
201ab Quantitative methods
L.04: Uncertainty, risk, and 

probability



Probability
• This section can get a bit mathy

• But, it is important:

– All of statistics is based on probability

– Probability is a useful tool for thinking about the world, 
because as far as we are concerned, the world is 
probabilistic, not deterministic.



Probability is the basis of statistics.
• Probability quantifies uncertainty (e.g., of inferences)

used throughout data analysis

• Statistical model (+ parameters) + Probability 
= sampling/predicted (probability!) distribution
used for prediction, NHST, etc.
= probability of our data (likelihood) under parameters
used for parameter estimation, model selection



Probability
• Probability statements, philosophy
• Basic probability rules
• Joint, conditional, and Bayes’ rule.
• Random variables and probability distributions
– Sampling to generate random values.
– Probability mass (pmf) and density (pdf) functions
– Cumulative probability density function (cdf)
– Quantile function (inverse cdf)

• Expectation, Variance, and their rules
• Central limit theorem and the normal distribution.



Translating probability statements
• Probability 0.0 ≤ P ≤ 1.0 (“proportion”, “risk”)

Proportion used for observed counts, probability for predictions / unobserved events.
“Expected/predicted” proportion: proportion you expect in a future count.

• Percent 0.0 ≤ % ≤ 100.0
% = 100*P

• Odds 0 ≤ odds ≤ ∞ (ratio; 10:1 = 10/1 =10)
odds = P / (1-P)  
P = odds / (1+odds)

• Log-odds -∞ ≤ log-odds ≤ ∞
log-odds = log( odds ) = log( P / (1-P) )
odds = exp( log-odds )
P = exp( log-odds ) / (1+exp( log-odds ))

These are usually used to describe observed counts, 
but you could also use them to refer to chance.

These are often used in gambling, and are 
helpful to describe how probability changes 
under different interventions (typically, odds 
are multiplied)

We will deal with these 
a lot when considering 
logistic regression, 
because they behave 
linearly.



Pet peeve: Comparing probabilities
• Lifetime lung cancer “incidence”/“risk” for female…

non-smoker: 0.003 (absolute probability) odds:1:332
smoker: 0.125  (absolute probability) odds: 1:7

• Risk factor for smoking:  0.125/0.003 = 41
Risk is 41x higher for smokers.
We could (probably shouldn’t) say the risk is 4000% greater.
(relative risk -- proportional)

• Change in risk is 0.125-0.003 = 0.122
Smoking yields a risk that is 0.122 units greater;
Smoking increases risk by 12.2 percentage points
(relative risk -- additive)

• Press often does not clarify which is being reported: 
Confusion between absolute and relative probability (and which is important).  
Confusion between additive and proportional probability differences
Avoid this sort of confusion, figure out which one is being reported.



Probability
• Probability statements, philosophy
• Basic probability rules
• Joint, conditional, and Bayes’ rule.
• Random variables and probability distributions
– Sampling to generate random values.
– Probability mass (pmf) and density (pdf) functions
– Cumulative probability density function (cdf)
– Quantile function (inverse cdf)

• Expectation, Variance, and their rules
• Central limit theorem and the normal distribution.



Technical jargon about “outcomes”
Sample/probability space 
(the set of all possible outcomes)

“Events”
Groups of 
outcomes 
from the 
sample space

“Partition”
A set of “events” that 
are disjoint (non-
overlapping) and cover 
the full sample space



Basic probability rules.
P(Ω) = 1

Ω: sample space
“P(anything)”

Total area is 1

“you draw a card…”



Basic probability rules.
P(Ω) = 1

Ω: sample space
“P(anything)”

0<=P(A)<=1
“Probability of A”

Total area is 1

“you draw a card…”

“you draw an ace…”



Basic probability rules.
P(Ω) = 1

Ω: sample space
“P(anything)”

0<=P(A)<=1
“Probability of A”

P(A)+P(~A) = 1
P(~A) = 1- P(A)
“P(not A)”

Total area is 1

P(~A)
P(A)

“you do not draw an ace…”

“you draw a card…”

“you draw an ace…”



Basic probability rules.
P(Ω) = 1

Ω: sample space
“P(anything)”

0<=P(A)<=1
“Probability of A”

P(A)+P(~A) = 1
P(~A) = 1- P(A)
“P(not A)”

P(A|B) = P(A&B)/P(B)
P(A|B): conditional probability
“P(A given B)”

“you draw an ace, given that 
your card > 10...”



Basic probability rules.
P(Ω) = 1

Ω: sample space
“P(anything)”

0<=P(A)<=1
“Probability of A”

P(A)+P(~A) = 1
P(~A) = 1- P(A)
“P(not A)”

P(A|B) = P(A&B)/P(B)
P(A|B): conditional probability
“P(A given B)”

P(A&B) = P(B|A)*P(A)
P(A&B): joint probability 
conjunction
“P(A and B)”

“you draw the ace of spades…”



Basic probability rules.
P(Ω) = 1

Ω: sample space
“P(anything)”

0<=P(A)<=1
“Probability of A”

P(A)+P(~A) = 1
P(~A) = 1- P(A)
“P(not A)”

P(A|B) = P(A&B)/P(B)
P(A|B): conditional probability
“P(A given B)”

P(A&B) = P(B|A)*P(A)
P(A&B): joint probability 
conjunction
“P(A and B)”

P(A v B) = P(A) + P(B) – P(A&B)
disjunction
“P(A or B)” “you draw an ace or a spade…”



Basic probability rules.
P(Ω) = 1

Ω: sample space
“P(anything)”

0<=P(A)<=1
“Probability of A”

P(A)+P(~A) = 1
P(~A) = 1- P(A)
“P(not A)”

P(A|B) = P(A&B)/P(B)
P(A|B): conditional probability
“P(A given B)”

P(A&B) = P(B|A)*P(A)
P(A&B): joint probability 
conjunction
“P(A and B)”

P(A v B) = P(A) + P(B) – P(A&B)
disjunction
“P(A or B)”

Bayes Rule
P(A|B)=P(B|A) P(A) / P(B)
follows from def. of conditional prob.

Law of total probability
P(B) = Σn [ P(B & An) ]
P(B): marginal probability
(given that Ans are a partition)

Independent events
iff P(A&B)=P(A)*P(B)
thus P(A|B)=P(A)

Disjoint events
iff P(A&B)=0
thus P(A v B) = P(A) + P(B)

“ace”, “queen”



Basic probability rules.
P(Ω) = 1

Ω: sample space
“P(anything)”

0<=P(A)<=1
“Probability of A”

P(A)+P(~A) = 1
P(~A) = 1- P(A)
“P(not A)”

P(A|B) = P(A&B)/P(B)
P(A|B): conditional probability
“P(A given B)”

P(A&B) = P(B|A)*P(A)
P(A&B): joint probability 
conjunction
“P(A and B)”

P(A v B) = P(A) + P(B) – P(A&B)
disjunction
“P(A or B)”

Bayes Rule
P(A|B)=P(B|A) P(A) / P(B)
follows from def. of conditional prob.

Law of total probability
P(B) = Σn [ P(B & An) ]
P(B): marginal probability
(given that Ans are a partition)

Independent events
iff P(A&B)=P(A)*P(B)
thus P(A|B)=P(A)

Disjoint events
iff P(A&B)=0
thus P(A v B) = P(A) + P(B)

“ace”, “clubs”



Basic probability rules.
P(Ω) = 1

Ω: sample space
“P(anything)”

0<=P(A)<=1
“Probability of A”

P(A)+P(~A) = 1
P(~A) = 1- P(A)
“P(not A)”

P(A|B) = P(A&B)/P(B)
P(A|B): conditional probability
“P(A given B)”

P(A&B) = P(B|A)*P(A)
P(A&B): joint probability 
conjunction
“P(A and B)”

P(A v B) = P(A) + P(B) – P(A&B)
disjunction
“P(A or B)”

Bayes Rule
P(A|B)=P(B|A) P(A) / P(B)
follows from def. of conditional prob.

Law of total probability
P(B) = Σn [ P(B & An) ]
P(B): marginal probability
(given that Ans are a partition)

Independent events
iff P(A&B)=P(A)*P(B)
thus P(A|B)=P(A)

Disjoint events
iff P(A&B)=0
thus P(A v B) = P(A) + P(B)



Law of total probability
P(ace) = P(ace & spade) + 

P(ace & heart) +
P(ace & club) +
P(ace & diamond)

A needs to be a “partition” meaning the set of Ans
(a) are mutually exclusive, and 
(b) cover the whole sample space (sum(P(An))=1)

An example that doesn’t work because it is not a partition:
P(ace) not= P(ace & diamond) + P(ace & not a face card) + P(ace & bicycle deck)



Basic probability rules.
P(Ω) = 1

Ω: sample space
“P(anything)”

0<=P(A)<=1
“Probability of A”

P(A)+P(~A) = 1
P(~A) = 1- P(A)
“P(not A)”

P(A|B) = P(A&B)/P(B)
P(A|B): conditional probability
“P(A given B)”

P(A&B) = P(B|A)*P(A)
P(A&B): joint probability 
conjunction
“P(A and B)”

P(A v B) = P(A) + P(B) – P(A&B)
disjunction
“P(A or B)”

Bayes Rule
P(A|B)=P(B|A) P(A) / P(B)
follows from def. of conditional prob.

Law of total probability
P(B) = Σn [ P(B & An) ]
P(B): marginal probability
(given that Ans are a partition)

Independent events
iff P(A&B)=P(A)*P(B)
thus P(A|B)=P(A)

Disjoint events
iff P(A&B)=0
thus P(A v B) = P(A) + P(B)



Probability
• Probability statements, philosophy
• Basic probability rules
• Joint, conditional, and Bayes’ rule.
• Random variables and probability distributions
– Sampling to generate random values.
– Probability mass (pmf) and density (pdf) functions
– Cumulative probability density function (cdf)
– Quantile function (inverse cdf)

• Expectation, Variance, and their rules
• Central limit theorem and the normal distribution.
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Suppose:
- 12/100 women have 

breast cancer
- A mammogram will 

detect breast cancer 
90% of the time.

- A mammogram will 
falsely detect breast 
cancer 7% of the time.



Mammogram contingency
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Suppose:
- 12/100 women have 

breast cancer
- A mammogram will 

detect breast cancer 
90% of the time.

- A mammogram will 
falsely detect breast 
cancer 7% of the time.

What proportion of 
women with a positive 
mammogram have breast 
cancer?



Mammogram contingency
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Mammogram-

What proportion of 
women with a positive 
mammogram have breast 
cancer?

~ 12/18 women with a 
positive mammogram 
have breast cancer.



Mammogram contingency
Suppose:
- 12/100 women have breast cancer

P(cancer) = 0.12
implied: P(no cancer) = 0.88

- A mammogram will detect breast cancer 
90% of the time.
P(mammogram+ | cancer) = 0.9

- A mammogram will falsely detect breast 
cancer 7% of the time.
P(mammogram+ | no cancer) = 0.07

What proportion of women with a positive 
mammogram have breast cancer?

P(cancer | mammogram+) = ?

This is a Bayes rule question: going from one set of conditional 
probabilities, P(m+ | cancer), to their inverse: P(cancer | m+).



Bayes rule inverts conditionals

P(A|B) = P(B|A) P(A) / P(B)

Usually using the law of total probability to obtain P(B)
P(B) = sumA [ P(B|A)P(A) ]
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Mammogram contingency
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Mammogram contingency
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Mammogram contingency
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Mammogram contingency
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P(B) = ΣA P(B & A)



Mammogram contingency
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Mammogram contingency
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Mammogram contingency
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Make the full contingency table
• P(PCR+ | covid) = 0.91   

(sensitivity, recall, hit-rate, true positive rate)
• P(PCR+ | ~covid) = 0.023

(false positive rate)
• P(covid) = 14000/1410000  ?  

(~1000 daily cases * ~14 day active period?)
• What’s P(covid | PCR+)?

https://virologyj.biomedcentral.com/articles/10.1186/s12985-021-01489-0
https://www.icd10monitor.com/false-positives-in-pcr-tests-for-covid-19
(15 min of googling, I would welcome more accurate numbers!)

https://virologyj.biomedcentral.com/articles/10.1186/s12985-021-01489-0
https://www.icd10monitor.com/false-positives-in-pcr-tests-for-covid-19


Probability
• Probability statements, philosophy
• Basic probability rules
• Joint, conditional, and Bayes’ rule.
• Random variables and probability distributions
– Sampling to generate random values.
– Probability mass (pmf) and density (pdf) functions
– Cumulative probability density function (cdf)
– Quantile function (inverse cdf)

• Expectation, Variance, and their rules
• Central limit theorem and the normal distribution.



Random variables
• Assign a value to each possible outcome.  

The value we get is a “random variable”
– Random phenomenon (“experiment”): flip a coin.  

Outcomes: {Head, Tail}
R.V. X = {1 if Head; 0 if Tail}

– Random phenomenon: roll two dice.  
Outcomes: {(1,1); (1,2); (1,3); … (6,5); (6,6)}
R.V. A = die.1 + die.2
R.V. B = die.1 * die.2
R.V. C = die.1 – die.2
R.V. D = {1 if die.1+die.2 is prime; 0 otherwise}

– Random phenomenon: draw two cards from a deck.
Outcomes: {🂱 🃛 , 🂾 🂩, 🃈 🃆, …}
R.V. best blackjack sum {4, …, 21}



Random variables
• Assign a value to each possible outcome.  

The value we get is a “random variable”

• The possible values of the random variable are it’s
support.
– flip a coin 10 times  

X = # of heads (random variable)
Support: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
no other values of X are possible



Random variables
• Assign a value to each possible outcome.  

The value we get is a “random variable”

• The possible values of the random variable are it’s
support.

• We can characterize the random variable a few ways:
– Sampling process
– Probability distribution function
– Cumulative distribution function
– Quantile function
– Moments (moment generating function)



Probability
• Probability statements, philosophy
• Basic probability rules
• Joint, conditional, and Bayes’ rule.
• Random variables and probability distributions
– Sampling to generate random values.
– Probability mass (pmf) and density (pdf) functions
– Cumulative probability density function (cdf)
– Quantile function (inverse cdf)

• Expectation, Variance, and their rules
• Central limit theorem and the normal distribution.



Binomial random variable: sampling
• We flip a fair coin 3 times. 

Outcomes: {HHH, HHT, HTH, THH, …} 
X = number of times we got heads.  {0,1,2,3}

• How do we sample this random variable?
– Sampling: stochastically generate values with frequency 

proportional to their probability under this RV.
– Sampling can be accomplished by stochastically simulating 

the experiment and evaluating the RV, or various 
procedures/algorithms that have the same properties, but
are more efficient.



Binomial random variable: sampling
• We flip a fair coin 3 times. 

X = number of times we got heads.  {0,1,2,3}
• How do we sample this random variable?



Binomial random variable: sampling
• We flip a fair coin 3 times. 

X = number of times we got heads.  {0,1,2,3}
• How do we sample this random variable?



Binomial random variable: sampling
• We flip a fair coin 3 times. 

X = number of times we got heads.  {0,1,2,3}
• How do we sample this random variable?



Binomial random variable: sampling
• We flip a fair coin 3 times. 

X = number of times we got heads.  {0,1,2,3}
• How do we sample this random variable?



Binomial random variable: sampling
• We flip a fair coin 3 times. 

X = number of times we got heads.  {0,1,2,3}
• How do we sample this random variable?
– This is a special kind of random variable for which we have 

a well-defined, named, probability distribution:
– This is a Binomial random variable with parameters:

n = 3 “size” (we flipped a fair coin 3 times)
p = 0.5 “prob” (probability of heads was fair; i.e., 0.5)

– So we can use the built-in R functions to sample it:
rbinom(number_of_samples, size, prob)



rbinom(n, size, p)

n: number of random draws/samples
size: number of attempts (e.g., number of coin flips)
p: probability of success   (e.g., prob coin lands heads)

Returns: a vector of xs (length n), each one representing a 
random draw of a binomial variable (e.g., number of 
heads out of size flips, each coming up heads with 
probability p.) 



Sampling a random variable
• In R: r*

• Each returns n randomly sampled values.

• Each distribution has its own parameters 
(like size and prob for Binomial).  

rbinom(n, …)
rbeta(n, …)
rnorm(n, …)
rgeom(n, …)
rf(n, …)
rt(n, …)



Sampling to solve prob. problems
• If x is a vector of n samples from the random variable X, 

then (if n is large) we can…
– Approximate Pr(X=?) as the frequency with which x=?

In R notation: sum(x==?)/n or mean(x==?)
[Borel’s law of large numbers]

– Approximate expectations (which we haven’t yet covered) 
of f(X) as the average of f(x)
In R notation: sum(f(x))/n or mean(f(x))

[Monte Carlo theorem]

• So, we can estimate the frequency of getting 3 heads 
out of 10 from a fair coin as (where n is something big):

mean( rbinom(n,10,0.5)==3 )



Probability
• Probability statements, philosophy
• Basic probability rules
• Joint, conditional, and Bayes’ rule.
• Random variables and probability distributions
– Sampling to generate random values.
– Probability mass (pmf) and density (pdf) functions
– Cumulative probability density function (cdf)
– Quantile function (inverse cdf)

• Expectation, Variance, and their rules
• Central limit theorem and the normal distribution.



Binomial random variable: probability dist.
• We flip a fair coin 3 times. 

X = number of times we got heads.  {0,1,2,3}
• What is the probability distribution of X?
– The probability distribution describes the probability of 

seeing any particular value of X.
– Here the probability distribution would specify the 

probabilities P(X=0), P(X=1), P(X=2), P(X=3)
– In general, 

P(X=x) = sum(P(outcome)) 
for all outcomes where X=x



Binomial random variable: probability dist.
• We flip a fair coin 3 times. 

X = number of times we got heads.  {0,1,2,3}
• What is the probability distribution of X?

P(X=0) = P(TTT) = 1*0.5^3 = 0.125
P(X=1) = P(TTH) + P(THT) + P(HTT) = 3*0.5^3 = 0.375
P(X=2) = P(THH) + P(HHT) + P(HTH) = 3*0.5^3 = 0.375
P(X=3) = P(HHH) = 1*0.5^3 = 0.125



Binomial random variables

x

P(
X=

x)



Binomial random variable: probability dist.
• We flip a fair coin 3 times. 

X = number of times we got heads.  {0,1,2,3}
• What is the probability distribution of X?
– The probability distribution describes the probability of 

seeing any particular value of X.
– Probability distributions have parameters:  

we flipped a coin 3 times (size=3), and the coin is fair
(p=0.5)
different values of the parameters change the probability 
dist.



Binomial random variables
• We flip a bent coin [ P(H)=p ] 3 times.  

X = number of times we got heads.  {0,1,2,3}
What is the probability distribution of X?

• P(X=x) = sum(P(outcome)) for all outcomes where X=x
P(X=0) = P(TTT) = 1 * (1-p)^3
P(X=1) = P(TTH) + P(THT) + P(HTT) = 3 * p*(1-p)^2
P(X=2) = P(THH) + P(HHT) + P(HTH) = 3 * p^2*(1-p)
P(X=3) = P(HHH) = 1 * p^3



Binomial random variables

x

P(
X=

x)

p=0.25 p=0.55 p=0.75 p=0.95



Binomial random variables
• We flip a bent coin (P(H)=p) n times.  

X = number of times we got heads.  {0,1,2,3,…,n}
What is the probability distribution of X?

• P(X=x) = sum(P(outcome)) for all outcomes where X=x
P(X=0) = choose(n,0) * (1-p)^n
P(X=1) = choose(n,1) * p * (1-p)^(n-1)
P(X=2) = choose(n,2) * p^2 * (1-p)^(n-2)
P(X=n) = choose(n,n) * p^n

• What we really want is a general expression:
P(X=k) = choose(n,k) * p^k * (1-p)^(n-k)



Binomial random variables
X = number of heads from n flips of bent coin with P(H)=p



dbinom(x, size, p)

x: number of successes (e.g., number of heads)
size: number of attempts (e.g., number of coin flips)
p: probability of success   (e.g., prob coin lands 
heads)

Returns: p(X=x) (where X is a binomial variable with 
parameters size and p



Probability distribution: density/mass: 
• In R: d*

• Each of these returns the probability density or mass* 
of x, given their parameters.

dbinom(x, …)
dbeta(x, …)
dnorm(x, …)
dgeom(x, …)
df(x, …)
dt(x, …)



Probability distribution function
• Characterizes how probability is distributed over the 

possible values of the random variable, given the 
parameters.



Discrete vs continuous
• Some are discrete, others continuous.
– The outcome of a dice roll
– The sum of two dice rolls
– The number of rolls it takes to get a 6
– The number of 5 or 6 rolls out of N attempts
– The distance on the table the dice rolled when thrown
– The decibel level of the groans of disappointment at a craps 

table in Vegas when the dice were rolled.
– Etc.



Discrete RV: probability mass function
• Probability mass function (pmf):

Each possible value has some non-zero probability.
– The number of dots, the sum of two dice



Continuous RV: probability density
• Probability density function (pdf):

Continuous variables have infinitely many values, each 
with infinitely little probability. 
Values only have “probability density”
Intervals have probability mass
(defined as ‘area under the curve’ of pdf in that interval)
– The distance on the table the dice rolled when thrown



Probability mass vs density functions
• Discrete random variables
– Every value has some definable probability mass. 
– If you sum Prob(x) for all values of x, you get 1.0

e.g., sum(dbinom(0:10, 10, 0.5)) = 1.0

• Continuous random variables
– Every value has 0 probability mass, because every value is 

infinitesimally precise. Only ranges of values have 
probability mass. Otherwise only prob. density

– Probability density is defined as the derivative of the 
cumulative probability.

– If you sum density(x) for “all” values of x, you get nonsense 
(nonsense that changes with how finely you slice x)
sum(dbeta(seq(0,1,by=0.01 ), 2, 2))=99.99
sum(dbeta(seq(0,1,by=0.001), 2, 2))=999.99
(of course, you could use numerical integration by summing density(x)*dx)



Probability
• Probability statements, philosophy
• Basic probability rules
• Joint, conditional, and Bayes’ rule.
• Random variables and probability distributions
– Sampling to generate random values.
– Probability mass (pmf) and density (pdf) functions
– Cumulative probability density function (cdf)
– Quantile function (inverse cdf)

• Expectation, Variance, and their rules
• Central limit theorem and the normal distribution.



Cumulative distribution function (cdf)
• The integral /sum from -∞ to x of the pdf / pmf
• In other words, cdf(x) is the probability that a random 

variable will have a value less than or equal to x.
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Cumulative distribution function (cdf)
• The integral /sum from -∞ to x of the pdf / pmf
• In other words, cdf(x) is the probability that a random 

variable will have a value less than or equal to x.
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Cumulative distribution function (cdf)
• The integral /sum from -∞ to x of the pdf / pmf
• In other words, cdf(x) is the probability that a random 

variable will have a value less than or equal to x.
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Cumulative probability

€ 

P(≤ x) = P(y)
y=−∞

x

∑

P(≤ x) = P(y)dy
−∞
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Gotcha with cdf for discrete variables.
• For continuous variables, P(x) ≈ 0
• For discrete variables, P(x) ≥ 0
Therefore…
• For continuous variables

P(X ≥ x) = 1 - P(X ≤ x)
• For discrete variables

P(X ≥ x) = 1 - P(X < x) not 1 - P(X ≤ x)
So if you want to evaluate the probability that a random 
variable will take on a value of x or higher…

…with a continuous variable you can calculate it as 1-CDF(X)  
e.g., prob that a Normal(0,1) variable is 2 or more:

…with a discrete variable over integers you must calculate it as 1-CDF(X-1) [**]
e.g., prob that we get 7 or more heads out of 10 coin flips is:

1-pnorm(2, 0, 1)

1-pbinom(7-1, size=10, prob=0.5)



pbinom(x, size, p)
x: number of successes (e.g., number of heads)
size: number of attempts (e.g., number of coin flips)
p: probability of success   (e.g., prob coin lands heads)
Returns: P(X≤x) (where X is the random binomial variable).

E.g.,: probability that we get x or fewer heads.

pnorm(x, mean, sd)
x: value of variable (e.g., specific IQ score)
mean: average (e.g., mean IQ score is 100)
sd: standard deviation (e.g., IQ defined as sd=15)
Returns: P(X≤x) (where X is the random normal variable).

E.g.,: probability that an IQ score will be x or lower



Cumulative probability
• In R: p*

• Each of these returns the cumulative probability at x, 
given the parameters.

pbinom(x, …)
pbeta(x, …)
pnorm(x, …)
pgeom(x, …)
pf(x, …)
pt(x, …)



Probability
• Probability statements, philosophy
• Basic probability rules
• Joint, conditional, and Bayes’ rule.
• Random variables and probability distributions
– Sampling to generate random values.
– Probability mass (pmf) and density (pdf) functions
– Cumulative probability density function (cdf)
– Quantile function (inverse cdf)

• Expectation, Variance, and their rules
• Central limit theorem and the normal distribution.



Note: for discrete variables there often isn’t an exact quantile: it falls between two values.  Different 
methods exist for interpolating, or not. We will use the default R quantile functions as the gold standard.

Quantile (inverse cdf) function
• What is the value such that the probability that this 

random variable is equal to or less than that value is q?

IQ
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What is the IQ such that 90% of all people have a lower IQ than that?
120



Quantile function (inverse cdf)
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plot(x, dnorm(x, 0, 1))

plot(x, pnorm(x, 0, 1))

plot(p, qnorm(p, 0, 1))



CDF and Quantile
• Cumulative distribution function (cdf):

p = cdf(x)

‘an IQ of 120 puts me in what quantile (percentile) of the IQ 
distribution?’

• Quantile function (icdf):
x = icdf(p)

‘what would my IQ have to be to be in the 91st

percentile?’

pnorm(120, mean=100, sd=15)

qnorm(0.91, mean=100, sd=15)



Variants of a quantile
• Median: 0.50th quantile.

(although “median” usually refers to a sample statistic, not a 
property of a distribution)

• Percentile: 1st: 0.01; 2nd: 0.02; …; 98th: 0.98, etc.

• Quartile: 1st: 0.25; 2nd: 0.5; 3rd: 0.75
‘Interquartile range’: distance between 1st and 3rd quartile.

• Quintile: 1st: 0.2; 2nd: 0.4; …; 4th: 0.8

• Decile: 1st: 0.1; 2nd: 0.2; …; 9th: 0.9.



qnorm(p, mean, sd)
p: Cumulative probability (e.g., IQ percentile)
mean: average (e.g., mean IQ score is 
100)
sd: standard deviation (e.g., IQ defined as 
sd=15)

Returns: x such that P(X≤x)=p 
(where X is the random normal variable).

E.g.,: the IQ score that will be at the pth quantile; 
IQ score such that p of all IQ scores are less than it.

(quantile functions for discrete RVs are tricky)



Quantile function
• In R: q*

• Each of these returns the x such that the cumulative 
probability at x is p, given the parameters.

qbinom(p, …)
qbeta(p, …)
qnorm(p, …)
qgeom(p, …)
qf(p, …)
qt(p, …)



Probability
• Probability statements, philosophy
• Basic probability rules
• Joint, conditional, and Bayes’ rule.
• Random variables and probability distributions
– Sampling to generate random values.
– Probability mass (pmf) and density (pdf) functions
– Cumulative probability density function (cdf)
– Quantile function (inverse cdf)

• Expectation, Variance, and their rules
• Central limit theorem and the normal distribution.



Expectation and moments of RVs

• BEWARE:
Most moments have a sample statistic counterpart 
(e.g., mean, variance), but there is a difference between 
calculating the sample statistic and calculating the 
expectation of a function of a random variable.



“Expectation” / “Expected value”
Expected value of a random variable is its mean: 
the sum of each possible value weighted by its probability

E[X]= x1P(X = x1)+ x2P(X = x2 )+ x3P(X = x3)+...+ xkP(X = xk )
Expected value of X.
“Mean[X]”

Sum of all values of x weighted by their probability mass

Note: relationship to sample statistic via Monte Carlo theorem



Expected value
Expected value of a random variable is its mean: 
the sum of each possible value weighted by its probability

• Sum for discrete variables; integral for continuous.

E[X]= xP(X = x)
x∈X
∑

Set notation for sum over all 
the possible values of X.

E[X]= f (x)x
−∞

∞

∫ dx

The dx in the integral corresponds 
to the infinitely small interval 
around x.  By taking this interval in 
account f(x)dx yields a probability 
mass.



Expectation and moments
• Mean:

the ‘location’ of the random variable: where is the 
variable centered?  Where is the center of mass?

Same meanDifferent mean

Note that not all distributions are symmetric, so the mean is not always the mode.

µX =Mean[X]= E[X]



Expectation and moments
• Mean:

• Note: 
here we are using ‘mu_X’ rather than ‘x-bar’ to denote the mean 
because we are talking about the mean of a random variable with 
some known probability distribution, not the sample mean, 
which is a statistic of some data.

• Typically we use the sample mean to estimate mu – the 
mean of the random variable which we sampled.

µX =Mean[X]= E[X]



Expectation and moments
• Variance:

The ‘scale’ of the distribution: how spread out is the 
probability over possible values of x?

σ X
2 =Variance[X]= E[(X −E[X])2 ]= E[X 2 ]−E[X]2



Expectation and moments
• Skewness: 

is the distribution asymmetric? If so, is the negative or 
positive tail heavier?

Skew[X]= E x −µX
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Expectation and moments
• (Excess) Kurtosis:

is the distribution peakier with 
heavier tails (high – positive) or 
squat with shorter tails 
(low – negative)? 

Kurtosis[X]= E x −µX
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Subtracting 3 (the 
kurtosis of a normal 
distribution) makes this 
into ‘Excess’ Kurtosis 
relative to the normal



Expectation and moments
• Mean: 

• Variance: 

• Skewness: 

• (Excess) Kurtosis:

µX =Mean[X]= E[X]

σ X
2 =Variance[X]= E[(X −E[X])2 ]

Skew[X]= E x −µX

σ X
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Kurtosis[X]= E x −µX
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Note: all of these are the expected value of some f(x) weighted by P(x):  sum(f(x)*p(x))
For Mean[X] f(x) = x
For Variance[X] f(x) = (x-Mean[X])^2
We can calculate the expectation for any* f(x) of a random variable.



Probability
• Probability statements, philosophy
• Basic probability rules
• Joint, conditional, and Bayes’ rule.
• Random variables and probability distributions
– Sampling to generate random values.
– Probability mass (pmf) and density (pdf) functions
– Cumulative probability density function (cdf)
– Quantile function (inverse cdf)

• Expectation, Variance, and their rules
• Central limit theorem and the normal distribution.



Distribution of the sum of n iid RVs

n=1 n=2 n=4 n=8 n=64 n=128
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Central limit theorem
• The sum of n i.i.d. random 

variables is Normally distributed 
if n is big enough*

• Many real-world variables can be thought of 
as the sum of lots of independent and roughly 
identically distributed, contributing factors, 
so we often treat our measures as having a 
Normal distribution, but this should be 
verified.



Normal Distribution 

It has two parameters:
“location” (mean; mu)
“scale” (sd or var)

In R for a Normal distribution with mean M and sd S
Probability density at x = dnorm(x, M, S)
Cumulative probability at x = pnorm(x, M, S)
Quantile function for p = qnorm(p, M, S)



Probability
• Probability statements, philosophy
• Basic probability rules
• Joint, conditional, and Bayes’ rule.
• Random variables and probability distributions
– Sampling to generate random values.
– Probability mass (pmf) and density (pdf) functions
– Cumulative probability density function (cdf)
– Quantile function (inverse cdf)

• Expectation, Variance, and their rules
• Central limit theorem and the normal distribution.



Some typical probability questions.
• When flipping a fair coin, what is the probability that 

the first occurrence of heads will be on the 5th flip?

• If you run 20 independent, tests on truly null data, each 
with a false-positive rate of 0.05, what’s the probability 
that you will get at least 1 false positive (the familywise
false-positive rate)?
– What would the per-test false-positive rate have to be for 

the familywise false positive rate –
P(at least 1 false-positive) -- to be 0.05?



Binomial random variables
• We flip a bent coin [ P(H)=p ] n times.  

X = number of times we got heads.  {0,1,2,3,…,n}
What is the probability distribution of X?

• P(X=x) = sum(P(outcome)) for all outcomes where X=x
P(X=0) = 1 * (1-p)^n
P(X=1) = # * p * (1-p)^(n-1)
P(X=2) = # * p^2 * (1-p)^(n-2)
P(X=n) = 1 * p^n

• What we really want is a general expression:
P(X=k) = # * p^k * (1-p)^(n-k)

• What are the #s?
How many different ways are there to get k / n heads?



Binomial coefficient
• How many ways are there to get k heads in n flips?

• ‘N choose K’ 

choose(5,3) [1] 10

factorial(5)/factorial(3)/factorial(2) [1] 10
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Binomial random variables
• We flip a bent coin (P(H)=p) n times.  

X = number of times we got heads.  {0,1,2,…,n}

P X = k | n, p( ) = n
k

!

"
#

$

%
& pk (1− p)n−k

Probability that binomial random 
variable have k successes. Given that 
there are n attempts, and each one 
has probability p of being a ‘success’

Probability of one specific 
outcome that has k successes 
out of n attempts

Binomial probability mass function

Binomial 
coefficient: How 
many unique 
outcomes are 
there with k 
successes out of 
n attempts?

This is the Binomial probability mass function.  
It tells us the probability that (Binomial) random variable X 
will take on a given value (k) given two parameters (n, p)
Note that these parameters have a meaning: 
n: number of coin flips
p: bias of the coin (probability of heads/success)



Binomial random variables
• We flip a bent coin (P(H)=p) n times.  

X = number of times we got heads.  {0,1,2,…,n}

dbinom(k,n,p) [1] 0.1797

n=20
p=0.4
k=7
choose(n,k)*p^k*(1-p)^(n-k) [1] 0.1797

dbinom(x,n,p)

x=0:20 [21] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

choose(n,x)*p^x*(1-p)^(n-x) [21] 3.656158e-05 4.874878e-04 3.087423e-03 …

[21] 3.656158e-05 4.874878e-04 3.087423e-03 …



Binomial questions
Use vectors, dbinom(), and sum() in R to make these calculations!

• Generally, 51.2% of all (US) births are male. 
A hospital has 10 births in one day. 
What is the probability that…
– exactly 6 of them will be male?
– 7 or more of them will be female?
– The probability that the proportion of male births will be 

abnormal
i.e., either abnormally high (>75%) or abnormally low (<25%)

– What is the probability of an abnormal proportion of male 
births in a hospital that has 100 births in one day?



Small samples and variability

Extreme events are way more 
likely in small samples!

“The Most Dangerous Equation” by Howard Wainer.

“Ignorance of how sample size affects statistical variation has 
created havoc for nearly a millennium”



Binomial questions with rbinom()
Use rbinom() to make these calculations!

• Generally, 51.2% of all (US) births are male. 
A hospital has 10 births in one day. 
What is the probability that…
– exactly 6 of them will be male?
– 7 or more of them will be female?
– The proportion of male births will be abnormal

i.e., either abnormally high (>75%) or abnormally low (<25%)

– What is the probability of an abnormally high proportion of 
female births in a hospital that has 100 births in one day?



Cumulative probability questions
use pnorm(), pbinom() in R

• IQ normally distributed with a mean=100 and sd=15.
What is the probability that a given person has an IQ…
– Less than 120?
– Greater than 145?
– Between 90 and 110?

• Test scores on a 25 item quiz are binomially distributed 
with n=25, p=0.7.
What is the probability that a given person’s score is…
– Less than 17?
– Greater than 20?
– Between 15 and 20?



Quantile questions
Use qnorm(), qbinom() in R

• IQ normally distributed with a mean=100 and sd=15.
– What would your IQ score have to be to join MENSA 

(98th percentile of IQ distribution)?
– What is the interquartile range of IQ?
– The Prometheus society accepts only the top 1/30000th of 

the IQ distribution.  How much higher is the IQ cutoff for 
Prometheus membership as compared to MENSA?

• Test scores on a 25 item quiz are binomially distributed 
with n=25, p=0.7.
– What score would put you in the 90th percentile?
– What is the interquartile range for these scores?
– What is the median score?



Calculating expectation 
Let’s say I flip a bent coin, that comes up heads with 
probability 0.2.  What is the expected number of flips until 
I see my first heads?

Probability distribution of X: the flip on which I see the first heads.



Calculating expectation 
Let’s say I flip a bent coin, that comes up heads with 
probability 0.2.  What is the expected number of flips until 
I see my first heads?

x = 1:10000 [10000] 1, 2, 3, 4, …, 9999, 10000

Random variable: the position in the sequence when the first heads comes up.
Possible values of the random variable x 
(note, possible values are integers from 1 to infinity, but here 10K is more than big enough to include all possibilities with any considerable probability)

Parameter of the probability distribution of this random variable: p(heads)

p.h = 0.2 [1] 0.2

Probability of every value of x

px = (1-p.h)^(x-1)*p.h

[10000] 0.2, 0.16, 0.128, 0.1024, …, 0, 0

Expected value of x (sum of all values of x weighted by their probabilities)

M.x = sum(x*px) [1] 5

So, on average, it will take 5 coin flips to see our first heads…



Calculating expectation 
Let’s say I flip a bent coin, that comes up heads with 
probability 0.2.  What is the expected number of flips until 
I see my first heads?

x = 1:10000 [10000] 1, 2, 3, 4, …, 9999, 10000

Random variable: the position in the sequence when the first heads comes up.
Possible values of the random variable x 
(note, possible values are integers from 1 to infinity, but here 10K is more than big enough to include all possibilities with any considerable probability)

Parameter of the probability distribution of this random variable: p(heads)

p.h = 0.2 [1] 0.2

Probability of every value of x

px = (1-p.h)^(x-1)*p.h

[10000] 0.2, 0.16, 0.128, 0.1024, …, 0, 0

Expected value of x (sum of all values of x weighted by their probabilities)

M.x = sum(x*px) [1] 5

Expected variance of x (sum of all values of (x-M.x)^2 weighted by their probabilities)

V.x = sum( (x-M.x)^2 * px ) [1] 20



Calculating expectation 
Let’s say I flip a bent coin, that comes up heads with 
probability 0.2.  What is the expected number of flips until 
I see my first heads?

x = 1:10000 [10000] 1, 2, 3, 4, …, 9999, 10000

Possible values of the random variable x 

p.h = 0.2 [1] 0.2

Probability of every value of x

px = (1-p.h)^(x-1)*p.h [10000] 0.2, 0.16, 0.128, …, 0, 0

Expected value of x (sum of all values of x weighted by their probabilities)

M.x = sum(x*px) [1] 5

Expected variance of x (sum of all values of (x-E.x)^2 weighted by their probabilities)

V.x = sum( (x-M.x)^2 * px ) [1] 20

Expected skew of x (sum of all values of Z(x)^3 weighted by their probabilities)

Zx = function(x)( (x-M.x) / sqrt(V.x) )

[1] 2.02Skew.x = sum( Zx(x)^3 * px )



Calculating expectation 
Let’s say I flip a bent coin, that comes up heads with 
probability 0.2.  What is the expected number of flips until 
I see my first heads?

x = 1:10000 [10000] 1, 2, 3, 4, …, 9999, 10000

Possible values of the random variable x 

p.h = 0.2 [1] 0.2

Probability of every value of x

px = (1-p.h)^(x-1)*p.h [10000] 0.2, 0.16, 0.128, …, 0, 0
Expected value of x (sum of all values of x weighted by their probabilities)

M.x = sum(x*px) [1] 5
Expected variance of x (sum of all values of (x-E.x)^2 weighted by their probabilities)

V.x = sum( (x-M.x)^2 * px ) [1] 20
Expected skew of x (sum of all values of Z(x)^3 weighted by their probabilities)

Zx = function(x)( (x-M.x) / sqrt(V.x) )

[1] 2.02Skew.x = sum( Zx(x)^3 * px )

Expected (Excess) Kurtosis of x (sum of all values of Z(x)^4 weighted by their probabilities)

Kurt.x = sum( Zx(x)^4 * px ) - 3 [1] 6.05



Calculating expectation 
Let’s say I flip a bent coin, that comes up heads with 
probability 0.2.  What is the expected number of flips until 
I see my first heads?

Mean[X] = 5
Variance[X] = 20

Skewness[X] = 2.02
(Excess) Kurtosis[X] = 6.05



Expectation questions
1) Scores (X) on a 25 item quiz are distributed as a 

Binomial with n=25, p=0.7
- What is the expected value of X?
- Variance of X?
- Skew of X?
- Kurtosis of X?

2) Scores on another quiz (Y) have Mean[Y]=15, Var[Y]=16 (and 
are independent with scores on the first quiz).  I add both 
scores up to get the final score, Z.
- What is Mean[Z]?
- What is Var[Z]?



Properties of mean and variance
• Properties:

Nefarious question: 
X has mean 5, variance 6; 
Y has mean -4, variance 10.  
Z = 5X-3Y+10.  
What are the mean and variance of Z?

Mean[aX + b]= a ⋅Mean[X]+ b
Variance[aX + b]= a2 ⋅Variance[X]
Mean[X +Y ]=Mean[X]+Mean[Y ]
Variance[X +Y ]=Variance[X]+Variance[Y ]

This is useful to know because the 
various cryptic equations for e.g., a t-
statistic for various kinds of t-tests 
are derived from these sorts of 
calculations.



Not a proof of central limit theorem
• Z = sum of n iid RVs Xi

• What is the mean/variance/skew/kurtosis of Z? in 
terms of these moments of X?

• Mean and variance grow with n, but Skew and Kurtosis (and higher 
moments) go to 0 (what they are for a Normal distribution)

• So as n grows, the sum becomes more Gaussian.

Mean[ Xi
i=1

n

∑ ]= n ⋅Mean[X]

Variance[ Xi
i=1

n

∑ ]= n ⋅Variance[X]

Skew[ Xi
i=1

n

∑ ]= 1
n
⋅Skew[X]

Ex.Kurtosis[ Xi
i=1

n

∑ ]= 1
n
⋅Ex.Kurtosis[X]



Expectation + Normal question
Let's say puppies have the following traits:
wagging speed: w(Hz) ~ Norm ( mu=1,    sd=0.25 )
ear stiffness: k(log GPa) ~ Norm ( mu=-2.5, sd=0.5  )
eye/head size: e(log m2/m2) ~ Norm ( mu=-1.5, sd=1/3  )

Remarkably, all of these are independent.

We define a cuteness index (λ) for a given puppy as 
λ = 4*w - k + 3*e + 5

1) What is the mean λ for all puppies?
2) What is the variance of λ for puppies?
3) What is the probability that a randomly sampled 

puppy has a cuteness index greater than 10?



Z scores
• What is the probability that our sample mean will have 

a Z-score > 1.96 or < -1.96?  
(i.e. will be more than 1.96 standard errors away from the population mean?)

• What is the ‘critical’ absolute Z value such that the Z-
score of our sample mean will have an absolute value 
less than that with probability 68.27%?
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Sampling dist. of the sample mean
• We draw N samples from a distribution with mean=100, 

sd=15 (e.g., N IQ scores).  We calculate the mean of 
those n samples.  What is the distribution of the sample 
mean?  (Mean[sample mean]? Variance[sample mean]?)


