201ab Quantitative methods
L.o4: Uncertainty, risk, and
probability



Probability

* This section can get a bit mathy

* But, it is important:
— All of statistics is based on probability

— Probability is a useful tool for thinking about the world,
because as far as we are concerned, the world is
probabilistic, not deterministic.



Probability is the basis of statistics.

Probability quantifies uncertainty (e.g., of inferences)
used throughout data analysis

Statistical model (+ parameters) + Probability

= sampling/predicted (probability!) distribution

used for prediction, NHST, etc.

= probability of our data (likelihood) under parameters
used for parameter estimation, model selection



Probability

Probability statements, philosophy

Basic probability rules

Joint, conditional, and Bayes’ rule.

Random variables and probability distributions
— Sampling to generate random values.

— Probability mass (pmf) and density (pdf) functions

— Cumulative probability density function (cdf)
— Quantile function (inverse cdf)

Expectation, Variance, and their rules
Central limit theorem and the normal distribution.




Translating probability statements

9 ¢

Probability 0.0sP=<1.0 (“proportion”, “risk™)

Proportion used for observed counts, probability for predictions / unobserved events.
“Expected/predicted” proportion: proportion you expect in a future count.

Percent 0.0<% <100.0

. o/ — *
These are usually used to describe observed counts, Jo =100*P
but you could also use them to refer to chance.

Odds 0<o0dds <oo (ratio; 10:1=10/1=10)

These are often used in gambling, and are OddS —_ P 1-P
helpful to describe how probability changes / ( )

under different interventions (typically, odds P = odds / (1+OddS)
are multiplied)

Log-odds -0 < l0g-0dds < oo
We will deal with these log-odds — log( OddS) — log( P / (1-P) )

a lot when considering
logistic regression, odds = exp( log-odds )
because they behave P = exp(log-odds) / (1+exp(log-odds))

linearly.



Pet peeve: Comparing probabilities

Lifetime lung cancer “incidence”/“risk” for female...
non-smoker:  0.003  (absolute probability) ~ 0dds:1:332
smoker: 0.125  (absolute probability) ~ 0odds: 1:7

Risk factor for smoking: 0.125/0.003 = 41
Risk is 41x higher for smokers.

We could (probably shouldn’t) say the risk is 4000% greater.
(relative risk -- proportional)

Change inrisk is 0.125-0.003 = 0.122

Smoking yields a risk that is 0.122 units greater;
Smoking increases risk by 12.2 percentage points
(relative risk -- additive)

Press often does not clarify which is being reported:

Confusion between absolute and relative probability (and which is important).
Confusion between additive and proportional probability differences
Avoid this sort of confusion, figure out which one is being reported.



Probability

Probability statements, philosophy

Basic probability rules

Joint, conditional, and Bayes’ rule.

Random variables and probability distributions
— Sampling to generate random values.

— Probability mass (pmf) and density (pdf) functions

— Cumulative probability density function (cdf)
— Quantile function (inverse cdf)

Expectation, Variance, and their rules
Central limit theorem and the normal distribution.
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Basic probability rules.
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Basic probability rules.

Total area is 1
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Basic probability rules.

Total area is 1

P(Q) =1
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Basic probability rules.
P(Q) =1

(): sample space
“P(anything)”
o¢<=P(A)<=1
“Probability of A”
P(A)+P(~A) = 1
P(~A) =1- P(A)

“P(not A)”
P(A|B) = P(A&B)/P(B)

P(A|B): conditional probability
“P(A given B)”

“you draw an ace, given that

your card > 10..”




Basic probability rules.
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“P(anything)”
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“Probability of A”
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“P(not A)”
P(A|B) = P(A&B)/P(B)
P(A|B): conditional probability
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Basic probability rules.
P(Q) =1

(): sample space
“P(anything)”
o¢<=P(A)<=1
“Probability of A”
P(A)+P(~A) =1
P(~A) = 1- P(A)
“P(not A)”
P(A|B) = P(A&B)/P(B)
P(A[B): conditional probability ~ _
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Basic probability rules.
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Basic probability rules.

P(Q) =1
(): sample space
“P(anything)”

o¢<=P(A)<=1
“Probability of A”

P(A)+P(~A) =1
P(~A) = 1- P(A)

“P(not A)”

P(A|B) = P(A&B)/P(B)

P(A|B): conditional probability
“P(A given B)”

P(A&B) = P(B|A)*P(A)
P(A&B): joint probability
conjunction
“P(A and B)”

P(Av B) =P(A) + P(B) — P(A&B)
disjunction
“P(A or B)”

Bayes Rule
P(A|B)=P(B|A) P(A) / P(B)
follows from def. of conditional prob.

Law of total probability
P(B)=2,[P(B&A,)]
P(B): marginal probability
(given that A s are a partition)

Independent events
iff P(A&B)=P(A)*P(B)
thus P(A|B)=P(A)

Disjoint events
iff P(A&B)=0
thus P(A v B) = P(A) + P(B)



Law of total probability

P(ace) = P(ace & spade) + B
Law of total probability
P(ace & heart) + P(B)= 5. [P(B&A )]
P(ace & club) + P(B): marginal probability
D(ace 2 diamond) (given that A_s are a partition)

Aneeds to be a “partition” meaning the set of A.s
(a) are mutually exclusive, and

(b) cover the whole sample space (sum(P(A,))=1)

An example that doesn’t work because it is not a partition:
P(ace) not= P(ace & diamond) + P(ace & not a face card) + P(ace & bicycle deck)



Basic probability rules.

P(Q) =1
(): sample space
“P(anything)”

o¢<=P(A)<=1
“Probability of A”

P(A)+P(~A) =1
P(~A) = 1- P(A)

“P(not A)”

P(A|B) = P(A&B)/P(B)

P(A|B): conditional probability
“P(A given B)”

P(A&B) = P(B|A)*P(A)
P(A&B): joint probability
conjunction
“P(A and B)”

P(Av B) =P(A) + P(B) — P(A&B)
disjunction
“P(A or B)”

Bayes Rule
P(A|B)=P(B|A) P(A) / P(B)
follows from def. of conditional prob.

Law of total probability
P(B)=2,[P(B&A,)]
P(B): marginal probability
(given that A s are a partition)

Independent events
iff P(A&B)=P(A)*P(B)
thus P(A|B)=P(A)

Disjoint events
iff P(A&B)=0
thus P(A v B) = P(A) + P(B)



Probability

Probability statements, philosophy

Basic probability rules

Joint, conditional, and Bayes’ rule.

Random variables and probability distributions
— Sampling to generate random values.

— Probability mass (pmf) and density (pdf) functions

— Cumulative probability density function (cdf)
— Quantile function (inverse cdf)

Expectation, Variance, and their rules
Central limit theorem and the normal distribution.
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Mammogram contingency
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Mammogram contingency

Suppose:

- 12/100 women have “““““
breast cancer “““““

- A mammogram will X XX XXXXX X .

detectbreastcancer Q@ Q9 00 00000 O

90% of the time. “““““
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Mammogram contingency

Suppose:

- 12/100 women have “““““
breast cancer “““““

- A mammogram will X XX XXXXX X .
detect breast cancer 00000 OCOOO
90% of the time.

- A mammogram will “““““
falsely detect breast 000 ‘ ‘ 2000
cancer 7% of the time. “““““

What proportion of 000000000

women with a positive 000000000

mammogramhavebreast 6 6 0 0 0 0 0 © ©® @

cancer?
Mammogram- . ‘

Mammogram+‘ ‘

Has breast cancer
No breast cancer



Mammogram contingency

What proportion of

womei wl?thapositive “““““

mammogram have breast “““““

cancer? 000000000
000000 0000000000
000000 0000000000

~12/18 women with a 0000000000
positive mammogram 0000000000
have breast cancer.

000000000

Mammogram- ‘ ‘
Mammogram+‘ ‘

Has breast cancer
No breast cancer



Mammogram contingency

Suppose: ..........
( I I XX XXX XX |

- 12/100 women have breast cancer 0000000000
P(cancer) = 0.12 000000OCOOO

implied: P(no cancer) = 0.88 0000000000

. 0000000000
- Amammogram will detect breastcancer @0 0000000@® : :
90% of the time. 0000000000 :
P(mammogram+ | cancer) = 0.9 0000000000 :
( gram | ) 0000000000 : :
- A mammogram will falsely detect breast Mammogram- @ @
cancer 7% of the time. Mammogram: @) @)

P(mammogram+ | no cancer) = 0.07
What proportion of women with a positive
mammogram have breast cancer?

P(cancer | mammogram+) = ?

This is a Bayes rule question: going from one set of conditional
probabilities, P(m+ | cancer), to their inverse: P(cancer | m+).



Bayes rule inverts conditionals

P(A[B) = P(B|A) P(A) / P(B)

Usually using the law of total probability to obtain P(B)
P(B) = sum, [ P(B|A)P(A) ]



Mammogram contingency

Marginal probability: Mammogram Mammogram
P(Can cer) positive negative
= 9900
0.99
S
o
P(BJA) P(A) =
P(A|B) =
P(B) 100
@ 0.01
c
S
10,000
1.00




Mammogram contingency

Conditional probability:
P(Mammorgram | no cancer)

P(B|A) P(A)
P(B)

P(A|B) =

Mammogram Mammogram

positive negative
7 5 9900
= 0.99
S| 0.07 0.93
)
2
(S
100
o 0.01
(S
c
©
O
10,000

1.00




Mammogram contingency

Mammogram Mammogram

positive negative
. 693 9207 9900
Joint probability: 2| 0069 0.921 0.99
S| 0.07 0.93
P(Mammogram & no cancer) °
2

P (B & A) 100

0.01

Cancer

P(B|A) P(A)

P(A|B) =

P(B) 10,000

1.00




Mammogram contingency

Mammogram Mammogram

positive negative
. 693 9207 9900
S| 0069 0.921 0.99
S| 0.07 0.93
P(B|A) P(A) ¢
P(A]B) = — (B) g
g 00 |
Conditional probability: | @ o - 0.01
P(Mammorgram | cancer) | 8| '
(& %
10,000

1.00




Mammogram contingency

Mammogram Mammogram

positive negative
. 693 9207 9900
Joint probability: g| 0.063 0.921 0.99
S| 0.07 0.93
P(Mammogram & cancer) o
P(B & A) 80 20 100
5 0.008 0.002 0.01
§ 0.8 0.2
o
P(B|A) P(A)
P(A|B) =
P(B) 10,000

1.00




Mammogram contingency

Mammogram Mammogram

positive negative
. 693 9207 9900
_ Q 0.069 0.921 0.99
P(B) =X, P(B & A) I 003
2
P(Al B) - P(BIA) P(A) 80 20 100
= 5 0.008 0.002 0.01
P(B) § 0.8 0.2
&)
. . 773 9227 10,000
Marginal probability: 0.077 0.923 1.00
P(Mammogram)




Mammogram contingency

P(B]A) P(A) S

o(a )< PBIAIPA) 2
P(B)

Conditional probability: g

P(cancer | Mamm. negative) §

MammogramﬁVIammogram\

positive negative
693 9207 9900
0.069 0.921 0.99
0.07 0.93
0.998
80 20 100
0.008 0.002 0.01
0.8 0.2
0.002
773 9227 10,000
0.077 0.923 1.00




Mammogram contingency

[IVIammogram\ Mammogram

positive negative
" 693 9207 9900
S| 0.069 0.921 0.99
Sll 0.07 0.93
P(AlB) - P(BIA) P(A) 2 0.897 0.998
P(B)
80 20 100
Conditional probability: & 080-008 020-002 0.01
I c . .
P(cancer | Mamm. positive) S 0.103 0.002
773 9227 10,000
0.077 0.923 1.00




Mammogram contingency

P(B|A) P(A)

P(A|B) = P(B)

( Cancer w (No Cancer\

10,000
1.00




Make the full contingency table
P(PCR+ | covid) = 0.91

(sensitivity, recall, hit-rate, true positive rate)
e P(PCR+ | ~covid) =0.023

(false positive rate)
P(covid) = 14000/1410000 ?

(~1000 daily cases * ~14 day active period?)
What’s P(covid | PCR+)?

https://virologyj.biomedcentral.com/articles/10.1186/512985-021-01489-0

https://www.icdiomonitor.com/false-positives-in-pcr-tests-for-covid-19
(15 min of googling, | would welcome more accurate numbers!)


https://virologyj.biomedcentral.com/articles/10.1186/s12985-021-01489-0
https://www.icd10monitor.com/false-positives-in-pcr-tests-for-covid-19

Probability

Probability statements, philosophy

Basic probability rules

Joint, conditional, and Bayes’ rule.

Random variables and probability distributions
— Sampling to generate random values.

— Probability mass (pmf) and density (pdf) functions

— Cumulative probability density function (cdf)
— Quantile function (inverse cdf)

Expectation, Variance, and their rules
Central limit theorem and the normal distribution.




Random variables

* Assign a value to each possible outcome.
The value we get is a “random variable”
— Random phenomenon (“experiment”): flip a coin.

Outcomes: {Head, Tail}
R.V. X ={1if Head; o if Tail}

— Random phenomenon: roll two dice.
Outcomes: {(1,1); (1,2); (1,3); ... (6,5); (6,6)}

R.V. A =die.1 + die.2
R.V. B = die.1 * die.2
R.V. C =die.1 —die.2
R.V. D = {1 if die.1+die.2 is prime; 0 otherwise}

— Random phenomenon: draw two cards from a deck.
Outcomes: {-][2, [& &, [3 [, ...}

R.V. best blackjack sum {4, ..., 21}




Random variables

* Assign a value to each possible outcome.
The value we get is a “random variable”

* The possible values of the random variable are it’s
support.

— flip a coin 10 times
X = # of heads (random variable)

Support: {0, 1, 2, 3, 4,5, 6,7, 8,9, 10}
no other values of X are possible



Random variables

* Assign a value to each possible outcome.
The value we get is a “random variable”

* The possible values of the random variable are it’s
support.

* We can characterize the random variable a few ways:
— Sampling process
— Probability distribution function
— Cumulative distribution function
— Quantile function
— Moments (moment generating function)



Probability

Probability statements, philosophy

Basic probability rules

Joint, conditional, and Bayes’ rule.

Random variables and probability distributions
— Sampling to generate random values.

— Probability mass (pmf) and density (pdf) functions

— Cumulative probability density function (cdf)
— Quantile function (inverse cdf)

Expectation, Variance, and their rules
Central limit theorem and the normal distribution.




Binomial random variable: sampling

* We flip a fair coin 3 times.
Outcomes: {HHH, HHT, HTH, THH, ...}
X =number of times we got heads. {o,1,2,3}

 How do we sample this random variable?

— Sampling: stochastically generate values with frequency
proportional to their probability under this RV.

— Sampling can be accomplished by stochastically simulating
the experiment and evaluating the RV, or various
procedures/algorithms that have the same properties, but
are more efficient.



Binomial random variable: sampling

* We flip a fair coin 3 times.
X =number of times we got heads. {0,1,2,3}
* How do we sample this random variable?

flip = function()

ifelse(runif(1)<0.5

> flap.n(3)

[l] ||T|| HT"
FlS D function(n) >R filipvni(3)

replicatefn, fl‘lp ) [l] MY YN

>Rflapn(3)
[l] |IT|| "Hll
AEpYR(3)
[l] |IH|| llHll

evaluate.X function(outcome) {
sum(outcome CHES)

> evaluate.X(c('H', 'H', 'T"))
]2




Binomial random variable: sampling

* We flip a fair coin 3 times.
X =number of times we got heads. {0,1,2,3}
* How do we sample this random variable?

flip = function():-
ifelse(runif(1)<0.5

LAl o function(n)
replicate(n, flip())

evaluate.X function(outcome)
sum(outcome "H') > evaluate.X(flip.n(3))
~ | )
> evaluate.X(flip.n(3))
[1] 2
> evaluate.X(flip.n(3))
[1] ©




Binomial random variable: sampling

* We flip a fair coin 3 times.
X =number of times we got heads. {0,1,2,3}

 How do we sample this random variable?

flip = function()/ > samples.X = replicate(10000, evaluate.X(flip.n(3)))

> samples.X

ﬁfelseerunif;'_‘v:'},11_, 'H|, S gy
IR C R RIS cROR2E o8 2 RIR IS0 R IS NCR (28 =) =

[223 ] 82008182 NI NONININ2 FINOE SN1N2 57808 0NN TN S08 2
[45 [N 1IN E8 0 N1 2 S9N TTNTITN1ED NINIS3 8082 N1N0S 3

LAl o function(n)

replicate(n, flip()) .
> hist(samples.X)

evaluate.X function(outcome) Histogram of samples.X

sum(outcome SRR

Frequency
2000

[ [ I I [ [ I
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
L

samples.X



* We flip a fair coin 3 times.

Frequency

Binomial random variable: sampling

X =number of times we got heads. {0,1,2,3}
 How do we sample this random variable?

> hiast(rbinom(100068, 3, 8.5))

Histogram of rbinom(10000, 3, 0.5)

2000

|

|

0

[ [ I
0.0 0.5 1.0

rbinom(10000, 3, 0.5)

I
1.5

I
20

I
25

I
3.0

> hist(samples.X)

Histogram of samples.X

Frequency

2000

0

|

|

[ [
0.0 0.5 1

.0 1.5 2.0

samples.X

[ I
2.5 3.0



Binomial random variable: sampling

* We flip a fair coin 3 times.
X = number of times we got heads. {o,1,2,3}

 How do we sample this random variable?

— This is a special kind of random variable for which we have
a well-defined, named, probability distribution:

— This is a Binomialrandom variable with parameters:
n=3 “sjize” (we flipped a fair coin 3 times)
p=o0.5 “prob” (probability of heads was fair; i.e., 0.5)

— So we can use the built-in R functions to sample it:
rbinom(number_of samples, size, prob)



rbinom(n, size, p)

n:  number of random draws/samples
size: number of attempts  (e.g., number of coin flips)
p:  probability of success (e.g., prob coin lands heads)

Returns: a vector of xs (length n), each one representing a
random draw of a binomial variable (e.g., number of
heads out of sizeflips, each coming up heads with
probability p.)




Sampling a random variable

e InR:r*

rbinom(n, ..)
rbeta(n, ..)
rnorm(n, ..)

rgeom(n, ..)
rf(n, ..)
rt(n, ..)

* Each returns nrandomly sampled values.

* Each distribution has its own parameters
(like size and prob for Binomial).



Sampling to solve prob. problems

 If xis a vector of nsamples from the random variable X,
then (if nis large) we can...
— Approximate Pr(X=7)as the frequency with which x=7

In R notation: sum(x==?)/n ormean(x=="?)
[Borel’s law of large numbers]

— Approximate expectations (which we haven’t yet covered)
of f(X)as the average of f(x)
In R notation: sum(f(x))/n ormean(f(x))
[Monte Carlo theorem]

* S0, we can estimate the frequency of getting 3 heads
out of 10 from a fair coin as (where n is something big):
mean( rbinom(n,10,0.5)==3 )



Probability

Probability statements, philosophy

Basic probability rules

Joint, conditional, and Bayes’ rule.

Random variables and probability distributions

— Sampling to generate random values.

— Probability mass (pmf) and density (pdf) functions

— Cumulative probability density function (cdf)
— Quantile function (inverse cdf)

Expectation, Variance, and their rules
Central limit theorem and the normal distribution.




Binomial random variable: probability dist.

We flip a fair coin 3 times.
X = number of times we got heads. {o,1,2,3}

What is the probability distribution of X?

— The probability distribution describes the probability of
seeing any particular value of X.

— Here the probability distribution would specify the
probabilities P(X=0), P(X=1), P(X=2), P(X=3)

— |In general,
P(X=x) = sum(P(outcome))
for all outcomes where X=x



Binomial random variable: probability dist.

* We flip a fair coin 3 times.
X = number of times we got heads. {o,1,2,3}

* What is the probability distribution of X?
P(X=0) = P(TTT) =1%*0.5\3 = 0.125
P(X=1) = P(TTH) + P(THT) + P(HTT) =3*0.5"3 =0.375
P(X=2) = P(THH) + P(HHT) + P(HTH) = 3*0.5"3 = 0.375
P(X=3) = P(HHH) =1%0.5"\3 = 0.125



Binomial random variables

0 1 X 2 3

P(X=x)
0.00 0.05 0.10 0.15 0.20 025 0.30 0.35




Binomial random variable: probability dist.

* We flip a fair coin 3 times.
X = number of times we got heads. {o,1,2,3}

* What is the probability distribution of X?

— The probability distribution describes the probability of
seeing any particular value of X.

— Probability distributions have parameters:
we flipped a coin 3 times (size=3), and the coin is fair
(p=0.5)
different values of the parameters change the probability
dist.



Binomial random variables

 We flip a bent
X = number of

coin[ P(H)=p ] 3 times.
times we got heads. {0,1,2,3}

What is the probability distribution of X?

« P(X=x) =sum(P(outcome)) for all outcomes where X=x

P(X=0) = P(

) =1*(1-p)"3

P(X=1) = P(

H) + P(THT) + P(HTT) =3 * p*(1-p)"2

P(X=2) = P(

HH) + P(HHT) + P(HTH) =3 * pA2*(1-p)

P(X=3) =P(HHH) =17p”3



P(X=x)

0.4

0.3

0.2

0.1

0.0

Binomial random variables
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Binomial random variables

« We flip a bent coin (P(H)=p) ntimes.
X =number of times we got heads. {o,1,2,3,...,n}
What is the probability distribution of X?

« P(X=x) =sum(P(outcome)) for all outcomes where X=x

PX=0) = choose(n,o) * (1-p)”*n

PX=1) = choose(n,1) *p * (1-p)"(n-1)
PX=2) = choose(n,2) * p”2 * (1-p)(n-2)
PX=n) = choose(n,n) * p/n

 What we really want is a general expression:
PX=k) = choose(n,k) * p~k * (1-p)"(n-k)



Binomial random variables
X = number of heads from n flips of bent coin with P(H)=p

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.15
I

P(X=k | n=20, p=0.4)
0.10
|

0.05
|

0.00

k



dbinom(x, size, p)

X: number of successes (e.g., number of heads)
size: number of attempts (e.g., number of coin flips)

p:  probability of success (e.g., prob coin lands
heads)

Returns: p(X=x) (where X is a binomial variable with
parameters sizeand p




Probability distribution: density/mass:
* InR:d*

dbinom(x, ..)
dbeta(x, ..)
dnorm(x, ..)

dgeom(x, ..)
df(x, ..)
dt(x, ..)

* Each of these returns the probability density or mass*
of x, given their parameters.



Probability distribution function

* Characterizes how probability is distributed over the
possible values of the random variable, given the
parameters.



Discrete vs continuous

e Some are discrete, others continuous.
— The outcome of a dice roll
— The sum of two dice rolls
— The number of rolls it takes to get a 6
— The number of 5 or 6 rolls out of N attempts
— The distance on the table the dice rolled when thrown

— The decibel level of the groans of disappointment at a craps
table in Vegas when the dice were rolled.

— Etc.




Discrete RV: probability mass function

* Probability mass function (pmf):
Each possible value has some non-zero probability.

— The number of dots, the sum of two dice




Continuous RV: probability density

* Probability density function (pdf):
Continuous variables have infinitely many values, each
with infinitely little probability.
Values only have “probability density”
Intervals have probability mass
(defined as ‘area under the curve’ of pdfin that interval)

— The distance on the table the dice rolled when thrown

-




Probability mass vs density functions

* Discrete random variables
— Every value has some definable probability mass.

— If you sum Prob(x) for all values of x, you get 1.0
€.8., sum(dbinom(@:10, 10, 0.5)) = 1.0

 Continuous random variables

— Every value has o probability mass, because every value is
infinitesimally precise. Only ranges of values have
probability mass. Otherwise only prob. density

— Probability density is defined as the derivative of the
cumulative probability.

— If you sum density(x) for “all” values of x, you get nonsense

(nonsense that changes with how finely you slice x)

sum(dbeta(seq(Q,1,by=0.01 ), 2, 2))=99.99
sum(dbeta(seq(9,1,by=0.001), 2, 2))=999.99
(of course, you could use numerical integration by summing density(x)*dx)




Probability

Probability statements, philosophy

Basic probability rules

Joint, conditional, and Bayes’ rule.

Random variables and probability distributions
— Sampling to generate random values.

— Probability mass (pmf) and density (pdf) functions

— Cumulative probability density function (cdf)
— Quantile function (inverse cdf)

Expectation, Variance, and their rules
Central limit theorem and the normal distribution.




Cumulative distribution function (cdf)

* Theintegral /sum from -oo to x of the pdf / pmf

* |n other words, cdf(x) is the probability that a random
variable will have a value less than or equal to x.

///,“\\\\\\\\_ ] dnorm(x, @, 1)
. : . . .
X

pdf(x)

—
T

pnorm(x, @, 1)

Cumulative
probability
P(X £ x)

|7}~ Area under the curve

()




Cumulative distribution function (cdf)

* Theintegral /sum from -oo to x of the pdf / pmf

* |n other words, cdf(x) is the probability that a random
variable will have a value less than or equal to x.

N

pdf(x)

—
T

Cumulative
probability
P(X = x)

‘IJ» Area under the curve

o




Cumulative distribution function (cdf)

* Theintegral /sum from -oo to x of the pdf / pmf

* |n other words, cdf(x) is the probability that a random
variable will have a value less than or equal to x.

VAN

pdf(x)

—_—

J_ Area under the curve

Cumulative
probability
P(X = x)

o




Cumulative probability

For discrete P(= x) = Ep(y)
quant. var. =

For continuous x
quant. var. P(sx) = fP(y)dy

In general...




Gotcha with cdf for discrete variables.

* For continuous variables, P(x) =0
* For discrete variables, P(x) = 0
Therefore...

* For continuous variables
P(X2x)=1-P(X=<Xx)

 For discrete variables
P(X=2x)=1-PX<¢x) not 1 - P(X < x)

So if you want to evaluate the probability that a random

variable will take on a value of x or higher...
..with a continuous variable you can calculate it as 1-CDF(X)

e.g., prob that a Normal(o,1) variable is 2 or m RS CHr NN

..with a discrete variable over integers you must calculate it as 1-CDF(X-1) [**]
e.g., prob that we get 7 or more heads out of 10 coin flips is:

1-pbinom(7-1, size=10, prob=0.5)



pbinom(x, size, p)
X: number of successes (e.g., number of heads)
size: number of attempts (e.g., number of coin flips)

p: probability of success (e.g., prob coin lands heads)

Returns: P(X<x) (where X is the random binomial variable).
E.g.,: probability that we get x or fewerheads.

pnorm(x, mean, sd)

X: value of variable (e.g., specific IQ score)
mean: average (e.g., mean |Q score is 100)

sd: standard deviation (e.g., 1Q defined as sd=15)

Returns: P(X<x) (where X is the random normal variable).
E.g.,: probability that an 1Q score will be x or lower




Cumulative probability
* InR: p*

pbinom(x, ..)
pbeta(x, ..)
pnorm(x, ..)

pgeom(x, ..)
pf(x, ..)
pt(x, ..)

* Each of these returns the cumulative probability at x,
given the parameters.



Probability

Probability statements, philosophy

Basic probability rules

Joint, conditional, and Bayes’ rule.

Random variables and probability distributions
— Sampling to generate random values.

— Probability mass (pmf) and density (pdf) functions

— Cumulative probability density function (cdf)
— Quantile function (inverse cdf)

Expectation, Variance, and their rules
Central limit theorem and the normal distribution.




Quantile (inverse cdf) function

« What is the value such that the probability that this
random variable is equal to or less than that value is g7

<
=

Pl

har
o

© |
o

0.4

0.2

Cumulative probability

0.0
|
&

40 60 80 100 120 140 160

1Q
What is the 1Q such that 90% of all people have a lower IQ than that?
120

Note: for discrete variables there often isn’t an exact quantile: it falls between two values. Different
methods exist for interpolating, or not. We will use the default R quantile functions as the gold standard.



Cumulative

probability

Probability
density

Quantile function (inverse cdf)

Normal iCDF
‘Qulantiile’ fluncltion

Normal PDF

P(<x)

X

plot(x, dnorm(x, @, 1))

Normal CDF

X

plot(x, pnorm(x, @, 1))

0.0 ‘Quantile’: 1.0
Cumulative probability

plot(p, gnorm(p, @, 1))



CDF and Quantile

e Cumulative distribution function (cdf):
p = cdf(x)

pnorm(120, mean=100, sd=15)
an IQ of 120 puts me in what quantile (percentile) of the IQ

distribution?’

e Quantile function (icdf):
x = icdf(p)

gnorm(@.91, mean=100, sd=15)

percentile?’



Variants of a quantile

Median:  o.50t" quantile.

(although “median” usually refers to a sample statistic, not a
property of a distribution)

Percentile: 15t: 0.01; 2"9: 0.02; ...; 98t": 0.98, etc.

Quartile: 15t: 0.25; 2"d: 0.5; 3": 0.75
‘Interquartile range’: distance between 15t and 3™ quartile.

Quintile: 15t 0.2; 2"d: 0.4; ...; 4™ 0.8

Decile: 15t: 0.1; 2"9: 0.2; ...; 9t": 0.9.



gnorm(p, mean, sd)

o} Cumulative probability (e.g., 1Q percentile)

mean: average (e.g., mean |Q score is
100)

sd: standard deviation (e.g., 1Q defined as
sd=15)

Returns: x such that P(X<x)=p
(where X is the random normal variable).
E.g.,: the IQ score that will be at the pth quantile;

1Q score such that pof all IQ scores are less than it.

(quantile functions for discrete RVs are tricky)




Quantile function
* InR: g*

gbinom(p, ..
gbeta(p, ..
gnorm(p, ..

qgeom(p, ..
af(p, ..)
at(p, ..)

* Each of these returns the x such that the cumulative
probability at x is p, given the parameters.



Probability

Probability statements, philosophy

Basic probability rules

Joint, conditional, and Bayes’ rule.

Random variables and probability distributions
— Sampling to generate random values.

— Probability mass (pmf) and density (pdf) functions

— Cumulative probability density function (cdf)
— Quantile function (inverse cdf)

Expectation, Variance, and their rules
Central limit theorem and the normal distribution.




Expectation and moments of RVs

 BEWARE:
Most moments have a sample statistic counterpart
(e.g., mean, variance), but there is a difference between
calculating the sample statistic and calculating the
expectation of a function of a random variable.



“Expectation” / “Expected value”

Expected value of a random variable is its mean:
the sum of each possible value weighted by its probability

[ELXTH %, P(X = %)+ x,P(X = x,) + x,P(X = ;) + ...+ x, P(X = x,)

Expected value of X. Sum of all values of x weighted by their probability mass

“Mean[X]”

Note: relationship to sample statistic via Monte Carlo theorem



Expected value

Expected value of a random variable is its mean:
the sum of each possible value weighted by its probability

* Sum for discrete variables; integral for continuous.

ﬁ

E[X]= 2 xP(X = x) E[X]= }f(x)

Set notation for sum over all

the possible values of X. The dx in the integral corresponds

to the infinitely small interval
around x. By taking this interval in
account f(x)dx yields a probability
mass.



Expectation and moments

e Mean: u,=Mean[X]|=E[X]
the ‘location’ of the random variable: where is the
variable centered? Where is the center of mass?

Different mean Same mean
Lo L L L DL N B LA B T
i =0, 02=0.2, ==/
I'\ H=0, 0?=1.0, m—
- [=0, 02=50, ==
- \ H=-2, 02=0.5, =/ _
o~ 06
L _
)
S04 \
0.2 \
n /f ;N\ |
0.0 e —{ J }l‘\x
' A N e | R N R R R
5 -4 -3 -2 - 1 2 3 4 5

Note that not all distributions are symmetric, so the mean is not always the mode.



Expectation and moments
e Mean: u,=Mean[X]|=E[X]

* Note:
here we are using ‘mu_X’ rather than ‘x-bar’ to denote the mean
because we are talking about the mean of a random variable with
some known probability distribution, not the sample mean,
which is a statistic of some data.

* Typically we use the sample mean to estimate mu — the
mean of the random variable which we sampled.



Expectation and moments

» Variance: o} =Variance[X]|=E[(X-E[X])’]=E[X"]-E[X
The ‘scale’ of the distribution: how spread out is the
probability over possible values of x?




Expectation and moments

e Skewness:

Skew[X]|=E

3
X— Uy
Ox

is the distribution asymmetric? If so, is the negative or
positive tail heavier?

Negative Skew

Positive Skew



Expectation and moments

e (Excess) Kurtosis:

Kurtosis| X|=E (
is the distribution peakier with

|
=

heavier tails (high — positive) or Subtracting 3 (the

squat with shorter tails
(low — negative)?

kurtosis of a normal
distribution) makes this
into ‘Excess’ Kurtosis
relative to the normal

9376

aEZQZrno
PRrooRNW.
N oUN




Expectation and moments

* Mean: Uy, = Mean[ X]= E[X]
» Variance: 02 = Variance[ X1= E[(X - E[X])’]
 Skewness: Skew[X]= E x'“X)
GX
« (Excess) Kurtosis:  Kurtosis[X]=E x‘“X) -3
OX

Note: all of these are the expected value of some f(x) weighted by P(x): sum(f(x)*p(x))
For Mean([X] f(x) = x

For Variance[X] f(x) = (x-Mean[X])"2

We can calculate the expectation for any* f(x) of a random variable.



Probability

Probability statements, philosophy

Basic probability rules

Joint, conditional, and Bayes’ rule.

Random variables and probability distributions
— Sampling to generate random values.

— Probability mass (pmf) and density (pdf) functions

— Cumulative probability density function (cdf)
— Quantile function (inverse cdf)

Expectation, Variance, and their rules
Central limit theorem and the normal distribution.




Distribution of the sum of niid RVs

n= n=2 n=4 n=64

n=128
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replicate(100000,

sum(rgamma(n,1,1))



Central limit theorem

 The sum of ni.i.d. random
variables is Normally distributed
if nis big enough*

n=128

* Many real-world variables can be thought of
as the sum of lots of independent and roughly
identically distributed, contributing factors,
so we often treat our measures as having a
Normal distribution, but this should be
verified.




Normal Distribution

1.0

It has two parameters:

0.8

“location” (mean; mu)

0.6

@p02(X)

“scale” (sd orvar)

04

0.2

0.0

H=0, 0%=0.2, ==
H=0, 0%=1.0, m—
H=0, 0?%=50, =
H==-2, 0%=0.5, ==
\ \
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In R for a Normal distribution with mean M and sd S

= dnorm(x, M, S)

= pnorm(x, M, S)
= qnorm(p, M, S)

Probability density at x
Cumulative probability at x
Quantile function for p




Probability

Probability statements, philosophy

Basic probability rules

Joint, conditional, and Bayes’ rule.

Random variables and probability distributions
— Sampling to generate random values.

— Probability mass (pmf) and density (pdf) functions

— Cumulative probability density function (cdf)
— Quantile function (inverse cdf)

Expectation, Variance, and their rules
Central limit theorem and the normal distribution.




Some typical probability questions.

* When flipping a fair coin, what is the probability that
the first occurrence of heads will be on the gth flip?

* |fyou run 20 independent, tests on truly null data, each
with a false-positive rate of 0.05, what’s the probability
that you will get at least 1 false positive (the familywise
false-positive rate)?

— What would the per-testfalse-positive rate have to be for

the familywise false positive rate —
P(at least 1 false-positive) -- to be 0.05?



Binomial random variables

We flip a bent coin[ P(H)=p ] ntimes.
X =number of times we got heads. {o,1,2,3,...,n}
What is the probability distribution of X?

P(X=x) = sum(P(outcome)) for all outcomes where X=x

PX=0) = 1*(-p)™n

PX=1) = #*p*(1-p) (n-1)

PX=2) = #*pr2*(1-p)A(n-2)

P(X=n) = 1*p”~n

What we really want is a general expression:
PX=k) = #*p~rk* (1-p) (n-k)

What are the #s?

How many different ways are there to get k/ nheads?



Binomial coefficient

 How many ways are there to get k heads in n flips?

n n!

k] Kl(n-k)!

* ‘N choose K’

factorial(5)/factorial(3)/factorial(2)
choose(5, 3)



Binomial random variables

« We flip a bent coin (P(H)=p) ntimes.
X = number of times we got heads. {o,1,2,...,n}

m L)
P(X=kinp)l " [p"-p)*

Probability that binomial random \ k - J ,
variable have k successes. Given that \. Probability of one specific
there are n attempts, and each one Binomial outcome that has k successes
has probability p of being a ‘success’ | coefficient: How out of n attempts

many unique

outcomes are

there with k

successes out of

n attempts?
This is the Binomial probability mass function.
It tells us the probability that (Binomial) random variable X

will take on a given value (k) given two parameters (n, p) Binomial probablllty mass function

Note that these parameters have a meaning:
n: number of coin flips
p: bias of the coin (probability of heads/success)




Binomial random variables

« We flip a bent coin (P(H)=p) ntimes.
X = number of times we got heads. {o,1,2,...,n}

n=20
p=0.4

k="
choose(n, k)*p k*(1-p)"(n-k) [1] ©.1797

dbinom(k,n,p) [1] ©.1797
[21] ©1 23456789 10 11 12 13 14 15 16 17 18 19 20
choose(n, x)*p x*(1-p) (n-x) [21] 3.656158e-05 4.874878e-04 3.087423e-03 ..
dbinom(x,n,p) [21] 3.656158e-05 4.874878e-04 3.087423e-03 ..



Binomial questions

Use vectors, dbinom(), and sum() in R to make these calculations!

« Generally, 51.2% of all (US) births are male.
A hospital has 10 births in one day.
What is the probability that...
— exactly 6 of them will be male?
— 7 or more of them will be female?

— The probability that the proportion of male births will be
abnormal
i.e., either abnormally high (>75%) or abnormally low (<25%)

— What is the probability of an abnormal proportion of male
births in a hospital that has 100 births in one day?



5th-grade math score

Small samples and variability
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Binomial questions with rbinom()

Use rbinom() to make these calculations!

« Generally, 51.2% of all (US) births are male.
A hospital has 10 births in one day.
What is the probability that...
— exactly 6 of them will be male?
— 7 or more of them will be female?

— The proportion of male births will be abnormal
i.e., either abnormally high (>75%) or abnormally low (<25%)

— What is the probability of an abnormally high proportion of
female births in a hospital that has 100 births in one day?



Cumulative probability questions

use pnorm(), pbinom() in R

* |Q normally distributed with a mean=100 and sd=15.
What is the probability that a given person has an 1Q...
— Less than 1207
— Greater than 1457
— Between 9o and 1107

» Test scores on a 25 item quiz are binomially distributed
with n=25, p=0.7.

What is the probability that a given person’s score is...
— Less than 177

— Greater than 207

— Between 15 and 207



Quantile questions

Use gnorm(), gbinom() in R

IQ normally distributed with a mean=100 and sd=15.

— What would your 1Q score have to be to join MENSA
(98t percentile of IQ distribution)?

— What is the interquartile range of 1Q?

— The Prometheus society accepts only the top 1/30000t" of
the 1Q distribution. How much higheris the 1Q cutoff for
Prometheus membership as compared to MENSA?

Test scores on a 25 item quiz are binomially distributed
with n=25, p=0.7.

— What score would put you in the goth percentile?

— What is the interquartile range for these scores?

— What is the median score?




Calculating expectation

_et’s say | flip a bent coin, that comes up heads with
orobability 0.2. What is the expected number of flips until
see my first heads?

Probability distribution of X: the flip on which | see the first heads.

5
N
X[1:20] '



Calculating expectation

_et’s say | flip a bent coin, that comes up heads with
orobability 0.2. What is the expected number of flips until
see my first heads?

Random variable: the position in the sequence when the first heads comes up.
Possible values of the random variable x

(note, possible values are integers from 1 to infinity, but here 10K is more than big enough to include all possibilities with any considerable probability)
x = 1:10000 [10000] 1, 2, 3, 4, .., 9999, 10000

Parameter of the probability distribution of this random variable: p(heads)

p.h = 0.2 (1] ©.2

Probability of every value of x

px = (1-p.h)A(x-1)*p.h

[10000] 0.2, 0.16, ©.128, 0.1024, .., @, O

Expected value of x (sum of all values of x weighted by their probabilities)

1's

So, on average, it will take 5 coin flips to see our first heads...



Calculating expectation

_et’s say | flip a bent coin, that comes up heads with
orobability 0.2. What is the expected number of flips until
see my first heads?

Expected variance of x (sum of all values of (x-M.x)*2 weighted by their probabilities)

V.x = sum( (x-M.x)"2 * px ) [1] 20




Calculating expectation

_et’s say | flip a bent coin, that comes up heads with
orobability 0.2. What is the expected number of flips until
see my first heads?

Expected skew of x (sum of all values of Z(x)"3 weighted by their probabilities)
Zx = function(x)( (x-M.x) / sqrt(V.x) )

Skew.x = sum( Zx(x)"3 * px )



Calculating expectation

_et’s say | flip a bent coin, that comes up heads with
orobability 0.2. What is the expected number of flips until
see myv first heads?

Expected (Excess) Kurtosis of x (sum of all values of Z(x)*4 weighted by their probabilities)

Kurt.x = sum( Zx(x)" % px ) — 3 [1] 6.05



Calculating expectation

_et’s say | flip a bent coin, that comes up heads with
orobability 0.2. What is the expected number of flips until
see my first heads?

x[1:20]

Mean[X] =5

Variance[X] = 20
Skewness[X] = 2.02
(Excess) Kurtosis[X] = 6.05

px[1:20]




Expectation questions

1) Scores (X) on a 25 item quiz are distributed as a
Binomial with n=25, p=0.7
- What is the expected value of X?
- Variance of X?
- Skew of X?
- Kurtosis of X?

2) Scores on another quiz (Y) have Mean[Y]=15, Var[Y]=16 (and
are independent with scores on the first quiz). | add both
scores up to get the final score, Z.

What is Mean|[Z]?
What is Var[Z]?



Properties of mean and variance

* Properties:
Mean|aX + b]=a- Mean| X]+ b
Variance[aX + b] = a” - Variance[ X |
Mean| X +Y | = Mean| X |+ Mean|Y |

Variance| X + Y | = Variance| X |+ Variance|Y |

Nefarious question:

X has mean 5, variance 6; Th|§ is useful.to know because the
. various cryptic equations for e.g., a t-
Y has mean -4, variance 10. statistic for various kinds of t-tests

/ = 5X-3Y+10. are derived from these sorts of
What are the mean and variance of Z? calculations.



Not a proof of central limit theorem

« Z=sum of niid RVs X,
« Whatis the mean/variance/skew/kurtosis of Z? in
terms of these moments of X?

Mean[EXi] =n-Mean| X]
i=1

Variance[z X, ]=n-Variance[ X|
i=1

Skewl Y X,1= L Skew(X]
i=1

Jn

Ex.Kurtosis[E X ]= l - Ex.Kurtosis[ X |
i=1 n

« Mean and variance grow with 7, but Skew and Kurtosis (and higher
moments) go to o (what they are for a Normal distribution)

* S0 as ngrows, the sum becomes more Gaussian.



Expectation + Normal question

Let's say puppies have the following traits:

wagging speed: w(Hz) ~ Norm ( mu=1, sd=0.25 )
ear stiffness: k(log GPa) ~ Norm ( mu=-2.5, sd=0.5 )
eye/head size: e(log m/m?) ~ Norm ( mu=-1.5, sd=1/3 )

Remarkably, all of these are independent.

We define a cuteness index (A) for a given puppy as
A=4*W-K+ 3% +5

1) What is the mean A for all puppies?
2) Whatis the variance of A for puppies?

3) What is the probability that a randomly sampled
puppy has a cuteness index greater than 107




Z scores

» Whatis the probability that our sample mean will have
a Z-score»1.96 0r<-1.967

(i.e. will be more than 1.96 standard errors away from the population mean?)

* Whatis the ‘critical’ absolute Z value such that the Z-
score of our sample mean will have an absolute value
less than that with probability 68.27%?

11



Sampling dist. of the sample mean

 We draw N samples from a distribution with mean=100,
sd=15 (e.g., N IQ scores). We calculate the mean of
those n samples. What is the distribution of the sample
mean? (Mean[sample mean]? Variance[sample mean]?)



