 85°C
 Different chiller supply temperatures: 35°C and 45°C
- Investigating warm water cooling is a priority
- Chiller bypass loop is modulated to deliver specific flow rates to the cold plate
- Different flow rates considered: 1lpm, 2lpm, 3lpm and 4lpm
- All 17 loading cases tested at each flow rate Results: Device temperatures vs. pumping power

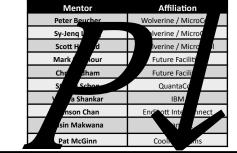


While testing DCP

- Different chiller supply temperatures: 15°C, 25°C, 35°C and 45°C
 Investigating warm water cooling is a priority
- Results of OCP testing used to determine target device temperature
 Setup control scheme to achieve selected temperature
- <u>Results</u>: Device temperatures vs. total flow rate

Determine pumping power for each section by

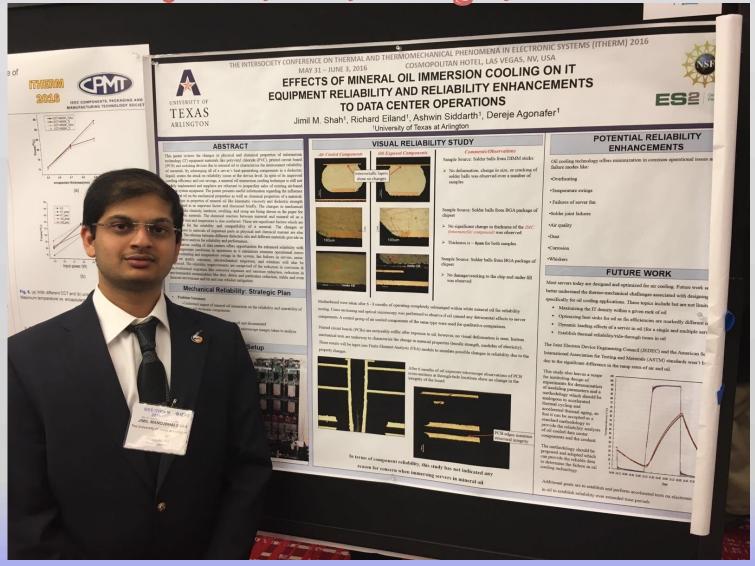
- · Measuring impedance curve for each section
- Use flow rate to determine pressure drop at operating point



Future Work

- Experimental Testing
- Establish reference points by testing performance of original cooling solution
- Determine improvement over baseline with employment of dynamic solution

Acknowledgements


Thanks to the industry mentors for their continuous input and support

ITherm/ECTC 2014 June , 2014, Orlando, Fl John Fernandes won "Best Poster Award (1/83)"

Poster Presentation at ITherm/ECTC 2016 June 2, 2016, Las Vegas, NV

REU & REV & UG

Nicholas C Ricciardelli

USMC-R SGT (2007-2015) Iraq (OIF) 2009 Mali/Djibouti (OEF) 2012 Under-Graduate Research Assistant on Project #6 – Dynamic Cold Plates for Effective Cooling of Multi-Core High-End Chip Scale Packages

Lieutenant Alex Priesser

Dan Furman

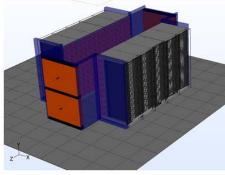
Attending IAB Meeting at Georgia Tech, Apr 2015 Kanan Pujara won Best Poster Award

Attending ITherm/ECTC 2016, June 2, 2016, Las Vegas, NV

IUCRC Meeting at University of Texas at Arlington, October 2012

Center for Energy-Efficient Electronic Systems

Center for Energy-Efficient Electronic Systems


Center for Energy-Efficient Electronic Systems

Dissertation Defense Exam

Experimental and Computational Study of Multi-level Cooling Systems at Elevated Coolant Temperatures in Data Centers

Room Level

Manasa Sahini

PhD Candidate Mechanical Engineering University of Texas at Arlington Supervising Professor

Dereje Agonafer

Rack Level, Facebook CoolIT n

Facebook Winterfell OC

Server Level, CISCO

7x24 Exchange, June 2017

Jimil Shah presenting

Jobs - Recent ES2 PhD's graduates

Student Name	University	Graduation (date)	Internship (list company, denote IAB members)
Fahad Mirza	UTA	2014	Global Foundries
Saeed Ghalambor	UTA	2014	Faculty, Sichuan University – Pittsburgh Institute, Chengdu, China
Tianyi Gao	BU	2015	Baidu
Zhihang Zang	BU	2015	Faculty member in China
Anjali Chauhan	BU	2015	Microsoft
John Fernandes	UTA	2015	Facebook
Rick Eiland	UTA	2015	Dell
Marianna Vallejo	UTA	2015	CH2M
Furat Afran	BU	2016	NVIDIA
Husam Alissa	BU	2016	Microsoft
Kourosh Nemati	BU	2016	Future Facilities
Betsegaw Gebrehiwot	UTA	2016	Intel
Jeff Luttrell	UTA	2016	UTA Faculty
Oluwaseun Awe	UTA	2016	Business Owner
A Sakib	UTA	2016	NXP Semiconductors
Tyler Stachecki	BU	ABD	Bloomberg
Marcelo del Valle	VU	2016	Comcast
Manasa Sahini	UTA	2017	Intel

Thank you!