2020 Second Edition AWWA M55 HDPE Pipe

Amster Howard Camille Rubeiz

UCT 2020

PE Pipe—Design and Installation

MANUAL OF WATER SUPPLY PRACTICES

First Edition

2006

First Edition

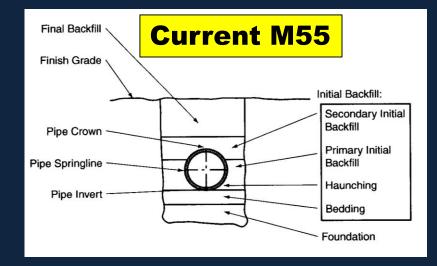
55

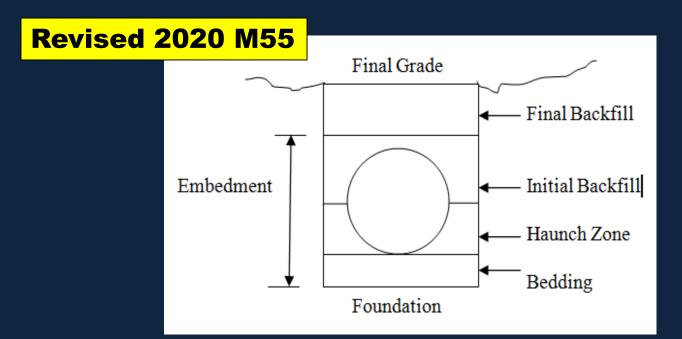
American Water Works Association

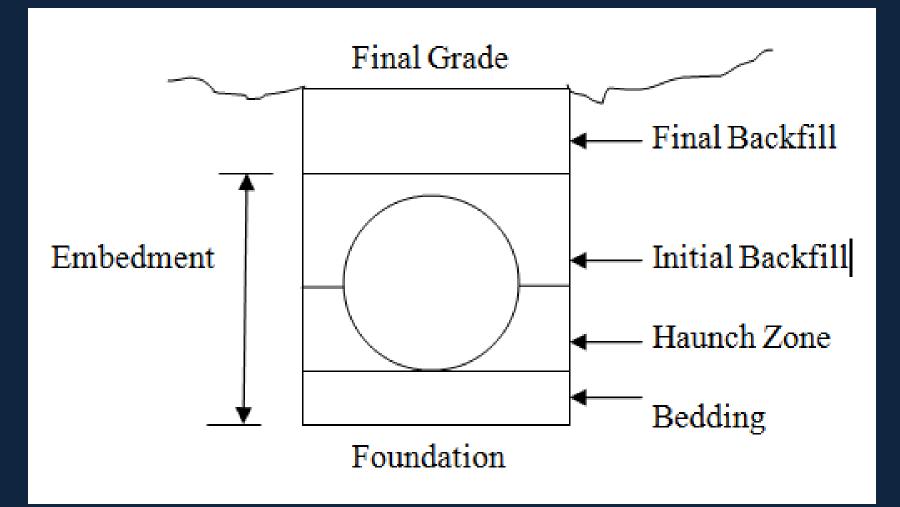
The Authoritative Resource on Safe Water"

Advocacy Communications Conferences Education and Training Science and Technology Sections

AWWA M55 PE PIPE -DESIGN AND INSTALLATION 2020 CHANGES Second Edition


CONFORM TO ASTM D 2774
UPDATED
NEW MATERIAL


AWWA M55 PE PIPE -DESIGN AND INSTALLATION 2020 CHANGES


The previous sections on: "Special Installation Techniques" (trenchless installation) and "Marine Installations" became new Chapters.

Covers new PE4710 material

TRENCH TERMS

Foundation The foundation is the native soil in the bottom of the excavation. If the foundation is unsuitable, Remediation will be required to provide a stable trench bottom.

Bedding The bedding is the soil placed in the bottom of the trench on top of the foundation. The bedding serves as a cushion for the pipe

Haunch Zone The haunch zone is from the bottom of the pipe up to the springline. The haunch zone and the initial backfill provide the side support for the pipe that resists deflection.

Initial Backfill The initial backfill extends from the top of the haunch zone to 12 inches above the top of the pipe. The Initial backfill combined with the haunch zone act as lateral support for the pipe.

Embedment The embedment includes the bedding, haunch zone, and initial backfill.

Final Backfill The final backfill extends from the top of the initial backfill to the final grade.

Current table 8-3 M55 (soil groups)

Embedment	(soli groups)
Backfill	
Class	Soil Description - Pipe Embedment Material*
Class I	Manufactured angular, granular material with little or no fines. Angular
	crushed stone, particle size ¼ in. to 1½ ip g materials of regional
	significance such as marl, coral, cry
Class II	crushed stone, particle size ¼ in. to 1½ in the up g materials of regional significance such as marl, coral, crr Coarse-grained soils with litt ¹ The up g materials of regional SW, SP [†] containing less than 12% fines Coarse-grained soils D D D D D D D D D D
	less than 12% fines
Class III	Coarse-grained s
	fines
Class IVa	Fine-grained soils with medium to no plasticity—CL, ML,
	ML-CL with more the coarse-grained particles
Class IVb	Fine-grained soils ($LL > 50$); soils with medium to high plasticity—CH, MH,
	CH-MH. Fine-grained soils (LL < 50); soils with medium to no plasticity—
	CL, ML, ML-CL with less than 25% coarse-grained particles

New table 8-1 replaces old table 8-3 Current D 2774

CLASS II	Clean, Coarse- Grained Soils	GW GP SW SP
CLASS III	Coarse-Grained Soils w/ Fines	GM GC SM SC
	Sandy/Gravelly Fine Grained Soils	ML CL Ml Cl
CLASS IV	Fine Grained Soils	ML CL
CLASS V	Fine Grained Soils Organic Soils	MH CH Oh ol p

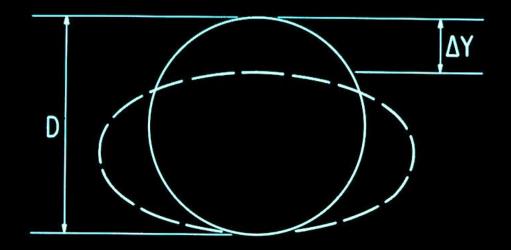
PVC sewer pipe embedment shall be Class Il soil. The embedment for fiberglass pipe for the discharge pipe shall be SC2 soil. The Concrete pipe storm drain shall be embedded in Category I soil. Install the ductile iron water pipe in Type 4 laying condition. Steel pipe shall be embedded with coarse-grained soils with little or no fines. The PE storm drain embedment shall be Class II soil. Clay pipe shall be embedded with suitable bedding material. Embedment for CMP shall be structural backfill. The PE pressure pipe embedment shall be clean gravel. The low-head concrete pipe shall use granular soil with less than 5% fines.

Use Class II material for embedment for all pipe types. ADOPTED: C12 D2321 D2774 AWWA C 605 D3839 M 45 M23 M55

clay pipe gravity thermoplastic pressure thermoplastic PVC fiberglass fiberglass pipe pressure PVC pressure PE

IN PROGRESS: M9

concrete pressure pipe



E Prime Table for native soils

Percent Compaction

Add Vibratory Hammer for maximum density of cohesionless soils

DEFLECTION <u>AY</u> D IN % DECREASE IN VERTICAL DIAMETER DUE TO SOIL LOAD ON PIPE

D = PIPE DIAMETER WHEN SOIL PLACED TO TOP OF PIPE (OR 0.7 0.D.)

Deflection = Load pipe stiffness + soil stiffness

strain = <u>stress</u> modulus

UPDATE

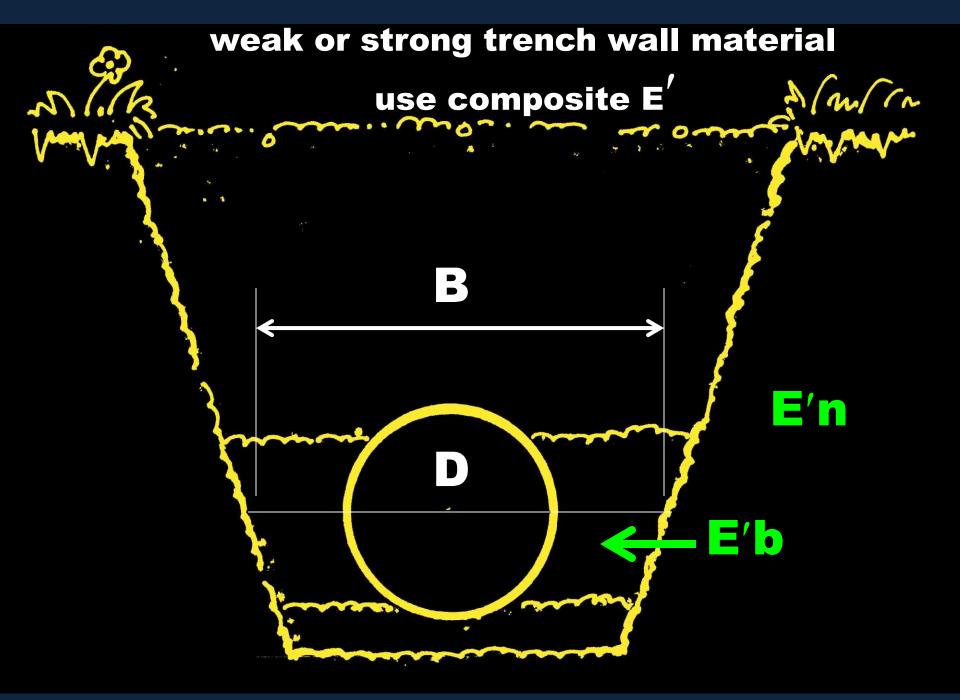
		Slight, <85%	Moderate, 85%-95%	High, >95%
Soil Type-Pipe Bedding Material		Proctor, <40% relative	Proctor, 40%-70%	Proctor, >70%
(Unified Classification System)*	Dumped	density	relative density	relative density
Fine-grained soils (LL > 50) [†] Soils with medium to high plasticity CH, MH, CH-MH		· · · · · · · · · · · · · · · · · · ·	ult a soil engineer, or use a	
Fine-grained soils (LL < 50) Soils with medium to no plasticity CL, ML, ML-CL, with less than 25% coarse grained particles	50	200	400	1,500
Fine-grained soils (LL < 50) Soils with medium to no plasticity CL, ML, ML-CL, with more than 25% coarse grained particles	150	400	1,000	2,500
Coarse-grained soils with fines GM, GC, SM, SC [‡] contains more than 12% fines				
Coarse-grained soils with little or no fines GW, GP, SW, SP [‡] contains less than 12% fines	200	700	2,000	3,000
Crushed rock	1,000	1,000	3,000	3,000

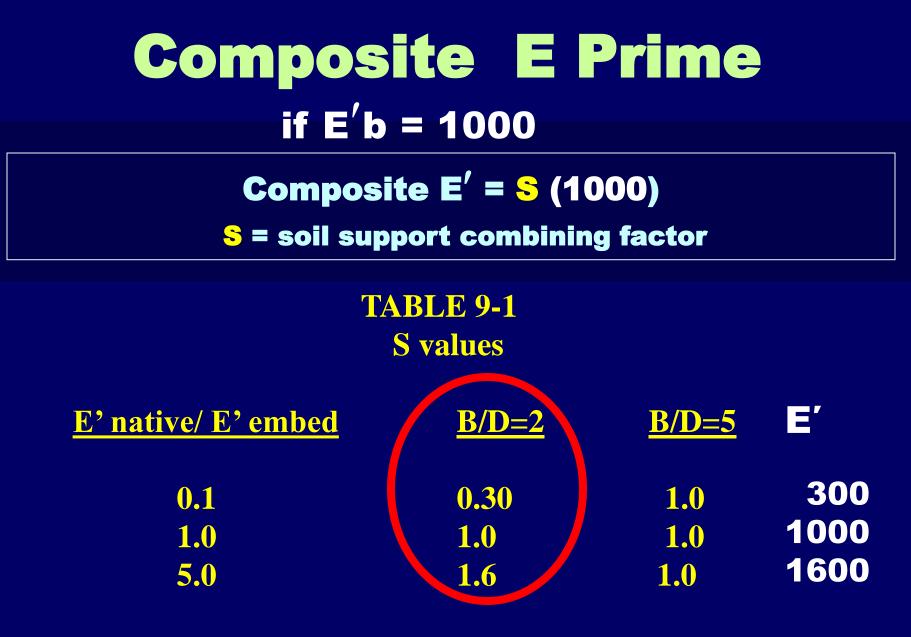
Current M55 E Prime table 5-7

UPDATED

SOIL STIFFNESS - E'

	NO Compaction	MODERATE Compaction	HIGH COMPACTION	
CLASS I Crushed rock	1000	6000		
CLASS II GW GP SW SP	500	2000 4000		
CLASS III GC GM SC SM CL CL ML ML	200	1000 25		
CLASS IV CL ML	100	1500		
CLASS V CH MH OH OL	Do Not Use			


IPDATE


SOIL STIFFNESS - E'

	NO Compaction	HIGH COMPACTION					
CLASS I Crushed rock	*Use new soil classes						
CLASS II GW GP SW SP		*Reverse order *Combine dumped and					
CLASS III GC GM SC SM CL CL ML ML	*Revised values - most higher						
CLASS IV CL ML							
CLASS V CH MH OH OL		Do Not Use					

SOIL STIFFNESS - E'

	NO Compaction	MODERATE COMPACTION	HIGH COMPACTION			
CLASS I Crushed rock	1000	600	00			
CLASS II GW GP SW SP	500	2000	4000			
CLASS III GC GM SC SM sCL gCL sML gML	200	1000 Means	deeper urial			
CLASS IV CL ML	100	4 0	1500			
CLASS V CH MH OH OL		Do Not Use				

Where **B** = trench width

D = pipe diameter

TIPD	NTE M55		9 Native E	Prime	
			ative In Situ Soils		
	Granul	ar	Cohesive		
	Stu. Penetration ASTM D1586, Cover/ft	Description	Unconfined Compressive Strength (TSF)	Description	E' _N (psi)
	>0-1	very, very loose	>0-0.125	very, very, soft	50
	1-2	Ver ¹ 00se	0.125-0.25	very soft	200
	2-4	very loose	0.25-0.50	soft	700
	4-8	loose	J.50-1 .00	medium	1,500
	8-15	slightly compact	1.00-2.	stiff	3,000
	15-30	complu	2.00-4.00	very stiff	5,000
	30-50	dense	4.00-6.00	har	10,000
	>50	very dense	>6.00	very hard	20,000
	nock		_	_	≥50,000

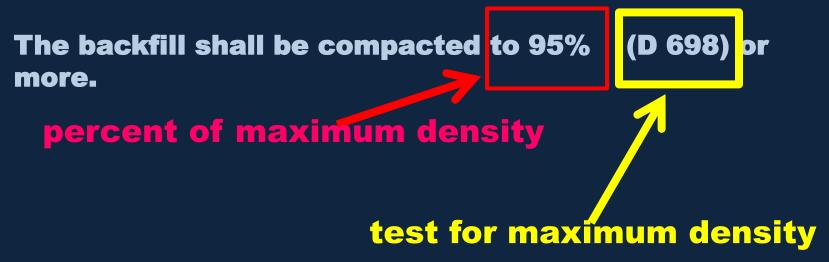
	N ₆₀ Value from SPT test (nu				number of blows/foot)		
Soil description and classification - USCS	0-4	5	10	20	30	≥50	
Clays and silts with <30% Sand/gravel CL ML	zero	500	750	1250	1500	2500	
Sandy silts, clays With ≥ 30% sand CL ML Silty or Clayey sand SM SC		700	1000	1500	2000	3000	
Normally consolidated sands SP, SP-SM, SP-SC Over-consolidated sands SP, SP-SM, SP-SC		1000 2000	1500 3000	2500 4000	3000 5000	5000 8000	
Gravels, soils with Gravel		Typically higher than sands but SPT test very unreliable, use another method					

IPDATE New Table 5-9 Native E Prime Values

	N ₆₀ Value from SPT test (number of blows/foot)					
Soil description and classification - USCS	0 – 4	5	10	20	30	≥50
Clays and silts with <30% Sand/gravel CL ML		500	750	1250	1500	2500
Sandy silts, clays With ≥ 30% sand CL ML Silty or Clayey sand SM SC	zero	700	1000	1500	2000	3000
Normally consolidated sands SP, SP-SM, SP-SC		1000	1500	2500	3000	5000
Over-consolidated sands SP, SP-SM, SP-SC		2000	3000	4000	5000	8000
Gravels, soils with Gravel	Typically higher than sands but SPT test very unreliable, use another method 23					

PERCENT COMPACTION

UPDATE


SOIL COMPACTION

Percent Compaction Percent Proctor Percent Standard Proctor Percent Modified Proctor Relative Compaction Relative Density Relative Proctor Density Density

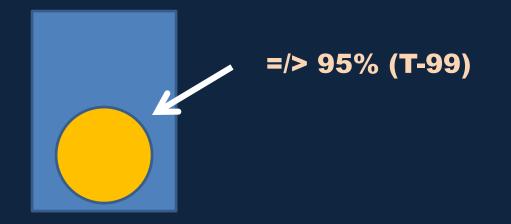
The backfill shall be compacted to 95% (D 698) or more.

The backfill shall be compacted to 95% (D 698) or more.

percent of maximum density

test for maximum density

Cohesive soils (clays and silts) ASTM D 698 ASTM D 1557 AASHTO T-99


Cohesionless soils (sand and gravel) D 7382 D 4253

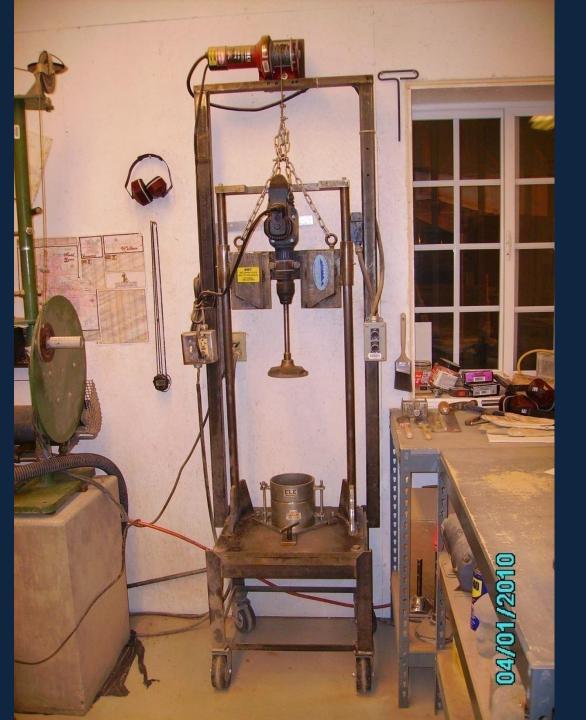


The backfill shall be compacted to 95% (D 698) or more.

Compact the backfill to 95% (D 1557) or more.

The minimum percent compaction shall be:
embedmentembedment95% (D 7382)backfill85% (D 698)backfill under roads95% (D1557)

ADD VIBRATING TABLE FOR DETERMINING MAXIMUM DENSITY OF COHESIONLESS SOILS

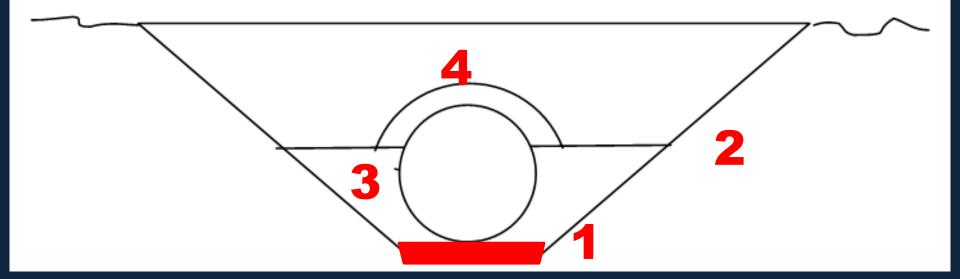

ASTM D 4253

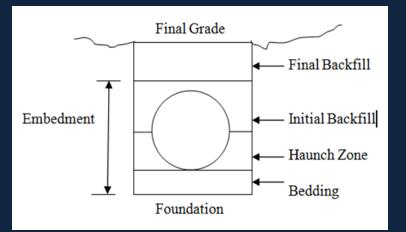
Standard surcharge weight, amplitude, frequency, time

200

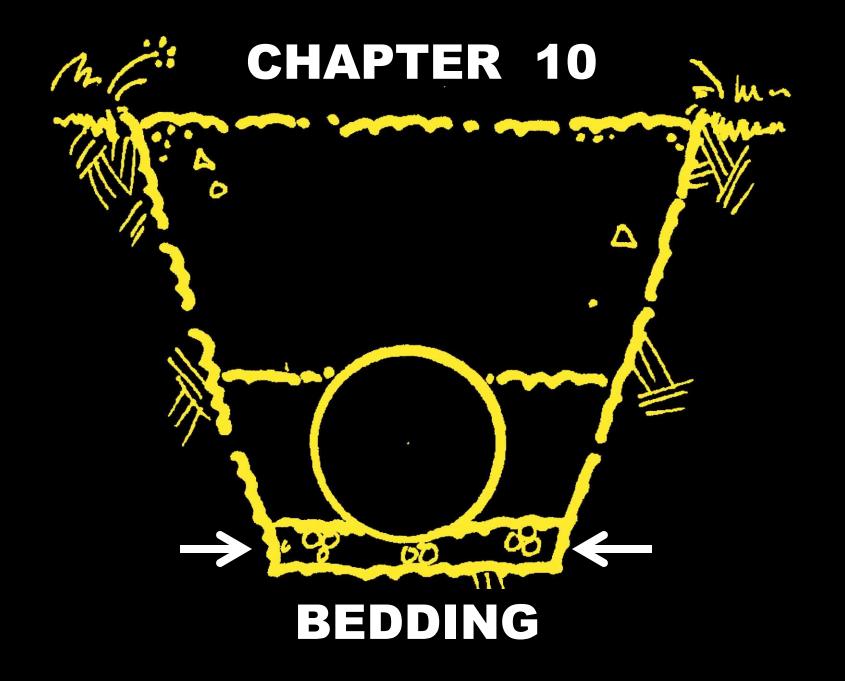
D 7382

Max Density Using Vibe hammer

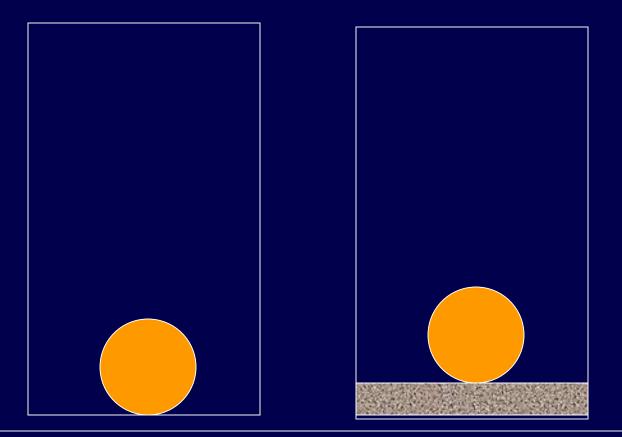

basic installation engineered installation


BASIC INSTALLATION

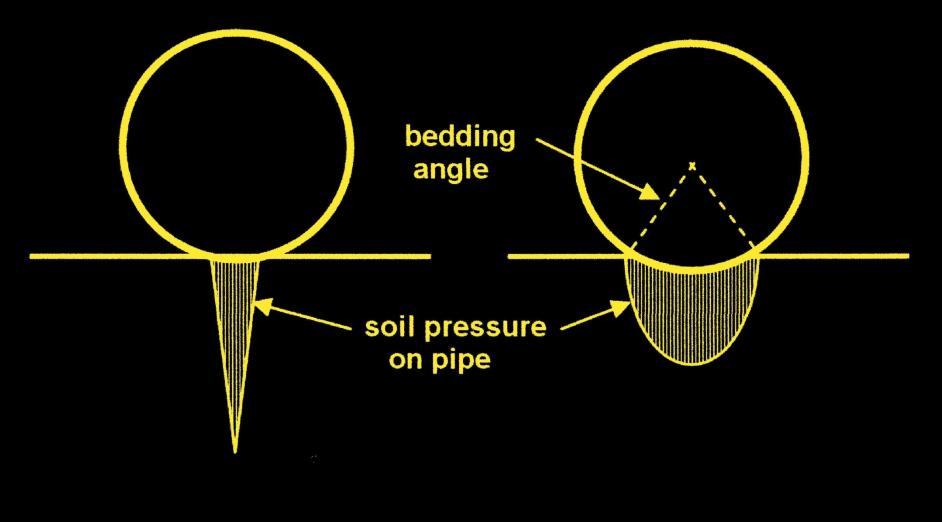
- Pipe diameter of 24 inches or less
- DR equal to or less than 21
- Depth of cover 10 ft or less
- No live load nor surcharge load for cover 6 ft or less
- Ground water below pipe
- Embedment E' at least 200 psi
- Foundation not expansive clay, collapsing soil, or landfill
- Foundation, embedment max particle size limit
- The native trench walls are stable and have a minimum unconfined compressive strength of 5 psi, a N value of at least 5 (Standard Penetration Test), or an E' of at least 400 psi.
- The backfill over the pipe does not need compaction


An engineered installation should be used when these conditions are not met.

Engineered Installation Check deflection and buckling



- 1 uncompacted bedding
 - clean gravel, crushed rock
- 2 0.7 OD embedment
- 3 E prime
- **4 uncompacted padding**



Pipe used to be laid on trench bottom but most current standards/manuals recommend bedding

uncompacted bedding creates small bedding angle

uncompacted bedding helps mobilize embedment support

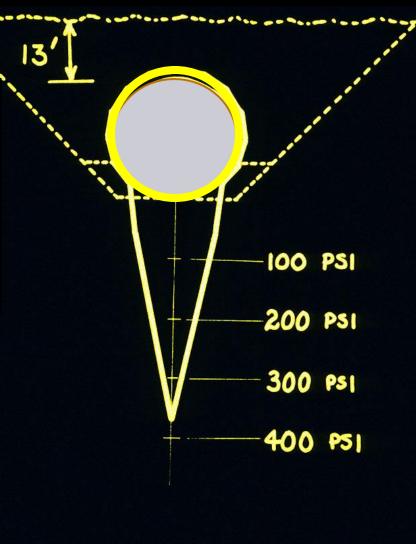
compacted embedment

∽soil pressure distribution -

USBR Soil box tests

Rigid steel box Load applied with test machine Measured pressures on concrete pipe

n

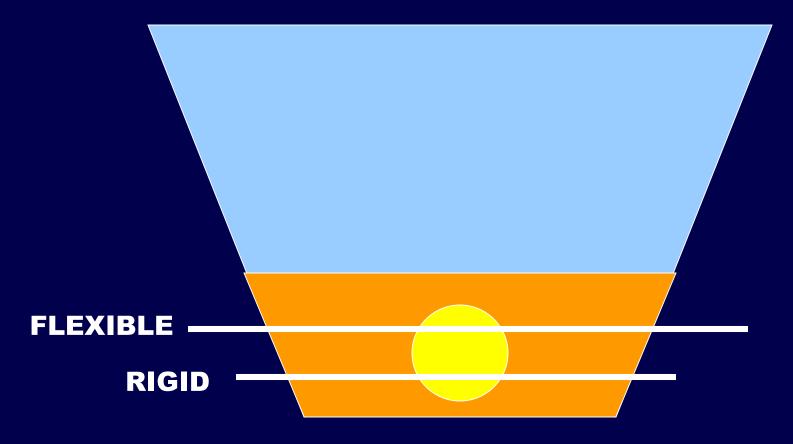

95 %

Pipe laid on foundation One foundation at 85% settled into haunches mobilized haunch strength Other foundation at 105% no settlement into haunches

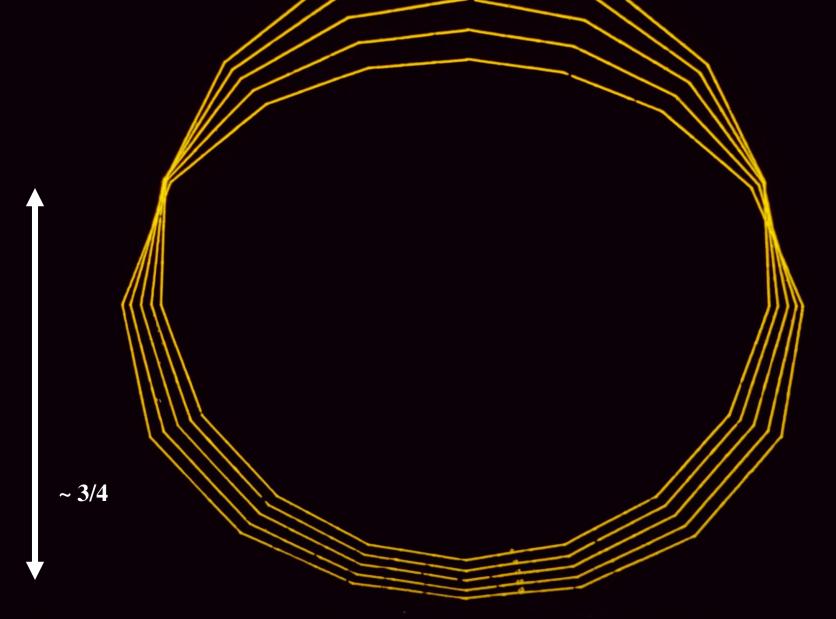
85 %

Similar result on CAP 25 ft OD Prestressed Concrete Pipe

Each pipe Weighed 225 tons, Laid on bottom, Compressed Foundation to High density



High density Soil in Haunches, Never mobilized


Loose bedding lets pipe create cradle, spread out pressure, no Line load

Most standards require 6" to 12" COMPACTED embedment over pipe

IF IMPORTED, PROCESSED EMBEDMENT MATERIAL, UNNECESSARY COSTS

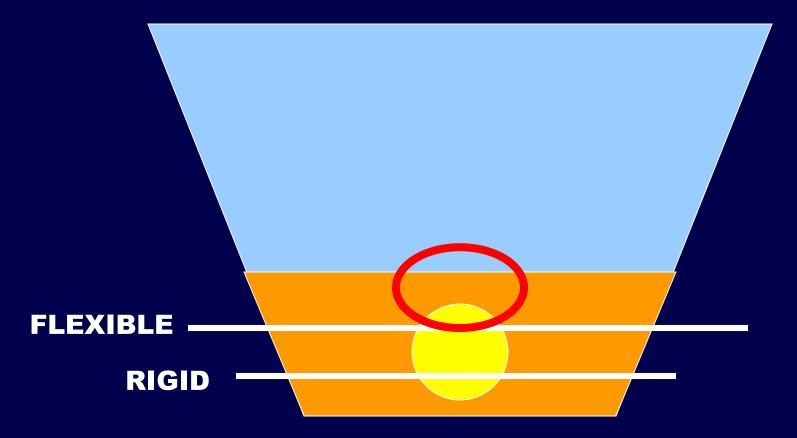
Side support not necessary above 75% OD

PADDING WITH MAXIMUM PARTICLE SIZE

0....

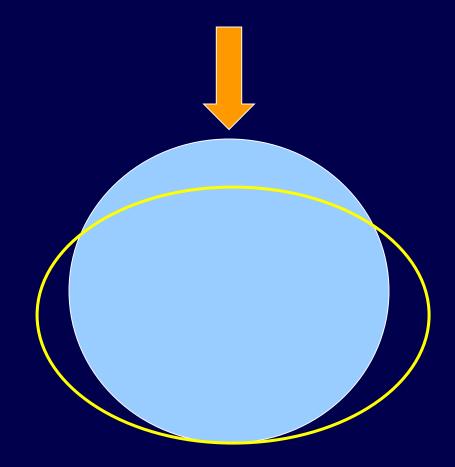
......

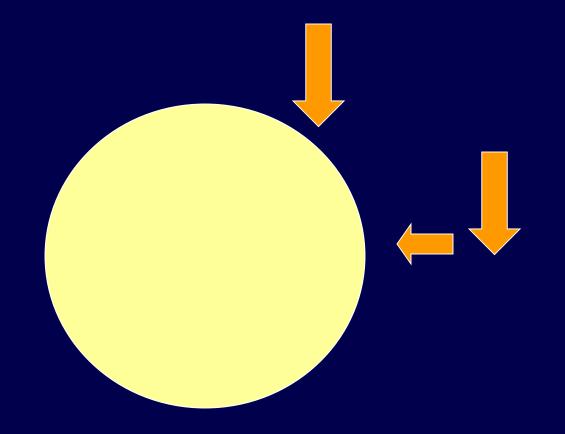
0


0.

within 12 – inches of pipe

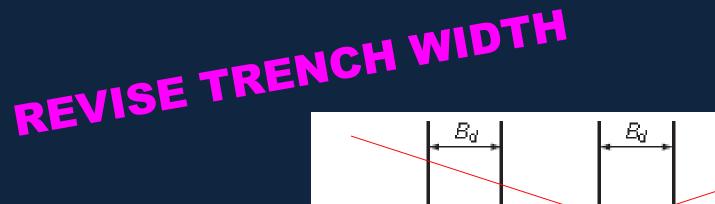
mm/h

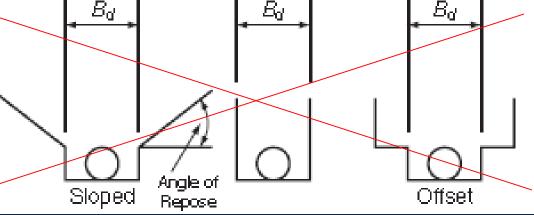

Most standards require 6" to 12" COMPACTED embedment over pipe


Compaction over pipe

Hard to compact soil to high density over top of pipe

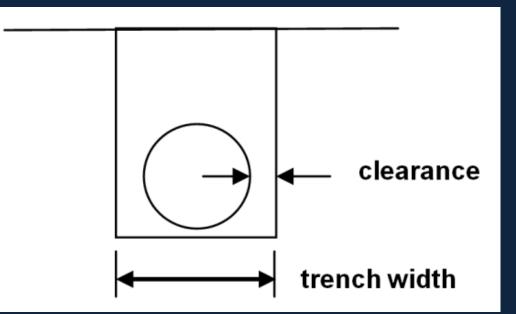
Lateral pressure on pipe=half of vertical Except when compactor is over pipe Easy to damage pipe




Not Necessary

Waste Money

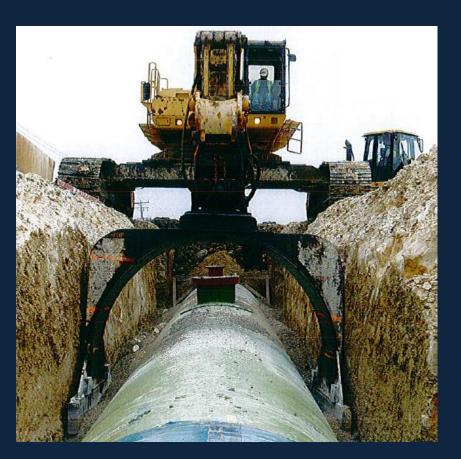
Low Density



new Fig 8-2

Trench width depends on contractor

For flexible pipe, clearance more important than trench width


REVISE TRENCH WIDTH

The excavated trench will have a width based on the excavation equipment used by the contractor, but this width must allow for clearance between the pipe and trench wall for proper compaction and inspection..

REVISE TRENCH WIDTH

wide trench

narrow trench

REVISE TRENCH WIDTH

Engineered Installation

In some cases, the trench width may need to be increased to obtain the required side support at the springline of the pipe. See Chapter 5 discussion on "Composite E prime". The required width at springline should be clearly stated in the project documents.

Flowable Fill Section

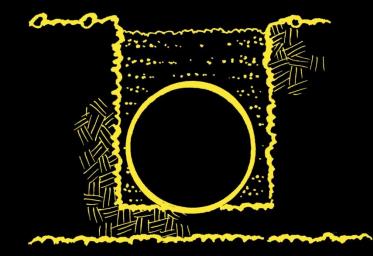
SOIL + CEMENT + WATER = FLOWABLE FILL

A mixture of soil, water, and cementitious matter that hardens into a material that has a higher strength than compacted soil. Typically, it has the consistency of thick liquid.

FLOWABLE FILL

- ASTM construction
- control standards
- 50-100 psi strength
- E prime values
- Can use native soil

FLOWABLE FILL


ASTM construction control standards compressive strength flowability set time

NATIVE FLOWABLE FILL FAT CLAY (CH) AND CEMENT

6 x 12 test cylinder

6 inches

NEW

والمجرور في الأدمان اليون في مانيا ومواد بالمجوم Section 2. ويترجع وأجعرت مواديه

and the marth of I to return a star as Land Approximation and a service of the particular

the statisticans Sinte and she · · · · · · · -128.0.0

.....

trench condition

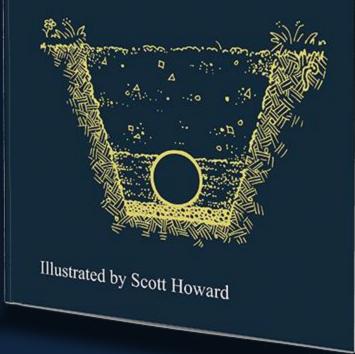
embankment condition

Embankment Condition

A buried pipe may be constructed as part of a new embankment. For the typical sizes of PE pressure pipe, the most common construction technique is to build the embankment and then excavate a trench for the pipe. The previous discussion on trench installation would then apply to the embankment condition. For a composite E' value, the trench wall stiffness, E'_{N} , would be the stiffness of the compacted embankment from Table 5-8.

CONFORM TO D 2774 MAXIMUM PARTICLE SIZE

Current M 55 1/2 inch 3/4-1 inch 1-1/2 inch


2-4 inch pipe6-8 inch pipeall other sizes

D 2774 and Revised M 551/2 inchup to 43/4 inch6-8 inch1 inch10-16 i1-1/2 inchlarger

up to 4 inch pipe 6-8 inch pipe 10-16 inch pipe larger pipe

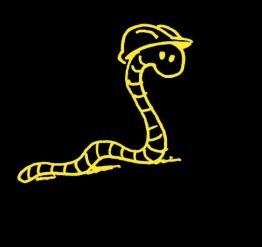
Many changes based on this book

Pipeline Installation 2.0 Amster Howard

SUMMARY

UPDATED TRENCH SECTION

NEW TEST PROCEDURE FOR COHESIONLESS SOILS


ESTABLISHED:

- * **Basic Installation**
- * Engineered Installation

UNCOMPACTED BEDDING CLEAN GRAVEL, ROCK 0.7 OD EMBEDMENT UNCOMPACTED BACKFILL OVER PIPE

NEW FLOWABLE SECTION

