	201	8-19 Bibb County S	cience Pacin	g Guide for
		Biology Par	ts A and B*	
Georgia Standard	s of Excellence: <u>Biology</u>	*Always use alor	ng with the Geo	rgia Standards of Excellence for Science
Biol	ogy: Curriculum Map including th	he Science and Engineerin	ng Practices, Cro	osscutting Concepts, and Disciplinary Core Ideas
	Science and Engineering Pract	tices		Crosscutting Concepts
1. Asking question	ns and defining problems		1. Patterns	
2. Developing and	d using models		2. Cause and e	effect: Mechanism and explanation
3. Planning and ca	arrying out investigations		3. Scale, propo	ortion, and quantity
4. Analyzing and i	nterpreting data		4. Systems and	d system models
5. Using mathema	atics and computational thinking			matter: Flows, cycles, and conservation
6. Constructing ex	xplanations and designing solutio	ns	6. Structure a	nd function
7. Engaging in arg	gument from evidence		7. Stability and	d change
8. Obtaining, eval	uating, and communicating infor	mation		
Unit/ Timeline		<u>Standard</u>		Curriculum Resources
Unit 0:	SB1. Obtain, evaluate, and com	municate information to	analyze the	Curriculum Documents including learning targets, power
Environmental	nature of the relationships betw		•	points, labs, assessments, etc.
and Life Science	cells.			
Review and				SB1-5, LT 0.1-0.6, PPT Slides 1-36, Quiz 1
Overview	SB5. Obtain, evaluate, and com	municate information to	assess the	Theme: Organization of Life
	interdependence of all organisr	ms on one another and th	eir	1.3 Living vs Nonliving (pg. 17-25)
13 days	environment.			3.1-What is Ecology (pg. 64-68)
Aug 1 – Aug 17				7.1 Cell Structure and Function (pg. 190-195)
				11.1 Genetics (pg. 308-312, 314-315)**
				**include genotype, phenotype, homozygous and heterozygous.
				18.1- Finding Order in Diversity (pg. 510-515)

	Learning Targets	SB5, LT 0.7-0.12 PPT, Slides 37-51, Quiz 2
	K=Knowledge, R=Reasoning, S=Skill, P=Product	Theme: Interconnectedness of Life
	• K 0.1—I can identify, explain, and defend the differences	19.1 Life on a Changing Planet (pg. 544-545)
	between living and non-living things	6.1 A Changing Landscape (pg. 154-157)
	• K 0.2 – I can define ecology and explain the relationships	6.3-Biodiversity (pg. 166-172)
	between living and non-living things.	5.1-How Populations Grow (pg. 130-135)
	• K 0.3 – I can list and define the levels of biological organization.	5.2-Limits to Population Growth (pg. 137-141)
	• K 0.4 – I can define and distinguish between the different types	
	of cells.	
	• K 0.5 – I can explain basic inheritance.	
	• K 0.6 – I can explain how biodiversity of organisms creates a	
	need for classification systems.	
	• K 0.7 – I can explain how physical an biological forces have	
	shaped life on Earth	
	• K 0.8 – I can explain how humans impact life on Earth.	
	• K 0.9 – I can explain how biodiversity indicates Earth's health.	
	• K 0.10 – I can define a population and explain how populations	
	affect one another.	
	 K 0.11 – I can explain how living and non-living factors affect 	
	population growth.	
	• K 0.12 – I can explain how living things are organized and living	
	and non-living things are interconnected.	
Unit 1: Stability	SB6 . Obtain, evaluate, and communicate information to assess the	Curriculum Documents including learning targets, power
and Change of	theory of evolution.	points, labs, assessments, etc.
Populations	a. Construct an explanation of how new understandings of Earth's	
over Time	history, the emergence of new species from pre-existing species, and	SB6a, LT 1.1 and 1.2, Slides 1-22, Quiz 1
24 days	our understanding of genetics have influenced our understanding of	16.1-Darwin's Voyage of Discovery (pg. 450-458) 16.2- Ideas that Shaped Darwin's Thinking (pg. 454-459)
24 days Aug 20 – Sep 21	biology c. Construct an argument using valid and reliable sources to support	16.2- Ideas that shaped Darwin's Thinking (pg. 454-459) 16.3-Darwin Presents his Case (pg. 460-464)
- Aug 20 - Sep 21	the claim that evidence from comparative morphology (analogous vs.	SB6c, LT 1.3 and 1.4, Slides 23-40, Quiz 2
	homologous structures), embryology, biochemistry (protein sequence)	19.1-The Fossil Record (pg. 538-545)

and genetics support the theory that all living organisms are related by way of common descent.	16.4-Evidence of Evolution (pg. 465-473) SB5a, SB5e, SB6d, LT 1.5-1.9, Slides 41-64, Quiz 3
d. Develop and use mathematical models to support explanations of how undirected genetic changes in natural selection and genetic drift have led to changes in populations of organisms. (Clarification statement: Element is intended to focus on basic statistical and graphic analysis. Hardy Weinberg would be an optional application to address this element.)	6.3-Biodiversity (pg. 166-172) 17.2-Evolution as Genetic Change in Populations (pg. 487- 492) 17.3-The Process of Speciation (pg. 494-497) SB4c, SB6e, LT 1.10-1.15, Slides 65-87, Quiz 4 20.1-Viruses (pg. 574-579) 20.3-Diseases Caused by Bacteria and Viruses (pg. 588- 593)
e. Develop a model to explain the role natural selection plays in causing biological resistance (e.g., pesticides, antibiotic resistance, and influenza vaccines).	Review and Assessment
SB5 . Obtain, evaluate, and communicate information to assess the interdependence of all organisms on one another and their environment.	
a. Plan and carry out investigations and analyze data to support explanations about factors affecting biodiversity and populations in ecosystems. (Clarification statement: Factors include population size, carrying capacity, response to limiting factors, and keystone species.)	
e. Construct explanations that predict an organism's ability to survive within changing environmental limits (e.g., temperature, pH, drought, fire).	
SB4. Obtain, evaluate, and communicate information to illustrate the organization of interacting systems within single-celled and multicelled organisms.	
c. Construct an argument supported by empirical evidence to compare and contrast the characteristics of viruses and organisms.	

Learning Targets
K=Knowledge, R=Reasoning, S=Skill, P=Product
• K 1.1 I can describe how the theory of evolution has emerged
over time through the work of many scientists
• K 1.2 I can identify and explain Charles Darwin's ideas on how
new species form.
• K 1.3 I can identify and explain the lines of evidence which are
used to support the theory of evolution by common descent:
comparative morphology, embryology, biochemistry, and
genetics.
• P 1.4 I can construct an argument using evidence from
comparative morphology, embryology, biochemistry, and
genetics to support the claim that all living organisms are related
by way of common descent.
• K 1.5 I can define biodiversity and speciation.
• R 1.6 I can analyze and interpret data to explain patterns in
biodiversity that result from speciation via reproductive isolation.
• K 1.7 I can recognize that undirected genetic changes have led
to changes in populations of organisms.
• K 1.8 I can identify mathematical models that can be used to
support explanations of how undirected genetic changes have
led to changes in populations of organisms.
• R 1.9 I can develop and use mathematical models to support
explanations of how undirected genetic changes have led to
changes in populations of organisms.
• K 1.10 I can explain the role of natural selection in causing
biological resistance.
• R 1.11 I can develop and analyze models to explain the role of
natural selection in causing biological resistance.
• K 1.12 I can describe the characteristics of viruses versus
organisms.
• P 1.13 I can construct an argument using evidence to compare
and contrast the characteristics of viruses and organisms.

	 R 1.14 I can predict an organism's ability to survive within changing environmental limits P 1.15 I can construct an explanation of how new understandings of Earth's history, the emergence of new species form pre-existing species, and our understanding of genetics have influenced our understanding of biology. 	
Unit 2: Patterns	SB1 . Obtain, evaluate, and communicate information to analyze the	Curriculum Documents including learning targets, power
in Living Systems	nature of the relationships between structures and functions in living cells.	points, labs, assessments, etc.
		SB1c
34 days Sep 24 – Nov 16	 a. Construct an explanation of how cell structures and organelles (including nucleus, cytoplasm, cell membrane, cell wall, chloroplasts, lysosome, Golgi, endoplasmic reticulum, vacuoles, ribosomes, and mitochondria) interact as a system to maintain homeostasis. c. Construct arguments supported by evidence to relate the structure of macromolecules (carbohydrates, proteins, lipids, and nucleic acids) to their interactions in carrying out cellular processes. (Clarification statement: The function of proteins as enzymes is limited to a conceptual understanding.) 	2.3-Carbon Compounds (pg. 45-49) 8.1 Energy and Life (pg. 226-229) SB1a, SB1d 7.1-Life is Cellular (pg. 190-194) 7.2-Cell Structure (pg. 196-207) 19.3-Endosymbiosis (pg. 556-557) 7.3-Cell Transport (pg. 208-213) 7.4-Homeostasis and Cells (pg. 214-217) SB1e 8.2 Photosynthesis: An Overview (pg. 230-234) 8.3 The Process of Photosynthesis (pg. 248-253) 9.1- Cellular Respiration: An Overview (pg. 248-253)
	 d. Plan and carry out investigations to determine the role of cellular transport (e.g., active, passive, and osmosis) in maintaining homeostasis. e. Ask questions to investigate and provide explanations about the roles of photosynthesis and respiration in the cycling of matter and flow of energy within the cell (e.g., single-celled alga). (Clarification statement: Instruction should focus on understanding the inputs, outputs, and functions of 	9.2-The Process of Cellular Respiration (pg. 254-261) 9.3- Fermentation (pg. 262-265) SB4a, SB4b, SB6b 18.1- Finding Order in Diversity (pg. 510-515) 18.2-Modern Evolutionary Classification (pg. 516-522) 18.3- Building the Tree of Life (pg. 523-528) 19.2-Patterns and Processes of Evolution (pg. 546-552)

photosynthesis and respiration and the functions of the major sub-	
processes of each including glycolysis, Krebs cycle, electron transport	
chain, light reactions, and Calvin cycle.)	
SB4 . Obtain, evaluate, and communicate information to illustrate the	
organization of interacting systems within single-celled and multi-	
celled organisms.	
a. Construct an argument supported by scientific information to	
explain patterns in structures and function among clades of organisms,	
including the origin of eukaryotes by endosymbiosis. Clades should	
include: archaea, bacteria, eukaryotes, fungi, plants, animals	
(Clarification statement: This is reflective of 21st century classification	
schemes and nested hierarchy of clades and is intended to develop a	
foundation for comparing major groups of organisms. The term	
'protist' is useful in describing those eukaryotes that are not within the	
animal, fungal or plant clades but the term does not describe a well-	
defined clade or a natural taxonomic group.)	
b. Analyze and interpret data to develop models (i.e., cladograms and	
phylogenetic trees) based on patterns of common ancestry and the	
theory of evolution to determine relationships among major groups of	
organisms.	
organisms.	
SB6 . Obtain, evaluate, and communicate information to assess the	
theory of evolution.	
b. Analyze and interpret data to explain patterns in biodiversity that	
result from speciation.	

Learning Targets
K=Knowledge, R=Reasoning, S=Skill, P=Product
• K 2.1 I can describe the properties of carbon that allow it to
form complex organic molecules.
• K 2.2 I can use laboratory tests to identify the four types of
macromolecules.
• K 2.3 I can describe the structure, function, examples and
sources of carbohydrates, lipids, proteins, and nucleic acids.
• P 2.4 I can describe how enzymes act as catalysts for biological
reactions by lowering activation energy.
• K 2.5 I can discuss three characteristics of enzymes: 1.affected
by pH & temperature 2.re-useable 3.substrate-specific
• P 2.6 I can construct an argument supported by evidence
relating the structures of macromolecules to their functions.
• K 2.7 I can diagram and explain the ATP/ADP cycle.
• K 2.8 I can list the three statements of the cell theory, identify
structures common to all cells, and distinguish between
prokaryotes and eukaryotes.
• R 2.9 I can summarize the structure and function of organelles
in eukaryotic cells including: nucleus, plasma membrane, cell
wall, mitochondria, vacuoles, chloroplasts, lysosomes, ER, and
ribosomes.
• K 2.10 I can explain how cell structures interact as a system to
maintain homeostasis
• R 2.11 I can discuss distinguishing characteristics of plant and
animal cells.
• R 2.12 I can diagram cells in solutions and analyze the flow of
water and solutes across membranes.
• R 2.13 I can compare and contrast passive and active transport
and give specific examples of each.
• K 2.14 I can describe the role of active and passive transport in
maintaining cellular homeostasis.

	• K 2.15 I can describe the overall function of photosynthesis:
	the reactants, products, organelles, and processes involved,
	including the light reactions and the Calvin cycle.
ļ	• K 2.16 I can describe the overall function of respiration: the
	reactants, products, organelles, and processes involved,
	including glycolysis, the Kreb's cycle and the Electron transport
ļ	Chain.
ļ	• R 2.17 I can compare and contrast aerobic and anaerobic
	respiration, including fermentation, and describe the conditions
1	under which each process occurs.
1	• K 2.18 I can explain the roles and importance of
1	photosynthesis and respiration in the cycling of matter and flow
ļ	of energy within cells.
J	• R 2.19 I can provide evidence to support the evolution of
	eukaryotes through endosymbiosis.
	• K 2.20 I can explain why evidence of evolution and patterns of
1	common ancestry are the basis for the modern classification
1	system.
l	• R 2.21 I can interpret diagrams of evolutionary relationships,
1	including cladograms and phylogenetic trees.
1	• R 2.22 I can analyze and use data to develop cladograms and
	phylogenetic trees in order to show evolutionary relationships
1	among organisms of common descent.
ļ	• R 2.23 I can use data to explain how new species are formed,
J	increasing earth's biodiversity.
1	• K 2.24 I can define and give examples of types of evolution
	(convergent, divergent, coevolution, and adaptive radiation) that
ļ	lead to increased biodiversity or speciation.
	• S 2.25 I can use the Linnean classification system to classify
	organisms.
	• K 2.26 I can use taxonomic characteristics to scientifically name
	an organism.
ļ	

Unit 3A:	SB2. Obtain, evaluate, and communicate information to analyze how	Curriculum Documents including learning targets, power
Structure and	genetic information is expressed in cells.	points, labs, assessments, etc.
Function of		
Molecular	a. Construct an explanation of how the structures of DNA and RNA	SB2a
Genetics	lead to the expression of information within the cell via the processes	12.1-Identifying the Substance of Genes (pg. 338-343)
	of replication, transcription, and translation.	12.2-The Structure of DNA (pg. 344-348)
15 days		12.3-DNA Replication (pg. 350-353)
Nov 26 – Dec 14	b. Construct an argument based on evidence to support the claim that	13.3-Mutations (pg. 372-373)-Gene Only
	inheritable genetic variations may result from:	SB1b, SB2b
Dec 17-20:	 new genetic combinations through meiosis (crossing over, 	10.1-Cell Growth, Division, and Reproduction (pg. 274-278)
Reserved for end	nondisjunction);	10.2-The Process of Cell Division (pg. 279-285)
of semester	 non-lethal errors occurring during replication (insertions, 	10.3-Regulating the Cell Cycle (pg. 286-290)
requirements	deletions, substitutions); and/or	20.2-Prokaryotes (Binary Fission) (pg. 583)
	heritable mutations caused by environmental factors	11.4-Meiosis (pg. 332-329)-Purpose and Overview Only
	(radiation, chemicals, and viruses).	
	SB1. Obtain, evaluate, and communicate information to analyze the	
	nature of the relationships between structures and functions in living	
	cells.	
	b. Develop and use models to explain the role of cellular reproduction	
	(including binary fission, mitosis, and meiosis) in maintaining genetic	
	continuity.	
Unit 3B:	SB2. Obtain, evaluate, and communicate information to analyze how	Curriculum Documents including learning targets, power
Structure and	genetic information is expressed in cells.	points, labs, assessments, etc.
Function of		
Molecular	a. Construct an explanation of how the structures of DNA and RNA	SB2a, SB1c
Genetics, part 2	lead to the expression of information within the cell via the processes	2.4-Enzymes (pg. 50-53)
	of replication, transcription, and translation.	13.1-RNA (pg. 362-365)
20 days		13.2-Ribosomes and Protein Synthesis (pg. 366-371)
		20.1 Viruses (pg. 579)

Jan 4 – Feb 1	 c. Ask questions to gather and communicate information about the use and ethical considerations of biotechnology in forensics, medicine, and agriculture. (Clarification statement: The element is intended to include advancements in technology relating to economics and society such as advancements may include Genetically Modified Organisms.) SB1. Obtain, evaluate, and communicate information to analyze the nature of the relationships between structures and functions in living cells. 	<pre>**GAC ONLY**13.4-Gene Regulation and Expression (pg. 377-383) SB2c 14.3-Studying the Human Genome (pg. 403-409) 15.1-Selective Breeding (pg. 418-420) 15.2-Recombinant DNA (pg. 421-427) 15.3-Applications of Genetic Engineering (pg. 428-434) 15.4-Ethics and Impacts of Biotechnology (pg. 436-439)</pre>
	c. Construct arguments supported by evidence to relate the structure of macromolecules (carbohydrates, proteins, lipids, and nucleic acids) to their interactions in carrying out cellular processes. (Clarification statement: The function of proteins as enzymes is limited to a conceptual understanding.)	
Unit 4: Patterns of Heredity and Selection	SB1. Obtain, evaluate, and communicate information to analyze the nature of the relationships between structures and functions in living cells.	Curriculum Documents including learning targets, power points, labs, assessments, etc.
25 days Feb 4 – Mar 15	b. Develop and use models to explain the role of cellular reproduction (including binary fission, mitosis, and meiosis) in maintaining genetic continuity.	SB1b, SB2b 14.1-Human Chromosomes (pg. 392-397) 11.4-Meiosis (pg. 332-329) 13.3-Mutations (pg. 374-376)- <i>Chromosomal</i>
	SB2. Obtain, evaluate, and communicate information to analyze how genetic information is expressed in cells.b. Construct an argument based on evidence to support the claim that	SB3a, SB2b, SB3b, SB3c 11.1-The Work of Gregor Mendel (pg. 308-312) Sexual Reproduction (pg. 277-278; 484; 558; 995) 11.2-Applying Mendel's Principles (pg. 313-318) 11.3-Other Patterns of Inheritance (pg. 319-321)
	 inheritable genetic variations may result from: new genetic combinations through meiosis (crossing over, nondisjunction); non-lethal errors occurring during replication (insertions, deletions, substitutions); and/or 	SB6a, SB6d 17.1-Genes and Variation (pg. 482-486) 17.2-Evolution as Genetic Change in Populations (pg. 487- 492)-Hardy Weinberg

 heritable mutations caused by environmental factors (radiation, chemicals, and viruses). 	
SB3. Obtain, evaluate, and communicate information to analyze how biological traits are passed on to successive generations.	
a. Use Mendel's laws (segregation and independent assortment) to ask questions and define problems that explain the role of meiosis in reproductive variability.	
b. Use mathematical models to predict and explain patterns of inheritance. (Clarification statement: Students should be able to use Punnett squares (monohybrid and dihybrid crosses) and/or rules of probability, to analyze the following inheritance patterns: dominance, codominance, incomplete dominance.)	
c. Construct an argument to support a claim about the relative advantages and disadvantages of sexual and asexual reproduction.	
SB6. Obtain, evaluate, and communicate information to assess the theory of evolution.	
a. Construct an explanation of how new understandings of Earth's history, the emergence of new species from pre-existing species, and our understanding of genetics have influenced our understanding of biology.	
d. Develop and use mathematical models to support explanations of how undirected genetic changes in natural selection and genetic drift have led to changes in populations of organisms. (Clarification statement: Element is intended to focus on basic statistical and graphic analysis. Hardy Weinberg would be an optional application to address this element.)	

Unit 5: Stability	SB5. Obtain, evaluate, and communicate information to assess the	Curriculum Documents including learning targets, power
and Change in	interdependence of all organisms on one another and their	points, labs, assessments, etc.
Ecosystems	environment.	
		SB5a, SB5b, SB1c
15 days	a. Plan and carry out investigations and analyze data to support	3.1-What is Ecology (pg. 64-68) **Review from Sem A
	explanations about factors affecting biodiversity and populations in	3.2-Energy, Producers and Consumers (pg. 69-72)
Mar 18 – Apr 12	ecosystems. (Clarification statement: Factors include population size,	**Review from Sem A
	carrying capacity, response to limiting factors, and keystone species.)	3.3-Energy Flow in Ecosystems (pg. 73-78)
Apr 15 – EOC:		3.4-Cycles of Matter (pg. 79-86)
Review for EOC	b. Develop and use models to analyze the cycling of matter and flow of	SB5a
	energy within ecosystems through the processes of photosynthesis	4.2-Niches and Community Interactions (pg. 99-104)
After EOC:	and respiration. • Arranging components of a food web according to	5.1-How Populations Grow (pg. 130-135) *Review from
Remember	energy flow. • Comparing the quantity of energy in the steps of an	Sem. A
some students	energy pyramid. • Explaining the need for cycling of major biochemical	5.2-Limits to Population Growth (pg. 137-141) *Review
will have the	elements (C, O, N, P, and H).	from Sem. A
opportunity to		5.3-Human Population Growth (pg. 142-145) *Review from
retake the	c. Construct an argument to predict the impact of environmental	Sem. A
EOC—do not	change on the stability of an ecosystem.	SB5c, SB5e
waste this time.		4.1-Climate (pg. 96-98)
Review areas	d. Design a solution to reduce the impact of a human activity on the	4.3-Succession (pg. 106-109)
where students	environment. (Clarification statement: Human activities may include	4.4-Biomes (pg. 110-116) **Adaptations Only**
are deficient or	chemical use, natural resources consumption, introduction of non-	4.5-Aquatic Biomes (pg. 117-121) **Adaptations Only**
enrich students	native species, greenhouse gas production.)	SB5d, SB6a
with additional		6.1-A Changing Landscape (pg. 154-157)
Biology content.	e. Construct explanations that predict an organism's ability to survive	6.2-Using Resources Wisely (pg. 158-165)
	within changing environmental limits (e.g., temperature, pH, drought,	19.1 Life on a Changing Planet (pg. 544-545)
	fire).	19.3-Geologic Time (pg. 560-563)
	SB1. Obtain, evaluate, and communicate information to analyze the	
	nature of the relationships between structures and functions in living	
	cells.	
	c. Construct arguments supported by evidence to relate the structure	
	of macromolecules (carbohydrates, proteins, lipids, and nucleic acids)	

ptain, evaluate, and communicate information to assess the	
of evolution.	
truct an explanation of how new understandings of Earth's the emergence of new species from pre-existing species, and derstanding of genetics have influenced our understanding of	