User Manual

Micro800 Plug-in Modules

Catalog Numbers 2080-IQ4, 2080-IQ40B4, 2080-IQ40V4, 2080-0B4, 2080-0V4, 2080-0W4I, 2080-IF2, 2080-IF4, 2080-0F2, 2080-TC2, 2080-RTD2, 2080-MEMBAK-RTC, 2080-TRIMPOT6, 2080-SERIALISOL, 2080-DNET20, 2080-MOT-HSC

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication <u>SGI-1.1</u> available from your local Rockwell Automation sales office or online at <u>http://www.rockwellautomation.com/literature/</u>) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Allen-Bradley, Rockwell Software, Rockwell Automation, Micro800, Micro820, Micro830, Micro850, Kinetix, PowerFlex, CompactBlock, KwikLink, Connected Components Workbench, and TechConnect are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

	 Read this preface to familiarize yourself with the rest of the manual. It provides information concerning: who should use this manual the purpose of this manual related documentation supporting information for Micro800[™] plug-in modules and accessories
Who Should Use this Manual	Use this manual if you are responsible for designing, installing, programming, or troubleshooting control systems that use Micro800 controllers. You should have a basic understanding of electrical circuitry and familiarity with relay logic. If you do not, obtain the proper training before using this product.
Purpose of this Manual	 This manual is a reference guide for Micro800 controllers, plug-in modules and accessories. It describes the procedures you use to install, wire, and troubleshoot your controller. This manual: explains how to install and wire your plug-ins gives you an overview of the Micro800 plug-in modules and accessories Refer to the additional resources for more information on other element of the Micro800 system.

Additional Resources

These documents contain additional information concerning related Rockwell Automation products.

Resource	Description
Micro800 Programmable Controller External AC Power Supply Installation Instructions <u>2080-IN001</u>	Information on mounting and wiring the optional external power supply.
Micro830 Programmable Controllers Installation Instructions 2080-IN002	Information on mounting and wiring the Micro830 10-point controllers.
Micro830 Programmable Controllers Installation Instructions 2080-IN003	Information on mounting and wiring the Micro830 16-point controllers.
Micro830 Programmable Controllers Installation Instructions 2080-IN004	Information on mounting and wiring the Micro830 24-point controllers.
Micro830 Programmable Controllers Installation Instructions 2080-IN005	Information on mounting and wiring the Micro830 48-point controllers.
Micro850 Programmable Controllers Installation Instructions 2080-IN007	Information on mounting and wiring the Micro850 24-point controllers.
Micro850 Programmable Controllers Installation Instructions 2080-IN008	Information on mounting and wiring the Micro850 48-point controllers.
Micro820 Programmable Controllers Installation Instructions 2080-IN009	Information on mounting and wiring the Micro820 20-point controllers.
Micro800 Remote LCD Installation Instructions 2080-IN010	Information on mounting and wiring the Micro800 Remote LCD module.

Resource	Description
Micro800 RS232/485 Isolated Serial Port Plug-in Module Wiring Diagrams 2080-WD002	Information on mounting and wiring the Micro800 RS232/485 isolated serial port plug-in module.
Micro800 Non-isolated Unipolar Analog Input Plug-in Module Wiring Diagrams <u>2080-WD003</u>	Information on mounting and wiring the Micro800 non-isolated unipolar analog input plug-in module.
Micro800 Non-isolated Unipolar Analog Output Plug-in Module Wiring Diagrams 2080-WD004	Information on mounting and wiring the Micro800 non-isolated unipolar analog output plug-in module.
Micro800 Non-isolated RTD Plug-in Module Wiring Diagrams 2080-WD005	Information on mounting and wiring the Micro800 non-isolated RTD plug-in module.
Micro800 Non-isolated Thermocouple Plug-in Module Wiring Diagrams 2080-WD006	Information on mounting and wiring the Micro800 non-isolated thermocouple plug-in module.
Micro800 Memory Backup and High Accuracy RTC Plug-In Module Wiring Diagrams 2080-WD007	Information on mounting and wiring the Micro800 memory backup and high accuracy RTC plug-in module.
Micro800 6-Channel Trimpot Analog Input Plug-In Module Wiring Diagrams <u>2080-WD008</u>	Information on mounting and wiring the Micro800 6-channel trimpot analog input plug-in module.
Micro800 Digital Relay Output Plug-in Module Wiring Diagrams 2080-WD010	Information on mounting and wiring the Micro800 digital relay output plug-in module.
Micro800 Digital Input, Output, and Combination Plug-in Modules Wiring Diagrams 2080-WD011	Information on mounting and wiring the Micro800 digital input, output, and combination plug-in module.
Micro800 High-speed Counter Plug-in Module 2080-WD012	Specifications and information on wiring the Micro800 high-speed counter plug-in module.
Micro800 DeviceNet Plug-in Module 2080-WD013	Specifications and information on wiring the Micro800 DeviceNet plug-in module.
Micro820 Programmable Controller User Manual, publication 2080-UM005	Information on features, installation, wiring and usage of the Micro820 controllers.
Micro830 and Micro850 Programmable Controller User Manual, publication 2080-UM002	Information on features, installation, wiring and usage of the Micro830 and Micro850 controllers.
Industrial Automation Wiring and Grounding Guidelines, publication <u>1770-4.1</u>	Provides general guidelines for installing a Rockwell Automation industrial system.
Product Certifications website, <u>http://www.rockwellautomation.com/</u> products/certification/	Provides declarations of conformity, certificates, and other certification details.
Application Considerations for Solid-State Controls <u>SGI-1.1</u>	A description of important differences between solid-state programmable controller products and hard-wired electromechanical devices.
National Electrical Code - Published by the National Fire Protection Association of Boston, MA.	An article on wire sizes and types for grounding electrical equipment.
Allen-Bradley Industrial Automation Glossary AG-7.1	A glossary of industrial automation terms and abbreviations.

You can view or download publications at http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Rockwell Automation distributor or sales representative.

You can download the latest version of Connected Components Workbench for your Micro800 at the URL below.

http://ab.rockwellautomation.com/Programmable-Controllers/Connected-Components-Workbench-Software.

Table of Contents

Preface	Who Should Use this Manualiii Purpose of this Manualiii Additional Resourcesiii
	Chapter 1
Micro800 Plug-in Modules	Digital Plug-ins 2 12/24V Digital Plug-ins 2080-IQ4OB4, 2080-IQ4OB4, 2080-IQ4OV4, 2080-OB4, 2080-OV4. 2 AC/DC Relay Output Module 2080-OW4I. 3 Analog Plug-ins 3 3 Non-isolated Unipolar Analog Input and Output 2080-IF2, 2080-IF2, 2080-IF4, 2080-OF2 3 Specialty Plug-ins 3 3 Non-isolated Thermocouple and RTD 2080-TC2 and 2080-RTD2 3 Memory Backup and High Accuracy RTC 3 3 Six-channel Trimpot 2080-TRIMPOT6 4 High Speed Counter 2080-MOT-HSC 4 RS232/RS485 Isolated Serial Port 2080-SERIALISOL 4
	Chanter 2
Install and Wire Your Medule	
	Insert Module into Controller 7
	Wiring
	Wiring Considerations and Applications for 2080-TC212Type of CJC Sensor12Wire the CJC Thermistor on the 2080-TC2 Module12Wiring Considerations and Applications for 2080-RTD213Two-wire and Three-Wire Wiring13Wire the RTD Sensors13Wire the RTD Module and RTD Sensor in the Field14Wiring Applications for 2080-MOT-HSC16

Non-isolated Thermocouple and RTD Plug-in Modules – 2080-TC2 and 2080-RTD2

Chapter 3

Thermocouple Module	19
Thermocouple Sensor Types and Ranges	19
RTD Module	20
RTD Sensor Types and Ranges	20
Connected Components Workbench Global Variables	
Data Maps	22
Temperature Conversion – Data to Degree Celsius (°C)	23

High Speed Counter – 2080-MOT-HSC

DeviceNet Plug-in – 2080-DNET20

Specifications

Quickstart

Chapter 4

Overview
Counter Specifications
Number of Counters: 1 to 2 26
Up Counter
Counter with External Direction
Understanding Rates
User Defined Function Blocks
RA_HSCPlugIn
Use the 2080-MOT-HSC Module

Chapter 5

Overview
Status Indicators
Network Configuration
Network Wiring
DeviceNet Switches
Power Supply
User Defined Function Blocks
RA_DNET_MASTER 45
RA_DNET_NODE_STATUS 46
RA_DNET_LDX_DISCRETE 47
RA_DNET_LDX_ANALOG 48
RA_DNET_LDX_TC_RTD 49
RA_PF_DNET_STANDARD 50
RA_PF_DNET_MULTIDRIVE
RA_DNET_OVERLOAD
RA_DNET_GENERIC
Error Codes
Use the 2080-DNET20 Plug-in

Appendix A

Digital Plug-in Modules	57
Analog Plug-in Modules	62
Specialty Plug-in Modules	64
Communication Plug-in Modules	71

Appendix B

Add and Configure Plug-ins in Connected Components Workbench.	77
Quickstart Project for 2080-DNET20 Plug-in	79
Setup and Wiring	80
Configuration	82
Build and Download	83
Execute Program	83

Quickstart Projects for 2080-MOT-HSC Plug-in	84
Setup and Wiring	84
Configuration for UDFB 1: RA_HSCPlugIn	85
Build and Download	86
Execute the Function Block	86
Configuration for UDFB 2: RA_EncoderFDBK	87
Build and Download	88
Execute the Function Block	89
Configuration for HSC UDFB 3: RA_ServoFDBK	90
Build and Download	91
Execute the Function Block	92

Appendix C

Troubleshooting	95
Error Codes for Micro800 Plug-ins	95
Calling Rockwell Automation for Assistance	96

Index

Error Codes

Notes:

Micro800 Plug-in Modules

Plug-in modules enhance the functionality of a base unit controller. With these modules, you can:

- Extend the functionality of embedded I/O without increasing the footprint of your controller.
- Improve performance by adding additional processing power or capabilities.
- Add additional communication functionality.

Micro820, Micro830, and Micro850 support the following plug-in modules:

Micro800 Plug-in Modules

Module	Туре	Description
2080-104	Digital	4-point, 12/24V DC Sink/Source input
2080-IQ40B4	Digital	8-point, Combo, 12/24V DC Sink/Source input 12/24V DC Source output
2080-IQ40V4	Digital	8-point, Combo, 12/24V DC Sink/Source input 12/24V DC Sink output
2080-0B4	Digital	4-point, 12/24V DC Source output
2080-0V4	Digital	4-point, 12/24V DC Sink output
2080-0W4I	Digital	4-point, AC/DC Relay output
2080-IF2	Analog	2-channel, Non-isolated unipolar voltage/current analog input
2080-IF4	Analog	4-channel, Non-isolated unipolar voltage/current analog input

Module	Туре	Description
2080-OF2	Analog	2-channel, Non-isolated unipolar voltage/current analog output
2080-TC2	Specialty	2-channel, non-isolated thermocouple module
2080-RTD2	Specialty	2-channel, non-isolated RTD module
2080-MEMBAK-RTC ⁽¹⁾	Specialty	Memory backup and high accuracy RTC
2080-TRIMPOT6	Specialty	6-channel trimpot analog input
2080-MOT-HSC	Specialty	High speed counter
2080-DNET20	Communication	20-node DeviceNet scanner
2080-SERIALISOL	Communication	RS232/485 isolated serial port

Micro800 Plug-in Modules

(1) 2080-MEMBAK-RTC is not supported on Micro820 controllers.

Number of support for Micro800 plug-ins on the controllers are summarized in the following table.

Plug-in Slots on Micro800 Controllers

Controller	Number of Plug-in Slots
Micro810	0
Micro820	2
Micro830	2 (10/16 points) 3 (24 points) 5 (48 points)
Micro850	3 (24 points) 5 (48 points)

ATTENTION: Removal and Insertion Under Power (RIUP) is not supported on all Micro800 plug-in modules, except on the 2080-MEMBAK-RTC module.

ATTENTION: Micro800 plug-in modules can be installed on any plug-in slot on the controller, except for the 2080-MEMBAK-RTC module which can only be installed on the leftmost plug-in slot.

Digital Plug-ins

12/24V Digital Plug-ins — 2080-IQ4, 2080-IQ4OB4, 2080-IQ4OV4, 2080-OB4, 2080-OV4

These digital plug-in modules provide transistor outputs for switching a variety of 12/24V DC voltages to field loads and for detecting 12/24V signals from field devices.

AC/DC Relay Output Module — 2080-OW4I

The 2080-OW4I is a 4-channel relay output and provides dry contact relay closure outputs for switching a variety of AC and DC voltages to field loads.

Analog Plug-ins The following analog plug-ins are supported by most Micro800 controllers.

Non-isolated Unipolar Analog Input and Output — 2080-IF2, 2080-IF4, 2080-OF2

These plug-in modules add extra embedded non-isolated unipolar (0...10V, 0...20 mA) analog I/O and offer 12-bit resolution.

Specialty Plug-ins Non-isolated Thermocouple and RTD — 2080-TC2 and 2080-RTD2

These non-isolated plug-in modules help to make temperature control possible when used with PID (Proportional Integral Derivative).

See <u>Non-isolated Thermocouple and RTD Plug-in Modules – 2080-TC2 and</u> <u>2080-RTD2 on page 19</u> for more information.

Memory Backup and High Accuracy RTC — 2080-MEMBAK-RTC

This plug-in allows you to make a backup copy of the project in your controller, and adds precision real-time clock function without needing to calibrate or update periodically.

It can also be used to clone/update Micro830 and Micro850 application code. However, it cannot be used as additional Run-Time Program or Data Storage for recipe and datalog.

Status Indicators

State	Description
Solid red (2 s)	Startup cycle test in progress.
Flashing red	Back up in progress.
Solid red (continuous)	Battery low.

Project Backup and Restore

The project can be backed up and restored using Connected Components Workbench software.

Six-channel Trimpot — 2080-TRIMPOT6

This trimpot plug-in offers an affordable method of adding six analog presets for speed, position and temperature control.

High Speed Counter — 2080-MOT-HSC

This plug-in module provides enhanced high speed counter capabilities to the Micro800 controller. It supports the same functionalities of an embedded HSC on the Micro800 controllers but is enhanced to support up to 250 KHz 5V differential line driver for improved noise immunity and provides additional dedicated I/O.

For more information, see High Speed Counter - 2080-MOT-HSC on page 25.

Communication Plug-ins

RS232/RS485 Isolated Serial Port — 2080-SERIALISOL

The 2080-SERIALISOL plug-in supports CIP Serial (RS-232 only), Modbus RTU (RS232 and RS485), and ASCII (RS232 and RS485⁽¹⁾) protocols. Unlike the embedded Micro800 serial port, this port is electrically isolated, making it ideal for connecting to noisy devices, such as variable frequency and servo drives,

(1) RS-485 support is only available from Connected Components Workbench revision 6.

as well as for communications over long cable lengths. Depending on the application and baud rate setting, you can extend this length.

IMPORTANT	2080-SERIALISOL is suitable for communication over longer cable length of up to 1000 m using RS485, with up to 19200 bps baud rate.
	The electrical characteristics of cable used and good wiring practices are very critical in achieving reliable communication performance over longer cable length. A shielded twisted pair RS485 22AWG cable (example: 3106A from Belden) is recommended. Terminate both ends of the cable with 120 ohm resistance.

DeviceNet Scanner — 2080-DNET20

The Micro800 DeviceNet plug-in module serves as a scanner and client for explicit messaging to remote devices including I/O and drives, using a proven and well-accepted fieldbus/network. It also provides better performance than using serial and Ethernet (EtherNet/IP Class 3) communications.

For more information, see the DeviceNet Plug-in - 2080-DNET20 on page 39.

Notes:

Install and Wire Your Module

This chapter provides hardware features, installation, and wiring connection diagrams for all the Micro800 plug-in modules.

Hardware Features

The plug-in modules, except for the 2080-MEMBAK-RTC, can be plugged into any plug-in slots on the Micro800 controllers.

Insert Module into Controller

Follow the instructions to insert and secure the plug-in module to the controller.

- 1. Position the plug-in module with the terminal block facing the front of the controller as shown.
- 2. Snap the module into the module bay.
- Using a screwdriver, tighten the 10...12 mm (0.39...0.47 in.) M3 self tapping screw to torque specifications.
 See <u>Specifications on page 57</u> for torque specifications.

IMPORTANT Analog I/O performance depends on the application. For better noise immunity, cable length should ideally be less than 10 m because the plug-ins are non-isolated. For longer cable length requirements, use the 2085 expansion I/O modules instead.

Wiring

The following plug-in modules have 12-pin female terminal blocks:

- 2080-IQ4,
- 2080-IQ4OB4, 2080-IQ4OV4
- 2080-OB4, 2080-OV4, 2080-OW4I
- 2080-IF2, 2080-IF4
- 2080-TC2, 2080-RTD2

Twelve-pin Female Terminal Block

Pin Designations for 12-Pin Female Terminal Block Modules

Pin	2080-104	2080-1040B4, 2080-1040V4	2080-0B4, 2080-0V4	2080-0W4I	2080-IF2	2080-IF4	2080-TC2	2080-RTD2
A1	1-02	I-02	Not used	COM3	COM	COM	CH0+	CH0+
A2	I-03	I-03	Not used	0-3	Not used	VI-2	CHO-	CHO-
A 3	COM	COM	-24V DC	Not used	Not used	CI-2	CJC+	CHOL (Sense)
A 4	COM	-24V DC	-24V DC	Not used	COM	COM	Not used	Not used
A5	Not used	0-02	0-02	Not used	Not used	VI-3	Not used	Not used
A6	Not used	0-03	0-03	Not used	Not used	CI-3	Not used	Not used
B1	1-00	1-00	Not used	COMO	VI-0	VI-0	CH1+	CH1+
B2	I-01	I-01	Not used	0-0	CI-0	CI-0	CH1-	CH1-
B3	COM	СОМ	+24V DC	COM1	COM	СОМ	CJC-	CH1L (Sense)
B4	COM	+24V DC	+24V DC	0-1	VI-1	VI-1	Not used	Not used
B5	Not used	0-00	0-00	COM2	CI-1	CI-1	Not used	Not used
B6	Not used	0-01	0-01	0-2	COM	COM	Not used	Not used

The following plug-in modules have eight-pin female terminal blocks:

- 2080-OF2
- 2080-SERIALISOL
- 2080-MOT-HSC

Pin Designations for 8-Pin Female Terminal Block Modules

Back									
В	1234								
A	1234								
	Front								

2080-MOT-HSC^{(1) (2)} 2080-0F2 2080-SERIALISOL Pin COM RS485 B+ 0-(A1) COM GND A-(A2) COM RS232 RTS B-**A3** Z-COM RS232 CTS **A**4 V0-0 RS232 DCD 0+ **B1** CO-0 RS232 RXD A+ **B2** V0-1 RS232 TXD B+ (B3) CO-1 RS485 A-Z+ **B**4

Front Eight-pin female terminal block

(1) **IMPORTANT**: Individually shielded, twisted-pair cable (or the type recommended by the encoder or sensor manufacturer) should be used for the 2080-MOT-HSC plug-in.

(2) Sinking Output/Sourcing Output wiring for the 2080-MOT-HSC plug-in is shown below.

Sinking Output Wiring

Sourcing Output Wiring

Serial Port to Modem Cable Pinout

When connecting Micro800 to a modem using an RS-232 cable, the maximum that the cable length may be extended is 15.24 m (50 ft).

DTE Device (Micro800 Isolated Se Plug-in Mo	e RS232 erial Port dule)		DCE Dev (Modem, so on)	ice and
8-Pin			25-Pin	9-Pin
B3	TXD	TXD	2	3
B2	RXD	RXD	3	2
A2	GND	GND	7	5
A1	B(+)	DCD	8	1
B4	A(-)	DTR	20	4
B1	DCD	DSR	6	6
A4	CTS	CTS	5	8
A3	RTS	RTS	4	7

ATTENTION: Do not connect to pins A1 and B4 for RS-232 connections. This connection will cause damage to the RS-232/485 communication port.

2080-DNET20 – 6-pin Female Terminal Block

IMPORTANT Individually shielded, twisted-pair cable (or the type recommended by the encoder or sensor manufacturer) should be used for the 2080-MOT-HSC plug-in.

Wiring Considerations and Applications for 2080-TC2

50 + 2

2.41 max

The CJC sensor is a non-polarized, passive negative temperature co-efficient thermistor (EPCOS B57869S0502F140). It is readily available in the market with most third party suppliers/vendors.

Wire the CJC Thermistor on the 2080-TC2 Module

The position for the thermistor, as illustrated, helps to compensate for thermoelectric voltages developed at screw junction equally for thermocouples connected to channels 0 and 1. If the bead is not in proper contact with the screw, there will be deviation in readings due to inadequate isothermal compensation.

Wire the Thermocouple Module and Thermocouple Sensor in the Field

Connect the thermocouple sensors directly to the module terminals.

Direct sensor wiring

ATTENTION: Direct wiring is the preferred method of wiring for thermocouples.

Wiring Considerations and Applications for 2080-RTD2

Two-wire and Three-Wire Wiring

Wire the RTD Sensors

In an RTD sensor, the sensing element is always connected between two wires of different colors. Wires of the same color are shorted and form the compensation leads. Measuring resistance between these wires confirms the position of sensing element and compensation elements. Compensation elements will always show 0 ohms.

Wire the Sensors

NOTE: This illustration provides for channel 0 only for 2- and 3wire single sensor connections. The wire colors illustrate a particular type of RTD sensor available in market.

For better accuracy in noisy industrial environments, 3- or 4-wire RTD sensors are mostly used. While using these sensors, the resistance added by lead lengths is compensated by an additional third wire in case of 3-wire RTD and two additional wires, in bridge configuration, in case of 4-wire RTD. For 2-wire RTD sensor in this module, this lead compensation is provided by using an external 50 mm 22 AWG shorting wire between terminals A2, A3 and B2, B3 for channel 0 and 1, respectively. Shielded twisted pair cables are to be utilized for remote use of these sensors with cable shield grounded at controller end.

Wire the RTD Module and RTD Sensor in the Field

The RTD sensing element should always be connected between terminals B1(+) and B2(-) for channel 1, and A1(+) and A2(-) for channel 0 in the module. Terminals B3 and A3 should always be shorted to B2 and A2, respectively, to complete the constant current loop. Mismatch in wiring can cause erroneous, over, or underrange readings.

IMPORTANT	Cabling used with the 2080-TC2/RTD2 modules have to be shielded twisted cores with the shield wire shorted to chassis ground at controller end. It is advisable to use 22 AWG wires to connect the sensors to the module. Use sensors dipped in oil-filled thermowells for stable and
	uniform readings. Recommended cable type: Alpha wire P/N 5471C.
	Performance is dependent on the application. For better noise immunity, cable length should ideally be less than 10 m because the plug-ins are non-isolated. For longer cable length requirements, use the 2085 expansion I/O modules instead.

Wiring Applications for 2080-MOT-HSC

The following diagrams show wiring applications for the 2080-MOT-HSC plug-in with Kinetix° Servo drives.

Kinetix 3 in feedback configuration to 2080-MOT-HSC

Kinetix 300 in feedback configuration to 2080-MOT-HSC

Notes:

Non-isolated Thermocouple and RTD Plug-in Modules – 2080-TC2 and 2080-RTD2

The Thermocouple (2080-TC2) and RTD (2080-RTD2) plug-in modules allow for temperature measure and control when used with PID.

This plug-in can be used in any slot of your Micro830/Micro850 controller. Removal and Insertion Under Power (RIUP) is not supported.

Thermocouple Module

The 2080-TC2 two-channel plug-in module supports thermocouple measurement. It digitally converts and transmits temperature data from any combination of up to eight types of thermocouple sensors. Each input channel is individually configurable through the Connected Components Workbench software for a specific sensor, filter frequency.

Thermocouple Sensor Types and Ranges

The module supports B, E, J, K, N, R, S, T types of thermocouple sensors. The module channels are referred to as Channel 0, Channel 1, and CJC, respectively. The cold junction compensation is provided by an external NTC thermistor, which comes with the module. The thermistor has to be fitted to the screw terminals A3 and B3 of the module. This CJC is common to channel 0 and 1 thermocouple sensors and provides open-circuit, overrange and underrange detection and indication.

Overrange and Underrange Conditions

If the channel temperature input is below the minimum value of its normal temperature range for the represented sensor, the module reports an underrange error through the Connected Components Workbench global variables. If the channel reads above the maximum value of its normal temperature range for the represented sensor, an over-range error is flagged.

The table below defines thermocouple types and their associated full-scale temperature ranges.

Thermocouple Type	uple Temperature Range Accuracy ° C (°F) ° C (°F)				ADC Update Rate in Hz
	Min	Max	±1.0 °C	±3.0 °C	(Accuracy C)
В	40 (104)	1820 (3308)	901700 (1943092)	< 90 (194) > 1700 (3092)	4.17, 6.25, 10, 16.7 (±1.0)
E	-270 (-454)	-270 (-454) 1000 (1832)		< -200 (-328) > 930 (1706)	123, 242, 470 (±3.0)
J	-210 (-346)	-210 (-346) 1200 (2192)		< -130 (-202) > 1100 (2012)	
K	-270 (-454)	1370 (2498)	-2001300 (-3282372)	< -200 (-328) > 1300 (2372)	
Ν	-270 (-454)	1300 (2372)	-2001200 (-3282192)	< -200 (-328) > 1200 (2192)	
R	-50 (-58)	1760 (3200)	401640 (1042984)	< 40 (104) > 1640 (2984)	
S	-50 (-58)	1760 (3200)	401640 (1042984)	< 40 (104) > 1640 (2984)	
т	-270 (-454)	400 (752)	-220340 (-364644)	< -220 (-364) > 340 (644)	

Thermocouple Sensor Types and Temperature Ranges

To configure Thermocouple type and update rate in Connected Components Workbench software, refer to the section <u>Quickstart on page 77</u>.

RTD Module

The 2080-RTD2 module supports RTD measurement applications that support up to two channels. The module digitally converts analog data and transmits the converted data in its image table.

The module supports connections from any combination of up to eleven types of RTD sensors. Each channel is individually configurable through the Connected Components Workbench software. When configured for RTD inputs, the module can convert the RTD readings into temperature data. Refer to <u>Temperature</u> <u>Conversion – Data to Degree Celsius (°C) on page 23</u>, for converting temperature data to actual temperature degree.

RTD Sensor Types and Ranges

Each channel provides open-circuit (all wires), short-circuit (excitation and return wires only), and over- and under-range detection and indication. The 2080-RTD2 module supports 11 types of RTD sensors:

Pt100 385	PT1000 385	PT500 392	Ni120 672
PT200 385	PT100 392	PT1000 392	NiFe604 518
PT500 385	PT200 392	Cu10 427	

It supports two- and three-wire type of RTD sensor wiring.

RTD Compatibility

An RTD consists of a temperature-sensing element connected by two, three, or four wires that provide resistance input to the module. The following table lists the RTD types that you can use with the module, including their temperature range, accuracy, and ADC update rate.

Overrange and Underrange Conditions

If the channel temperature input is below the minimum value of its normal temperature range for the represented sensor, the module reports an underrange error through the Connected Components Workbench global variables. If the channel temperature input is above the maximum value of its normal temperature range for the represented sensor, an over-range error is flagged.

RTD Type	Temperat Range ° C	ure ; (°F)	Accuracy ° C	(°F)	ADC Update Rate in Hz
	Min	Max	±1.0 °C	±3.0 °C	(Accuracy °C)
PT100 385	-200 (-328)	660 (1220)	-150590 (-2381094)	< -150 (-238) > 590 (1094)	3-wire others 4.17, 6.25, 10, 16.7,19.6,
PT200 385	-200 (-328)	630 (1166)	-150570 (-2381058)	< -150 (-238) > 570 (1058)	33, 50 (±1.0) 62, 123, 242, 470 (±3.0)
PT500 385	-200 (-328)	630 (1166)	-150580 (-2381076)	< -150 (-238) > 580 (1076)	2- and 3-wire Cu10⁽¹⁾ 4.17, 6.25, 10, 16.7
PT1000 385	-200 (-328)	630 (1166)	-150570 (-2381058)	< -150 (-238) > 570 (1058)	(>±1.0 < ±3.0) 19.6, 33, 50, 62, 123, 242, 470 (> ±3.0)
PT100 392	-200 (-328)	660 (1220)	-150590 (-2381094)	< -150 (-238) > 590 (1094)	2-wire others
PT200 392	-200 (-328)	630 (1166)	-150570 (-2381058)	< -150 (-238) > 570 (1058)	4.17, 6.25, 10, 16.7 (±1.0) 19.6, 33, 50, 62, 123, 242, 470 (±3.0)
PT500 392	-200 (-328)	630 (1166)	-150580 (-2381076)	< -150 (-238) > 580 (1076)	
PT1000 392	-50 (-58)	500 (932)	-20450 (-4842)	< - 20 (-4) > 450 (842)	
Cu10 427 ⁽¹⁾	-100 (-148)	260 (500)		< -70 (-94) > 220 (428)	
Ni120 672	-80 (-112)	260 (500)	-50220 (-58428)	< -50 (-58) > 220 (428)	
NiFe604 518	-200 (-328)	200 (392)	-170170 (-274338)	< -170 (-274) > 170 (338)	

RTD Sensor Types and Temperature Ranges

(1) For Cu10 427, accuracy range is within >±1.0 < ±3.0 for -70...220 °C (-94...428 °F). Above this temperature range, it is > ±3.0 °C as shown in the table.

Connected Components Workbench Global Variables Data Maps

Mapping Table

The following bit/words describe the information read from the Thermocouple and RTD plug-in modules in the Connected Components Workbench Global Variables.

Word Offset	Bit															
	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
00 (example: _IO_P1_AI_00)							Chann	el O Ten	nperatu	e Data						
01 (example: _IO_P1_AI_01)		Channel 1 Temperature Data														
02 (example: _I0_P1_AI_02)		Channel O Information														
	UKT	UKR	Reser	ved			Reserv	ved	OR	UR	00	DI	CC	Reser	ved	
03 (example: _IO_P1_AI_03)		•					Cha	annel 1	Informa	tion	•			•		
	UKT	UKR	Reser	Reserved Re			Reserv	ved	OR	UR	00	DI	CC	Reser	ved	
04 (example: _IO_P1_AI_04)		•	•				S	ystem Ir	formati	on	•		•	•		
	Reserv	red			SOR	SUR	COC	CE	Reserved							

Bit Definitions

Bit Name	Description
Channel Temperature Data	The temperature count mapped from temperature Celsius degree with one decimal. Please check the section, <u>Temperature</u> <u>Conversion – Data to Degree Celsius (°C) on page 23</u> , for the mapping formula.
UKT (Unknown Type)	Bit set to report an unknown sensor type error in configuration.
UKR (Unknown Rate)	Bit set to report an unknown update rate error in configuration.
OR (Overrange)	Bit set to indicate overrange on channel input. The Channel Temperature Data shows maximum temperature count for individual type of sensor used and the value does not change until overrange error is clear.
UR (Underrange)	Bit set to indicate the channel input underrange happens. The Channel Temperature Data will show minimum temperature count for individual type of sensor used and the value does not change until underrange error is clear.
OC (Open Circuit)	Bit set to indicate open-circuit on the channel input sensor.
DI (Data Illegal)	The data in the channel data field is illegal and cannot be used by user. This bit is set when temperature data is not ready for use.
CC (Code Calibrated)	Bit set indicates temperature data is calibrated by the system calibration coefficient.
SOR (System Overrange)	Bit set to indicate system overrange error with environment temperature over 70 °C.
SUR (System Underrange)	Bit set to indicate system underrange error with environment temperature under -20 °C.
COC (CJC open-circuit)	Bit set to indicate CJC sensor not connected for thermocouple module, open circuit. This bit is for thermocouple module only.
CE (Calibration Error)	Bit set indicates that the module is not accurate. This bit is set to 0 by default and should remain as 0. Contact Technical Support when the value is otherwise.

Temperature Conversion – Data to Degree Celsius (°C)

To keep the precision of temperature value from the Thermocouple and RTD plug-in modules, there is a general data mapping conversion in the firmware before the actual temperature is sent to the Connected Components Workbench software.

The following equation shows how the Connected Components Workbench software data count is mapped from temperature Celsius degree by the firmware:

Connected Components Workbench software Data Count = $(\text{Temp} (^{\circ}\text{C}) + 270.0)^{*}10;$

IMPORTANT	This conversion formula applies to all types of Thermocouple and
	RTD sensors.

This equation illustrates how the Connected Components Workbench data count does not use full range of 0...65535 of data word.

Derive Actual Temperature °C From Connected Components Workbench Data Count:

The following formula shows how to derive temperature Celsius degree from temperature data word in the Connected Components Workbench software:

Temp (°C) = (Data - 2700)/10;

Examples:

 $1234 \rightarrow (1234 - 2700)/10 \rightarrow -146.6 \,^{\circ}\text{C}$ $8000 \rightarrow (8000 - 2700)/10 \rightarrow 530.0 \,^{\circ}\text{C}$

IMPORTANT	Underrange, overrange error reporting checking is not based on Connected Components Workbench temperature data count, but the
	actual temperature (°C) or the voltage going into the plug-in module.

Notes:

High Speed Counter – 2080-MOT-HSC

Overview

The 2080-MOT-HSC plug-in module provides enhanced high speed counter capabilities to the Micro800 controller. It supports the same functionalities of an embedded high-speed counter on the Micro800 controllers but is enhanced to support up to 250 KHz 5V differential line driver for improved noise immunity and provides additional dedicated I/O.

The 2080-MOT-HSC module supports most commercial encoders (5V differential or 24V single-ended).

IMPORTANT	To configure the plug-in module, you need to download and use the HSC UDFBs from the Sample Code Library: <u>http://www.rockwellautomation.com/go/scmicro800</u>
	See <u>Quickstart Projects for 2080-MOT-HSC Plug-in on page 84</u> for step-by-step instructions on how to use the plug-in with a sample project.

Counter Specifications

Filter and decode inputs: 3 input points A, B, Z

These input points may come from different types and configurations of sensors. The user must configure the module to respond to the type of sensor connected to the module as described below.

Nominal Filter Settings	Maximum Guaranteed Block Pulse Width	Minimum Guaranteed Pass Pulse Width
No Filter – Default	-	-
250 kHz (DC 2 µs)	512 kHz (DC 0.95 μs)	265kHz (DC 1.9 μs)
200 kHz (DC 2.5 µs)	333 kHz (DC 1.5 μs)	201 kHz (DC 2.48 μs)
80 kHz (DC 6.25 μs)	128 kHz (DC 3.9 µs)	86.7 kHz (DC 5.8 μs)
40 kHz (DC 12.5 µs)	62.8 kHz (DC 8.0 μs)	42.5 kHz (DC 11.6 μs)
13.3 kHz (DC 35 μs)	20.8 kHz (DC 24.1 µs)	14.1 kHz (DC 35.5 μs)
10 kHz (DC 50 μs)	15.7 kHz (DC 32.1 µs)	10.5 kHz (DC 47.2 µs)
4 kHz (DC 125 μs)	6.3 kHz (DC 80.3 μs)	4.2 kHz (DC 119 μs)
2 kHz (DC 250 µs)	3.2 kHz (DC 161 μs)	2.1 kHz (DC 237 μs)
1 kHz (DC 0.5 ms)	1.6 kHz (DC 0.33 ms)	1.0 kHz (DC 0.48 ms)
500 Hz (DC 1 ms)	778 Hz (DC 0.65 ms)	527 Hz (DC 0.95 ms)
250 Hz (DC 2 ms)	389 Hz (DC 1.3 ms)	263 Hz (DC 1.9 ms)

Nominal Filter Settings	Maximum Guaranteed Block Pulse Width	Minimum Guaranteed Pass Pulse Width
125 Hz (DC 4 ms)	195 Hz (DC 2.6 ms)	131 Hz (DC 3.79 ms)
62.5 Hz (DC 8 ms)	97.3 Hz (DC 5.2 ms)	65.9 Hz (DC 7.6 ms)
31.25 Hz (DC 16 ms)	38.8 Hz (DC 10.3 ms)	32.9 Hz (DC 15.2 ms)
IMPORTANT For low avoid pulses	For low frequency pulses, filter times should be set appropriately to avoid extra pulses from a noisy environment. For high frequency pulses, shielded cable must always be used.	

Number of Counters: 1 to 2

The module may be configured, using HSC_Mode, to use the inputs as 1 or 2 counters.

1 counter: A, B, Z = Counter 0

2 counters: A, Z = Counter0; B = Counter 1

Counter Pin Usage

Input Operational Modes

Mode	Description
0	Up Counter – The accumulator is immediately cleared (0) when it reaches the high preset. A low preset cannot be defined in this mode.
1	Up Counter with external reset and hold – The accumulator is immediately cleared (0) when it reaches the high preset. A low preset cannot be defined in this mode.
2	Counter with external direction.
3	Counter with external direction, reset, and hold.
4	Two input counter (up and down).
5	Two input counter (up and down) with external reset and hold.
6	Quadrature counter (phased inputs A and B).
7	Quadrature counter (phased inputs A and B) with external reset and hold.
8	Quadrature X4 counter (phased inputs A and B).
9	Quadrature X4 counter (phased inputs A and B) with external reset and hold.
10	Quadrature X2 counter (phased inputs A and B).

Input Operational Modes

Mode	Description
11	Quadrature X2 counter (phased inputs A and B) with external reset and hold.
12	Down Counter.
13	Down Counter with external reset and hold.

Up Counter

Pulses on A will cause the up counter (Counter 0). Also Pulses on B will cause the up counter (Counter 1).

Counter with External Direction

Pulses on A cause the counter to increment when B is low and decrement when B is high. When B is open or undriven, the counter will increment. See <u>Pulse</u> <u>External Direction Counting on page 28</u>.

Pulse External Direction Counting

Α	В	Change in Count Value
\uparrow	0 (Open or No Connection)	+1
\uparrow	1	-1
1	X (don't care)	0
0	X (don't care)	0

Two input counter (Up/Down Pulses)

Pulses on A causes the counter to increment. Pulses on B causes the counter to decrement. Pulses may occur at any time. Note that pulses can occur very closely (that is, much faster than plug-in scan time) that the plug-in never notices the change in count. In such cases, both counts may be ignored (the net change being zero anyway). In no case shall a pulse be lost. See the following diagram.

Up/Down Counting

Α	В	Change in Count Value
\uparrow	0 or 1	+1
0 or 1	\uparrow	-1
\uparrow	\uparrow	0
0	0	0

Quadrature Counter (X1)

The module is compatible with 2 and 3 signal quadrature, or incremental encoders. The A and B signals are offset by 90 degrees and encode the direction of the rotation. The third signal, Z, occurs once per revolution and is often used as a home reference. The module's use of this signal is discussed below in the Z input section.

Quadrature X4 Counter

Counter shall increment or decrement on each edge of the A and B pulses when the signal is in the positive or negative direction respectively. See previous illustration.

Quadrature X2 Counter

The counter increments or decrements on each edge of the A pulse when the signal is in the positive or negative direction respectively. See previous illustration.

Down Counter

Pulses on A will cause the down counter (Counter 0). Also pulses on B will cause the down counter (Counter 1).

Z Input (Gate) Function/Touch Probe

This signal functionality supports:

- **Touch Probe** the present count value on the rising edge of IntZ_n to the HSC_Touch Probe term in the backplane input file.
- **Hold** the counter at its present count value while IntZ_n = 1,
- **Reset** the present count value on rising edge of IntZ_n.

IMPORTANT If the module gets two or more Z pulses during a single plug-in scan the HSC_TouchProbe will be overwritten with the last stored value. There will be no indication that more than one store has occurred.

Ring or Linear Counter

The counter may be configured with the RingOrLinearCnt_n control bit to rollover at its limits (ring counter) or to stop counting and set a flag (linear counter).

0: ring counter. When the counter is a ring counter and the present count value is equal to MaxCountValue_n, the next input count in the up direction will cause the PresentCount_n to become the MinCountValue_n. This action is known as rollover. And the CountOverflow_n flag will be set to indicate that a rollover has happened. It is reset using the ResetCountOverflow bit.

Conversely, when the PresentCount_n is equal to MinCountValue_n the next input count in the down direction will cause the PresentCount_n to become the MaxCountValue_n. This action is known as rollunder. The CountUnderflow_n

flag will be set to indicate that a rollunder has occurred. It is reset using the ResetCountUnderflow_n bit.

1: linear counter. When the counter is a linear counter and the present count value is equal to MaxCountValue_n the next input count in the up direction will activate the CountOverflow_n bit and also the PresentCount_n will remain at the MaxCountValue_n. CountOverflow_n is reset using the ResetCountOverflow_n bit.

Conversely, when the PresentCount_n is equal to MinCountValue_n the next input count in the down direction will activate the CountUnderflow_n bit and the PresentCount_n will remain at MinCountValue_n. CountUnderflow_n is reset using the ResetCountUnderflow_n bit.

low, the first pulse
use the counter to
ly reset using the

Enabling and Disabling a Counter using the HSC_EN bit

Disabling the counter does not inhibit any HSC_ACC_Bn loading functions (preset or direct write) or any Z function.

The module continuously calculates rates for each of the counters regardless of input operational mode.

Timer

For the first two counters, a timer is used to measure the time between two successive pulses. This value is reported to the backplane as HSC_PULSE_WIDTH_Bn.

Understanding Rates

There are different applications which require rate information but there is no one perfect method for all. Generally, the user must weigh rate accuracy with the need for new information quickly.

Broadly, there are two different ways to calculate rates and optimize accuracy and speed of the rate of calculation:

Per Pulse

Per Pulse
HSC_PULSE_WIDTH_B (supported through 2080-MOT-HSC plug-in)
HSC_PULSE_WIDTH_Bn is reported to the user in the input array

Cyclic
Number of Pulses/User Defined Time Interval (supported through Connected Components Workbench)

PresentRate_n is reported to the user in the input array.

Per Pulse

The Per Pulse rate method can be very accurate if the time between pulses is large compared to the timer clock (1 µs for 2080-MOT-HSC). A timer is used to measure the time between the two successive pulses. This value is reported to the backplane as HSC_PULSE_WIDTH_Bn after each pulse. The user may invert this value to derive a rate.

Per Pulse rate = 1 / HSC_PULSE_WIDTH_B

However, when the time between pulses shrinks, two factors can distort the Per Pulse calculation of rate values:

- The time between pulses is closer to measuring the clock's frequency, making the granularity of the time increments have a greater effect on rate inaccuracy.
- Also, the rate may be calculated many times over during the course of one backplane scan time. This means that the rate data is obtained at a backplane scan is only that of the very last pair of pulses and disregards the other rate calculations that have happened during that interval. This is especially problematic if the pulses during the update time are unevenly spaced, the reported rate could be based entirely on two pulses which are extremely close together (a very high rate) but a third pulse was separated by a greater time (low rate).

You must understand these limitations when using HSC_PULSE_WIDTH_Bn to derive a rate.

Per	Pul	se	Frro	rs(1)

Real pulses (note 1.9999 can be rounded to 2)	Pulses reported by module	Real Frequency	Reported Frequency	% Error
2	1	500 kHz	1 MHz	100%
9	10	111 kHz	100 kHz	11.1%
101	100	9.901 kHz	10.000 kHz	1.00%

Per Pulse Errors⁽¹⁾

Real pulses (note 1.9999 can be rounded to 2)	eal pulses Pulses ote 1.9999 can reported by e rounded to 2) module		Reported Frequency	% Error
1001	1000	999 Hz	1000 Hz	0.10%
9,999	10,000	100.01 Hz	100.00 Hz	0.010%
99,999	100,000	10.00010 Hz	10.00000 Hz	0.001%

(1) This table does not represent accuracy per pulse but repeatability. This repeatability can be applied in No Filter setting.

Maximum Cyclic Rate Errors

Update Time Value Scalar	Frequency							
	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz			
1	NA	NA	20.02%	20.02%	0.210%			
10	NA	20.11%	2.020%	0.210%	0.030%			
100	20.01%	2.110%	0.220%	0.031%	0.012%			
1000	3.010%	0.310%	0.040%	0.013%	0.010%			
10,000	1.210%	0.130%	0.022%	0.011%	0.010%			

IMPORTANT For low frequency pulses, filter times should be set appropriately to avoid extra pulses from a noisy environment. For high frequency pulses, shielded cable must always be used.

User Defined Function Blocks

RA_HSCPlugIn

The purpose of this UDFB is to get high speed counter accumulator value and current pulse frequency.

	RA_HSCPlugIn		
 FBEN		FBENO	
 SlotID		IDCheck	-
 NoiseFilter		Initialized	
 Mode		Accumulator	-
 Start		Rate	
 Stop			
1			

Parameter	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block Enable input
SlotID	INPUT	UINT	Plug-in slot number. Slot ID = 15 (starting with the far left slot 1.)
NoiseFilter	INPUT	USINT	00: No filter 01: 250 kHz 02: 200 kHz 03: 80 kHz 04: 40 kHz 05: 13.3 kHz 06: 10 kHz 07: 4 kHz 08: 2 kHz 09: 1 kHz 10: 500 Hz 11: 250 Hz 12: 125 Hz 13: 63.5 Hz 14: 31.25 Hz
HSCMode	INPUT	USINT	0, 2 , 4, 6, 8, 10, 12
Start	INPUT	BOOL	Start counter.
Stop	INPUT	BOOL	Stop the counter and clear "MaxDPos" and "MaxDSpd" value.
FBENO	OUTPUT	BOOL	Function block Enable output.
IDCHeck	OUTPUT	BOOL	TRUE: HSC plug-in is at selected slot. FALSE: Wrong plug-in or no plug-in at selected slot.
Initialized	OUTPUT	BOOL	TRUE: HSC plug-in initialization finished and ready to execute. FALSE: HSCplug-in initialization not yet finished.
Accumulator	OUTPUT	LINT	Accumulator value.
Rate	OUTPUT	Real	Current pulse rate. The rate calculation is based on how many pulses have been counted every 10 ms.

RA	HSCP	lugin:	Input	and	Output	Parameters
_						

- 1	[RA_EncoderFDBK	
	FBEN	FBENO	
_	SlotID	IDCheck	-
	HomePos	Initialized	
	NoiseFilter	CurrentPOS	
	EncMode	CurrentSpd	
	TrvPerRev	Accumulator	
	Start	TpPosition	
	Stop	Direction	

RA_EncoderFDBK

RA_EncoderFDBK: Input and Output Parameters

Parameter	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block Enable input
SlotID	INPUT	UINT	Plug-in slot number. Slot ID = 15 (starting with the far left slot 1)
HomePos	INPUT	REAL	Home position. Same value indicated in MC_Home instruction.

Parameter	Туре	Data Type	Description
NoiseFilter	INPUT	USINT	00 - No filter 01 - 250 kHz 02 - 200 kHz 03 - 80 kHz 04 - 40 kHz 05 - 13.3 kHz 06 - 10 kHz 07 - 4 kHz 08 - 2 kHz 09 - 1 kHz 10 - 500 Hz 11 - 250 Hz 12 - 125 Hz 13 - 62.5 Hz 14 - 31.25 Hz
EncMode	INPUT	USINT	Encoder Mode. 1-X1, 2- X2, 4-X4.
ECntPerRev	INPUT	REAL	User input to indicate how many X1 counts will be generated when Encoder disk turns one revolution.
TrvPerRev	INPUT	REAL	The actual distance travelled when motor turns one revolution.
Start	INPUT	BOOL	Start counter.
Stop	INPUT	BOOL	Stop the counter and clear MaxDPos and MaxDSpd value
FBENO	OUTPUT	BOOL	Function block enable output.
IDCheck	OUTPUT	BOOL	TRUE: HSC plug-in is at selected slot. FALSE: Wrong plug-in or no plug-in at selected slot.
Initialized	OUTPUT	BOOL	TRUE: Indicates HSC initialization has finished. FALSE: Indicates HSC initialization has not finished.
CurrentPos	OUTPUT	REAL	Current position.
CurrentSpd	OUTPUT	REAL	Current speed (Unit = user distance per second).
Accumulator	OUTPUT	LINT	Accumulator value.
TpPosition	OUTPUT	REAL	Position recorded when the latest touch probe is triggered.
Direction	OUTPUT	SINT	1 = Forward -1 = Reverse 0 = Not moving

RA_EncoderFDBK:	Input and	Output	Parameters
-----------------	-----------	--------	------------

	RA_ServoFDBK)
 FBEN		FBENO	
 SlotID		IDCheck	
 HomePos NoiseFilter		Initialized CurrentPOS	
 EcntPerRev		CurrentSpd	⊢
 TrvPerRev		Accumulator	⊢
 Start		TpPosition	⊢
 Stop		Direction	\vdash
)

RA_ServoFDBK

Parameter	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block Enable input
SlotID	INPUT	UINT	Plug-in slot number. Slot ID = 15 (starting with the far left slot 1)
HomePos	INPUT	REAL	Home position. Same value indicated in MC_Home instruction.

Parameter	Туре	Data Type	Description
NoiseFilter	INPUT	USINT	00: No filter 01: 250 kHz 02: 200 kHz 03: 80 kHz 04: 40 kHz 05: 13.3 kHz 06: 10 kHz 07: 4 kHz 08: 2 kHz 09: 1 kHz 10: 500 Hz 11: 250 Hz 12: 125 Hz 13: 62.5 Hz 14: 31.25 Hz
EncMode	INPUT	USINT	Encoder Mode. 1-X1, 2- X2, 4-X4.
ECntPerRev	INPUT	REAL	User input to indicate how many X1 counts will be generated when Encoder disk turns one revolution.
TrvPerRev	INPUT	REAL	The actual distance travelled when motor turns one revolution.
Start	INPUT	BOOL	Start counter.
Stop	INPUT	BOOL	Stop the counter and clear MaxDPos and MaxDSpd value.
FBENO	OUTPUT	BOOL	Function block enable output.
IDCheck	OUTPUT	BOOL	TRUE: HSC plug-in is at selected slot. FALSE: Wrong plug-in or no plug-in at selected slot.
Initialized	OUTPUT	BOOL	TRUE: Indicates HSC initialization has finished. FALSE: Indicates HSC initialization has not finished.
CurrentPos	OUTPUT	REAL	Current position.
CurrentSpd	OUTPUT	REAL	Current speed (Unit = user distance per second).
Accumulator	OUTPUT	LINT	Accumulator value.
TpPosition	OUTPUT	REAL	Position recorded when the latest touch probe is triggered.
Direction	OUTPUT	SINT	1 = Forward -1 = Reverse 0 = Not moving

RA_S	ServoFDBK:	Input and	d Output	Parameters
------	------------	-----------	----------	------------

Use the 2080-MOT-HSC Module

For a step-by-step guide on how to use the Micro800 High Speed Counter plugin, see <u>Quickstart Projects for 2080-MOT-HSC Plug-in on page 84</u>.

DeviceNet Plug-in - 2080-DNET20

Overview

The DeviceNet plug-in serves as scanner and client for explicit messaging to remote devices. The module is designed to scan devices such as:

- CompactBlock[™] LDX
- PowerFlex[®] drives
- E1Plus overloads
- stack lights

User-defined function blocks (UDFB) are required to enable interaction between these devices.

The 2080-DNET20 DeviceNet scanner supports a maximum of 20 nodes. For example, if the scanner ID is configured to zero, the scanner would scan from 1...20. It is supported on Micro800 controllers with available plug-in slots. Only one 2080-DNET20 DeviceNet scanner is supported per controller.

IMPORTANT	Rockwell Automation recommends that only one 2080-DNET20
	DeviceNet scanner be used for one network.

Status Indicators

The DeviceNet plug-in module supports two standard DeviceNet green and red LED indicators:

- Module status
- Network status

Module Status Indicator

LED state	Module status	Description
OFF	No power	There is no power present.
Flashing Green	Operational	Unit is starting up.
Green	Unit operational	Device is operating normally.
Flashing Red	Minor fault.	A recoverable fault is present or the module is undergoing firmware update.
Red	Unrecoverable fault.	A non-recoverable fault is detected.

Network Status Indicator

LED state Module Status		Description		
OFF	No power or offline	There is no network power or device is not operating.		
Flashing Green	ldle	No valid network connection has been made.		

Green	Online	The plug-in module is operating normally and receiving messages.
Flashing Red	Connection time out	One or more network connections has timed out.
Red	Critical link failure	The plug-in module has detected an error that makes it incapable of communicating on the link (Bus Off or duplicate MAC_ID).

Network Status Indicator

Network Configuration

In order to configure the DeviceNet plug-in and scan the network, you need to import user-defined function blocks (UDFBs) in your Micro800 project in Connected Components Workbench. Autoscan is used to add nodes into the scan list.

Network Wiring

The DeviceNet specifications provide for maximum network distances for the main trunk line and drop lines, depending upon the baud rate used on the network.

Network Specifications

Baud Rate	Rate Trunk Line Length Maximum Distance		Drop Length				
			Maximum		Cumulative		
	Meters	Feet	Meters	Feet	Meters	Feet	
125k baud	420	1377	6	20	156	512	
250k baud	200	656.17	6	20	78	256	
500k baud	75	246	6	20	39	128	

IMPORTANT Maximum power supply drop cable length is 3 m.

TIP Recommended Cable

Flat Cable (Kwiklink lite)

- Class 1 cable maximum allowable current 8A (NEC/CECode)
- Class 2 cable maximum allowable current 4A (NEC/CECode)

DeviceNet Switches

2080-DNET20 Assembly Diagram

DeviceNet Address (MAC_ID) Switch Definitions

Node Address	SW1 Switch Positions							
	3	4	5	6	7	8		
	Switch Position Values							
	32	16	8	4	2	1		
0 (default)	OFF	OFF	OFF	OFF	OFF	OFF		
1	OFF	OFF	OFF	OFF	OFF	ON		
2	OFF	OFF	OFF	OFF	ON	OFF		
3	OFF	OFF	OFF	OFF	ON	ON		
4	OFF	OFF	OFF	ON	OFF	OFF		
5	OFF	OFF	OFF	ON	OFF	ON		
62	ON	ON	ON	ON	ON	OFF		
63	ON	ON	ON	ON	ON	ON		

DeviceNet Baud Rate Switch Definitions

Baud Rate DR (Data Rate)	SW1 Switch Position	l
	1	2
125k	OFF	OFF
250k	OFF	ON
500k (default)	ON	OFF
Autobaud	ON	ON

IMPORTANT	For most applications, Rockwell Automation recommends that you use
	default node and baud rate settings. The DeviceNet scanner plug-in will
	be at node 0 and the devices will be at nodes 120. The baud rate will
	be at 500k baud and the maximum trunkline length will be 75 m
	(KwikLink Lite).

Power Supply

The plug-in module gets its power from the Micro800 backplane. However, the DeviceNet interface is isolated from the Micro800 system. Therefore, network power to operate the DeviceNet transceiver on the plug-in module is supplied by an external DeviceNet power supply.

If using a single power supply in the network, calculate the total current requirement of all devices in the network and add +10% for current surge. Recommended power supply is 1606-XLSDNET4.

Dropline Length	Allowable Current
1.5 m (5 ft)	3 A
2 m (6 ft)	2 A
3 m (10 ft)	1.5 A
4.5 m (15 ft)	1 A
6 m (20 ft)	0.75 A

Power Supply Cable Dropline Length

If two or more power supplies are connected to the Kwinklink lite media (trunk cable) V+ should be broken between the two power supplies.

TIP Grounding the network

If grounding at only one location, it is recommended that you ground at the center of the network.

Single Source Power Supply (End segment) Kwiklink Lite Cable

Single Source Power Supply – Trunkline Length and Maximum Current

Network Length in meter (ft)	Current, max	Network Length in meter (ft)	Current, max
0 (0)	8.00 ⁽¹⁾	220(722)	1.31
20 (66)	8.00 ⁽¹⁾	240 (787)	1.20
40 (131)	7.01 ⁽¹⁾	260 (853)	1.11
60 (197)	4.72 ⁽¹⁾	280 (919)	1.03
80 (262)	3.56	300 (984)	0.96
100 (238)	2.86	320 (1050)	0.90
120 (394)	2.39	340 (1115)	0.85
140 (459)	2.05	360 (1181)	0.80
160 (525)	1.79	380 (1247)	0.76
180 (591)	1.60	400 (1312)	0.72
200 (656)	1.44	420 (1378)	0.69

(1) Exceeds NEC CL2/CECode 4A limit.

Dual Source Power Supply (both ends – Kwiklink Lite Cable)

Network length in meters (ft)	Current, max	Network length in meters (ft)	Current, max
0 (0)	8.00 ⁽¹⁾	220 (722)	4.69
20 (66)	8.00	240 (787)	4.30
40 (131)	8.00	260 (853)	3.97
60 (197)	8.00	280 (919)	3.69
80 (262)	8.00	300 (984)	3.44
100 (328)	8.00	320 (1050)	3.23
120 (394)	8.00	340 (1115)	3.04
140 (459)	7.35	360 (1181)	2.87
160 (525)	6.43	380 (1247)	2.72
180 (591)	5.72	400 (1312)	2.59
200 (656)	5.16	420 (1378)	2.46

(1) Exceeds NEC CL2/CECode 4A limit.

Calculate Voltage Requirement

 $SUM \{ [(Ln * (Rc)) + (Nt * (0.005))] * In \} < 4.65 V$

Where:

Ln = Length in meter or feet

Rc = Resistance of the cable per meter or feet

(Kwiklink flat media = 0.019 ohms/meter or 0.0058/feet)

Nt = Number of the node starting from 1 close to power supply and increasing.

0.005 = Nominal contact resistance used for every connection to the trunkline In = Current drawn from the cable system by the device.

IMPORTANT To calculate for percentage of loading, divide the total voltage calculated from the above formula by 4.65.

Download the following 2080-DNET20 user-defined function blocks from the Sample Code Library: http://www.rockwellautomation.com/go/scmicro800

RA_DNET_MASTER

This UDFB sets the 2080-DNET20 scanner to RUN mode.

Variable Name	Туре	Data Type	Description
FBEN	INPUT	BOOL	TRUE: To continue reading and writing the scanner status. FBEN changed to level Triggered.
SlotID	INPUT	UINT	Plug-in slot number (15)
Run	INPUT	BOOL	TRUE: Set the scanner to RUN mode. FALSE: Scanner is in IDLE mode. AutoScan is enabled.
AutoScan	INPUT	BOOL	TRUE: AutoScan is enabled.
ClearFault	INPUT	BOOL	TRUE: Clear scanner fault. FALSE: No action.
FBENO	OUTPUT	BOOL	Function block enable output. TRUE upon exit.
NodeAddress	OUTPUT	USINT	Scanner node address. Default node address is 0.
BaudRate	OUTPUT	USINT	Network baud rate: 0: 125K 1: 250K 2: 500K 3: AutoBaud Default baud rate is 500K.
Status	OUTPUT	USINT	Scanner fault status. 0: No error.
Error	OUTPUT	STRING	Scanner error description.
ActiveNodes	OUTPUT	USINT	Number of slave nodes in the network.
Scanlist0_62	OUTPUT	LWORD	Details on active node table, bit 062. Bit 0: Represent Node 0. Bit 62: Represent Node 62.

RA_DNET_MASTER: Input and Output Parameters

User Defined Function Blocks

	RA_DNET_MASTER	
 FBEN SlotID Run	FBENO NodeAddress BaudRate	
 AutoScan	Status	<u> </u>
Clearfault	ActiveNodes	
	ScanList0_62	<u> </u>

Sequence	Run	Autoscan	Description
1	False	False	Reinitializes scan list from the plug-in scanner if FBEN = TRUE.
2	False	True	Triggers autoscan to scan the network after clearing scan list.
3	False	False	Puts scanner to IDLE mode by disabling autoscan if active node number = number of nodes in network.
4	True	False	Puts scanner to RUN mode.

Sequence of Operation: RA_DNET_MASTER

Upon powerup, the scanner should be in IDLE Mode for the autoscan to start. Wait until the autoscan process is complete before turning the scanner to RUN Mode (that is, Run bit is TRUE).

Sample Code

	RA_DNET_NODE_STATUS		
 FBEN SlotID		FBEN0 Status	
 NodelD		Error	

RA_DNET_NODE_STATUS

This UDFB is used to read the node status of slave nodes in a DeviceNet network where the 2080-DNET20 scanner is connected.

RA_DNET_NODE_STATUS: Input and Output Parameters

Variable Name	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block enable input. TRUE to enable the function.
SlotID	INPUT	UINT	Plug-in slot number (15)
NodelD	INPUT	USINT	Slave node address.

Variable Name	Туре	Data Type	Description
FBENO	OUTPUT	BOOL	Function block enable output. TRUE upon exit.
Status	OUTPUT	USINT	Scanner fault status. 0: No errors.
Error	OUTPUT	STRING	Description of the node status error.

|--|

Sample Code: RA_DNET_NODE_STATUS

RA_DNET_LDX_DISCRETE

This UDFB is used for I/O data exchange with discrete CompactBlock I/O.

RA	DNET	LDX	DISCRETE:	Input and	Output	Parameters
_			_			

Variable Name	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block enable input. TRUE to enable the function block.
SlotID	INPUT	UINT	Plug-in slot number (15)
NodelD	INPUT	USINT	Node address of the digital Compact I/O slave node.
Module1	INPUT	STRING	Base module I/O configuration. INPUT X OUTPUT Channels For example: 16X0 (16 input / 0 output is physically present as base module) Valid String: 32X0, 0X32, 16X0, 0X16, 16X16, 8X8, 8X0, 0X8, 0X6 NOTE: X should always be upper case.
Module2	INPUT	STRING	Expansion module 1 I/O configuration. INPUT X OUTPUT channels For example: 16X0 (16 input / 0 output is physically present as base module) Valid String: 32X0, 0X32, 16X0, 0X16, 16X16, 8X8, 8X0, 0X8, 0X6 NOTE: X should always be upper case.
Module3	INPUT	STRING	Expansion module 2 I/O configuration. INPUT X OUTPUT Channels For example: 16X0 (16 input / 0 Output is physically present as base module) Valid String: 32X0, 0X32, 16X0, 0X16, 16X16, 8X8, 8X0, 0X8, 0X6 NOTE: X should always be upper case.

Variable Name	Туре	Data Type	Description
Module4	INPUT	STRING	Expansion module 3I/O configuration. INPUT X OUTPUT Channels For example: 16X0 (16 input / 0 output is physically present as base module) Valid String: 32X0, 0X32, 16X0, 0X16, 16X16, 8X8, 8X0, 0X8, 0X6 NOTE: X should always be upper case.
DO_Module1	INPUT	UDINT	Output data for base module.
DO_Module2	INPUT	UDINT	Output data for expansion module 1.
DO_Module3	INPUT	UDINT	Output data for expansion module 2.
DO_Module4	INPUT	UDINT	Output data for expansion module 3.
FBENO	OUTPUT	BOOL	Function block enable output. TRUE upon exit.
DI_Module1	OUTPUT	UDINT	Input data from base module (Module 1).
DI_Module2	OUTPUT	UDINT	Input data from expansion module 1 (Module 2).
DI_Module3	OUTPUT	UDINT	Input data from expansion module 2 (Module 3).
DI_Module4	OUTPUT	UDINT	Input data from expansion module 3 (Module 4).

RA_	DNET_	_LDX_	DISCRETE:	Input and	Output	Parameters
-----	-------	-------	-----------	-----------	--------	------------

RA_DNET_LDX_ANALOG

This UDFB is used for data exchange with analog CompactBlock I/O.

RA	DNET	LDX	ANALO	G: Inpu	t and Ou	tput Pa	arameters
_			_				

Variable Name	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block enable input. TRUE to enable the function.
SlotID	INPUT	UINT	Plug-in slot number (15)
NodelD	INPUT	USINT	Slave node address.
Module1 ⁽¹⁾	INPUT	STRING	Analog base module I/O configuration. INPUT X OUTPUT Channels For example: 4X0 (4 input analog module is physically present as base module) Valid String: 0X2, 4X0 NOTE: X should always be upper case.
Module2 ⁽¹⁾	INPUT	STRING	Digital expansion module 1 I/O configuration. INPUT X OUTPUT Channels For example: 16X16 (16 input / 16 output is physically present as expansion module 1) Valid String: 16X0, 0X16, 16X16, 8X8, 8X0, 0X8, 0X6 NOTE: X should always be upper case.
Module3 ⁽¹⁾	INPUT	STRING	Digital expansion module 2 I/O configuration. INPUT X OUTPUT channels For example: 16X16 (16 input / 16 output is physically present as expansion module 2) Valid String: 16X0, 0X16, 16X16, 8X8, 8X0, 0X8, 0X6 NOTE: X should always be upper case.

1	RA_D	NET_LDX_ANALOG	
_	FBEN	FBENO	
	SlotID	AI_CH0	<u> </u>
	NodelD	AI_CH1	_
_	Module1	AI_CH2	<u> </u>
_	Module2	AI_CH3	_
_	Module3	StatusCH0_3	<u> </u>
_	AO_Ch0	DI_Module2	<u> </u>
_	AO_Ch1	DI_Module3	<u> </u>
_	DO_Module2		
_	DO_Module3		
ļ		,	

Variable Name	Туре	Data Type	Description
AO_Ch0	INPUT	WORD	Analog Output Channel 0 value. This value is valid only if Module1 = '0X2'
AO_Ch0	INPUT	WORD	Analog Output Channel 1 value. This value is valid only if Module1 = '0X2'
D0_Module2	INPUT	UINT	Output data for Expansion Module 1.
D0_Module3	INPUT	UINT	Output Data for Expansion Module 2.
FBENO	OUTPUT	BOOL	Function block enable output. TRUE upon exit.
AI_CH0	OUTPUT	WORD	Analog Input Channel 0 value. This value is valid only if Module1 = '4X0'
AI_CH1	OUTPUT	WORD	Analog Input Channel 1 value. This value is valid only if Module1 = '4X0'
AI_CH2	OUTPUT	WORD	Analog Input Channel 2 value. This value is valid only if Module1 = '4X0'
AI_CH3	OUTPUT	WORD	Analog Input Channel 3 Value. This value is valid only if Module1 = '4X0'
StatusCH0_3	OUTPUT	WORD	Analog input channel 03 status
DI_Module2	OUTPUT	UINT	Digital Expansion Module 1 Input Data. Applicable only if catalog is with digital inputs.
DI_Module3	OUTPUT	UINT	Digital Expansion Module 2 Input Data. Applicable only if catalog is with digital inputs.

RA	DNET	LDX	ANALOG:	Input and	Outp	out Parameters
		_				

(1) Use only valid strings combinations as mentioned above. If Module1, Module2, Module3 physical I/O does not match the physical I/O present in base and expansion, then incorrect sequence will be written.

RA_DNET_LDX_TC_RTD

This UDFB is used to read input data from the Thermocouple/RTD module.

RA_DNET_LDX_TC_RTD: Input and Output Parameters

Variable Name	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block enable input. TRUE to enable function.
SlotID	INPUT	UINT	Plug-in slot number (15)
NodelD	INPUT	USINT	Node address of the digital Compact I/O slave node.
FBENO	OUTPUT	BOOL	Function block enable output.
CHO	OUTPUT	WORD	RTD/Thermocouple input channel 0 value.
CH1	OUTPUT	WORD	RTD/Thermocouple input channel 1 value.
CH2	OUTPUT	WORD	RTD/Thermocouple input channel 2 value.
CH3	OUTPUT	WORD	RTD/Thermocouple input channel 3 value.
StatusCH0_3	OUTPUT	WORD	RTD/Thermocouple Input channel 03 status.

RA_DNET_TOWERLIGHT

_

This UDFB is used for data exchange with a towerlight or stacklight.

RA_	DNET	TOWERLIGHT:	: Input and	Output P	arameters
-----	------	-------------	-------------	-----------------	-----------

Variable Name	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block enable input. TRUE to enable the function.
SlotID	INPUT	UINT	Plug-in slot number (15)
NodelD	INPUT	USINT	Towerlight node address.
Light_0_4	INPUT	USINT	Light 04, for example: Bit 0: Blue Bit 1: Yellow Bit 2: Red
FBENO	OUTPUT	BOOL	Function block enable output. TRUE upon exit.
Status_0_4	OUTPUT	USINT	Light 04 status.

(RA_PF_DNET	STANDARD
	FBEN	FRENO
-	PlcPortNum	Status -
_	DriveNodeNum	PF_Feedback
	Start	PF_ErrorCode
_	Stop	PF_Ready
_	ReferenceSpeed	PF_Active
	Jog	PF_Alarm
_	ClearFault	PF_Fault
	Fwd_Rev	PF_AltReference
()

RA_PF_DNET_STANDARD

This UDFB is used for I/O data exchange with standard PowerFlex drives configured as single mode.

RA_PF_DNET_STANDARD: Input and Output Parameters

Variable Name	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block enable input. TRUE to enable the function.
PlcPortNum	INPUT	UINT	Plug-in slot number (15 for plug-in slots).
DriveNodeNum	INPUT	USINT	Slave node address for PowerFlex drive.
Start	INPUT	BOOL	TRUE to start PowerFlex drive.
Stop	INPUT	BOOL	TRUE to stop PowerFlex drive.
ReferenceSpeed	INPUT	REAL	Reference speed for the device. Configure PowerFlex drive speed.
Jog	INPUT	BOOL	TRUE to enable jog in PowerFlex drive.
ClearFault	INPUT	BOOL	TRUE to clear fault in PowerFlex drive.
Fwd_Rev	INPUT	BOOL	TRUE to configure PowerFlex drive for forward motion. FALSE to configure PowerFlex drive for reverse motion.
FBENO	OUTPUT	BOOL	Function block enable output. TRUE upon exit.
Status	OUTPUT	BOOL	PowerFlex drive status.
PF_Feedback	OUTPUT	REAL	Feedback from the PowerFlex drive.
PF_ErrorCode	OUTPUT	INT	For future use.
PF_Ready	OUTPUT	BOOL	Ready bit from PowerFlex drive.
PF_Active	OUTPUT	BOOL	Active bit from PowerFlex drive.

Variable Name	Туре	Data Type	Description
PF_Alarm	OUTPUT	BOOL	Alarm bit from PowerFlex drive.
PF_Fault	OUTPUT	BOOL	Fault bit from PowerFlex drive.
PF_AltReference	OUTPUT	BOOL	Alt Reference bit from PowerFlex drive.

RA	PF	DNET	STANDARD:	Input and	Output	Parameters
_			-			

IMPORTANT Ensure that your PowerFlex drives settings are correct. For basic setup configuration, see the PowerFlex drives user manuals in the <u>Rockwell Automation Literature Library</u>.

With PowerFlex 523, you need to multiply the speed reference and divide the speed feedback by a factor of 10.0 in order to get the correct value. Note that the PowerFlex 4 and PowerFlex 5 drives have a different multiplier.

Reference and reedback for the Different PowerFlex Drive
--

Drive Type	Number	Reference	Feedback
PowerFlex 4M	132	x10	x0.1
PowerFlex 4	39	x10	x0.1
PowerFlex 40	40	x100	x0.1
PowerFlex 40P	41	x100	x0.01
PowerFlex 400	129	x100	x0.01
PowerFlex 523	8	x100	x0.01
PowerFlex 525	9	x100	x0.01

For example, if you set reference speed at 50, command speed is 50 Hz for PowerFlex 4M and only 5 Hz for PowerFlex 523 and PowerFlex 525.

RA_PF_DNET_MULTIDRIVE

This UDFB is used for I/O data exchange with standard PowerFlex drives, configured as multi-drive.

	ET_MULTIDRIVE: Input and Output Para	ameters
--	--------------------------------------	---------

Variable Name	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block enable input. TRUE to enable the function.
PlcPortNum	INPUT	UINT	Plug-in slot number (15 for plug-in slots).
NodeNum	INPUT	USINT	DeviceNet node address for PowerFlex drive (connected as master in multi-drive setup).
Start	INPUT	BOOL[15]	TRUE to start each element of the array. Corresponds to each drive. For example: Start[1] for Drive 1 and Start[5] for Drive5.

Variable Name	Туре	Data Type	Description
Stop	INPUT	BOOL[15]	TRUE to stop each element of the array. Corresponds to each drive, for example, Stop [1] for Drive 1 and Stop [5] for Drive5.
ReferenceSpeed	INPUT	REA[15]L	Reference speed to set the device speed. Each element of the array corresponds to each drive, for example, Reference Speed [1] for Drive 1 and Reference Speed [5] for Drive5.
Jog	INPUT	BOOL[15]	TRUE to enable jog in PowerFlex drive. Each element of the array corresponds to each drive, for example, Reference Jog [1] for Drive 1 and Jog [5] for Drive5.
ClearFault	INPUT	BOOL[15]	TRUE to clear fault in PowerFlex drive. Each element of the array corresponds to each drive, for example, ClearFault [1] for Drive 1 and ClearFault [5] for Drive5.
Fwd_Rev	INPUT	BOOL[15]	TRUE to configure PowerFlex drive for forward motion. FALSE to configure PowerFlex drive for Reverse motion. Each element of the array corresponds to each drive, for example, Fwd_Rev [1] for Drive 1 and Fwd_Rev [5] for Drive5.
FBENO	OUTPUT	BOOL	Function block enable output. TRUE upon exit.
PF_Feedback	OUTPUT	REAL[15]	Speed reference from the PowerFlex drive. Each element of the array corresponds to each drive, for example, PF_Feedback[1] for Drive 1 and PF_Feedback[5] for Drive5.
PF_Ready	OUTPUT	BOOL[15]	Ready bit from PowerFlex drive. Each element of the array corresponds to each drive, for example, PF_Ready[1] for Drive 1 and PF_Ready[5] for Drive5.
PF_Active	OUTPUT	BOOL[15]	Active bit from PowerFlex drive. Each element of the array corresponds to each drive, for example, PF_Active[1] for Drive 1 and PF_Active[5] for Drive5.
PF_Alarm	OUTPUT	BOOL[15]	Alarm bit from PowerFlex drive. Each element of the array corresponds to each drive, for example, PF_Alarm[1] for Drive 1 and PF_Alarm[5] for Drive5.
PF_Fault	OUTPUT	BOOL[15]	Fault bit from PowerFlex drive. Each element of the array corresponds to each drive, for example, PF_Fault[1] for Drive 1 and PF_Fault[5] for Drive5.
PF_AltReference	OUTPUT	BOOL[15]	Alt Reference bit from PowerFlex drive. Each element of the array corresponds to each drive, for example, PF_AltReference[1] for Drive 1 and PF_AltReference[5] for Drive5.

RA	PF	DNET	MULTIDRIVE:	Input and	Output	Parameters
			-			

IMPORTANT Ensure that your PowerFlex drives settings are correct. For basic setup configuration, see the PowerFlex drives user manuals in the Rockwell Automation Literature Library.

RA_DNET_OVERLOAD

This UDFB is used for I/O data exchange with an overload relay.

\mathbf{RA}_{-}	DNET_	_OVERLOAD	: Input and	Output	Parameters
-------------------	-------	-----------	-------------	--------	------------

Variable Name	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block enable input. TRUE to enable the function.
SlotID	INPUT	UINT	Plug-in slot number (15 for plug-in slots).
NodelD	INPUT	USINT	DeviceNet node address of the slave node.
OutA	INPUT	BOOL	TRUE to turn on Output A.
TripReset	INPUT	BOOL	TRUE to enable Trip Reset.
FBENO	OUTPUT	BOOL	Function block enable output. TRUE upon exit.
IN1	OUTPUT	BOOL	Input 1 from overload relay.
IN2	OUTPUT	BOOL	Input 2 from overload relay.
Warning	OUTPUT	BOOL	TRUE if warning is enabled.
Tripped	OUTPUT	BOOL	TRUE if tripped.
AverageFLA	OUTPUT	WORD	Average FLA % value from overload relay.
ThermUtilized	OUTPUT	WORD	Therm Utilized value from overload relay.
OutAStatus	OUTPUT	WORD	Average FLA value from overload relay.

RA_DNET_GENERIC

This UDFB is used for I/O data exchange with generic I/O devices.

RA_DNET_GENERIC: Input and Output Parameters

Variable Name	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block enable input. TRUE to enable function.
SlotID	INPUT	UINT	Plug-in slot number (15 for plug-in slots).
NodelD	INPUT	USINT	Slave node address.
OutputData	INPUT	USINT[164]	Slave output data.
FBENO	OUTPUT	BOOL	Function block enable output. TRUE to enable function.
InputData[164]	OUTPUT	USINT[164]	Input data from slave.

RA_DNET_EXPLICIT

This UDFB is used for sending explicit message to slave node.

Variable Name	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block enable input. TRUE to enable function.
SlotID	INPUT	UINT	Plug-in slot number (15 for plug-in slots).
NodelD	INPUT	USINT	Node address of slave node.
CnxnNumber	INPUT	USINT	Connection number values 1, 2, 3, 4, 5.
MsgLength	INPUT	USINT	Specifies the size of the CIP message in the transaction block.
CIPService	INPUT	UINT	CIP service code.
CIPClass	INPUT	UINT	CIP Class code (valid values 065535).
CIPInstance	INPUT	UINT	CIP instance (valid values 065535).
CIPAttribute	INPUT	UINT	CIP attribute (valid values 065535).
RequestData	INPUT	USINT[154]	Request data from slave.
FBENO	OUTPUT	BOOL	Function block enable output.
Q	OUTPUT	BOOL	TRUE when message is sent out successfully.
Error	OUTPUT	BOOL	TRUE when message transmits error.
ResponseData	OUTPUT	USINT [150]	CIP Response error Response Data[1] : Extended Error ID Response Data[2] : Error ID
			See <u>Explicit Message Request Format on</u> <u>page 54</u> . See <u>Explicit Message Status Codes on page 55</u> .
Status	OUTPUT	USINT	See Explicit Message Status Codes on page 55.

RA_DNET_EXPLICIT: Input and Output Parameters

Transaction Block Format

Byte Offset	Contents
0	Status
1	Transaction ID
2	Size
3	Reserved
4	MAC ID
5	Service
6115	Transaction Body (110 bytes)

Explicit Message Request Format

Byte Offset	Contents
0	Status
1	Transaction ID
2	Size
3	Reserved

Byte Offset	Contents
4	MAC ID
5	Service
67	Class
89	Instance
10115	Service Data (106 Bytes)

Explicit Message Request Format

Explicit Message Response Format

Byte Offset	Contents
0	Status
1	Transaction ID
2	Size
3	Reserved
4	MAC ID
5	Service

Byte Offset	Contents	Request Data
0	Status	Can be read from UDFB status
6115	ServiceData	Can be read from UDFB response data. Response data shows CIP error Code.

Explicit Message Status Codes

Status Code	Description
0	Ignore transaction block (block empty).
1	Transaction completed successfully.
2	Transaction in progress (not ready).
4	Error – node offline
5	Error – DeviceNet port disabled/offline
6	Error – Transaction TXID unknown
7	Error – Duplicate TXID
9	Error – Scanner out of buffers
12	Error – Response data too large for block
14	Error – Invalid size specified
15	Error – Device timed out
16	Block queued.
17	Block allocated
18	Connection in progress
3, 8, 10, 11, 13, 19255	Reserved

Error Codes

DeviceNet plug-in Error Codes and Descriptions

ErrorID	Description
0	No errors.
1	Node number not in scanlist.
65	AutoScan active.
70	Scanner failed DUP MAC check.
71	Illegal value in scanlist.
72	Device stopped communicating.
73	Device does not match scanlist.
74	Scanner has detected data overrun.
75	No network traffic detected.
76	No network traffic detected for scanner.
77	Data size returned does not match scanlist.
78	Device on scanlist not active on subnet.
79	Scanner failed to transmit a message.
80	Scanner is in Idle mode operation.
81	Scanner is in fault mode operation.
82	I/O fragment out of sequence.
83	Device refused to be initialized.
84	Device not yet initialized.
85	Incorrect data size upon connection with device.
86	Device/Slave went into Idle.
87	Shared master has not allocated slave.
88	Shared master has not allocated required choices.
89	Keeper download failed.
90	User has disabled scanner.
91	Bus Off detected on scanner.
92	No network power detected.
93	CRC failure detected on one or more configuration blocks.
95	Scanner application program flash is being updated.
96	Port is in test mode.
97	Scanner is halted by user.
98	ESC, overflow, divide or other processor error.
99	Scanner watchdog has timed out.

Use the 2080-DNET20 Plug-in

For a step-by-step guide on how to use the DeviceNet plug-in, see <u>Quickstart</u> <u>Project for 2080-DNET20 Plug-in on page 79</u>.

Specifications

Digital Plug-in Modules

General Specifications - 2080-0B4, 2080-0V4, 2080-IQ40B4, 2080-IQ40V4, 2080-IQ4

Attribute	Value
Mounting torque	0.2 Nm (1.48 lb-in.)
Status indicators	For input or output modules – 4 yellow For combination modules – 8 yellow
Terminal base screw torque	0.220.25 Nm (1.952.21 lb-in.) using a 2.5 mm (0.10 in.) flat-blade screwdriver
Enclosure type rating	None (open-style)
Isolation voltage	For input modules 50V (continuous), Basic Insulation Type, Inputs to Backplane Type tested for 60 s @ 720 V DC, Inputs to Backplane For combination or output modules 50V (continuous), Basic Insulation Type, Inputs to Outputs, I/Os to Backplane Type tested for 60 s @ 720 V DC, I/Os to Backplane
Wire size	1.3 0.2 mm ² (1624 AWG) solid or stranded copper wire rated @ 90 °C (194 °F), or greater, insulation max
Wire category	2 – on signal ports 2 – on power ports
North American temp code	Τ4

Input Specifications - 2080-IQ4, 2080-IQ40V4, 2080-IQ40B4

Attribute	Value
DC on-state voltage, min	9.0V DC
DC on-state voltage, max	30V DC
DC on-state current, min	2.0 mA @ 9V DC
DC on-state current, nom	3.0 mA @ 24V DC
DC on-state current, max	5.0 mA
DC off-state voltage, max	5V DC
DC off-state current, max	1.5 mA
IEC input compatibility	Туре 3
Input impedance	03V, >4 KΩ 312V, 3.5 KΩ min 1230V, >4 KΩ <10 KΩ
Input filter time ON to OFF	810 ms AC/DC
AC on-state voltage, min	10.25V AC (rms)
AC on-state voltage, max	30V AC (rms)

Input Specifications - 2080-IQ4, 2080-IQ40V4, 2080-IQ40B4

Attribute	Value
AC on-state current, min	2.0 mA @ 9V AC (rms)
AC on-state current, max	5.0 mA
AC off-state voltage	3.5V AC (rms)

Output Specifications - 2080-0B4, 2080-0V4, 2080-IQ40B4, 2080-IQ40V4

Attribute	Value
Power supply voltage	10.8V DC, min 30V DC, max
On-state voltage	10V DC, min 24V DC, nom 30V DC, max
On-state current	5.0 mA @ 10V DC, min 0.5 A max, steady state 2 A surge, 2 s min

Environmental Specifications – 2080-0B4, 2080-0V4, 2080-1Q40B4, 2080-1Q40V4, 2080-1Q4

Attribute	Value
Temperature, operating	IEC60068-2-1 (Test Ad, Operating Cold), IEC60068-2-2, (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -2065 °C (-4149 °F)
Temperature, surrounding air, max.	65 °C (149 °F)
Temperature, non-operating	IEC60068-2-1 (Test Ad, Operating Cold), IEC60068-2-2, (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -4085 °C (-40185 °F)
Relative humidity	IEC 60068-2-30 (Test Db, Unpackaged Damp Heat): 595% noncondensing
Vibration	IEC 60068-2-6 (Test Fc, Operating): 2 g @ 10500 Hz
Shock, operating	IEC 60068-2-27 (Test Ea, Unpackaged Shock): DIN rail mounting: 25 g Panel mounting: 35 g
Shock, non-operating	IEC 60068-2-27 (Test Ea, Unpackaged Shock): 25 g
Emissions	CISPR 11: Group 1, Class A
ESD Immunity	IEC 61000-4-2: 4 kV contact discharges 8 kV air discharges
Radiated RF immunity	IEC 61000-4-3: 10 V/M with 1 kHz sine-wave 80%AM from 802000 MHz 10 V/M with 200 Hz 50% Pulse 100%AM @ 900 MHz 10 V/M with 200 Hz 50% Pulse 100%AM @1890 MHz 10 V/M with 1 kHz sine-wave 80%AM from 20002700 MHz

Environmental Specifications – 2080-0B4, 2080-0V4, 2080-1Q40B4, 2080-1Q40V4, 2080-1Q4

Attribute	Value
EFT/B immunity	±2 kV @ 5 kHz on signal ports
Surge transient immunity	$\pm 1 \mbox{ kV}$ line-line(DM) and $\pm 2 \mbox{ kV}$ line-earth(CM) on signal ports
Conducted RF immunity	10V rms with 1 kHz sine-wave 80%AM from 150 kHz80 MHz

Certifications - 2080-0B4, 2080-0V4, 2080-1Q40B4, 2080-1Q40V4, 2080-1Q4

Certification (when product is marked) ⁽¹⁾	Value
c-UL-us	UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E322657.
	UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E334470.
CE	European Union 2004/108/EC EMC Directive, compliant with: EN 61326-1; Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity EN 61000-6-4; Industrial Emissions EN 61131-2; Programmable Controllers (Clause 8, Zone A & B)
C-Tick	Australian Radiocommunications Act, compliant with: AS/NZS CISPR 11; Industrial Emissions
KC	Korean Registration of Broadcasting and Communications Equipment, compliant with: Article 58-2 of Radio Waves Act, Clause 3

 See the Product Certification link at <u>http://www.rockwellautomation.com/products/certification/</u> for Declarations of Conformity, Certificates, and other certification details.

General Specifications – 2080-OW4I Digital Relay Output Plug-in Module

Attribute	Value
Addibuto	Talao
Mounting torque	0.2 Nm (1.48 lb-in.)
Status indicators	4 yellow
Terminal base screw torque, max	0.19 Nm (1.7 lb-in.) using a 2.5 mm [0.10 in.] flat-blade screwdriver
Wire size	0.051.31 mm2 (3016 AWG) solid copper wire rated @ 90 °C (194 °F) insulation max
Enclosure type rating	None (open-style)
Isolation voltage	240V (continuous), Reinforce Insulation Type, between Output Channels and Output channels to Backplane Type tested for 60 s @ 1480 V AC Outputs to Outputs, Outputs to Backplane
Insulation stripping length	5 mm
Wiring category	2 – on signal ports 2 – on power ports
Wire type	Copper
North American temp code	Τ4
Inrush current	<120 mA @ 3.3V <120 mA @ 24V

Attribute	Value
Backplane power	3.3 VDC, 38 mA
Output current, resistive	2 A @ 530V DC 0.5 A @ 48V DC 0.22 A @ 125V DC 2 A @ 125V AC 2 A @ 240V AC
Output current, inductive	1.0 A steady state @ 528V DC 0.93 A steady state @ 30V DC 0.5 A steady state @ 48V DC 0.22 A steady state @ 125V DC 2.0 A steady state, 15 A make @ 125V AC, PF $-\cos \theta = 0.4$ 2.0 A steady state, 7.5 A make @ 240V AC, PF $-\cos \theta = 0.4$
Output power, resistive, max	250 VA for 125V AC resistive loads 480 VA for 240V AC resistive loads 60 VA for 30V DC resistive loads 24 VA for 48V DC resistive loads 27.5 VA for 125V DC resistive loads
Pilot duty rating	C300, R150
Minimum load, per point	10 mA
Initial contact resistance of relay, max	30 mΩ
Output delay time, max	10 ms ON or OFF

General Specifications – 2080-OW4I Digital Relay Output Plug-in Module

Relay Contact Ratings (0.35 power factor) – 2080-OW4I

Maximum Volts	Amperes		Amperes Continuous	Volt-Amperes	
	Make	Break		Make	Break
120V AC	15 A	1.5 A	2.0 A	1800 VA	180 VA
240V AC	7.5 A	0.75 A			
24V DC	1.0 A			28 VA	
125V DC	0.22 A				

Environmental Specifications – 2080-OW4I

Attribute	Value
Temperature, operating	IEC60068-2-1 (Test Ad, Operating Cold), IEC60068-2-2, (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -2065 °C (-4149 °F)
Temperature, surrounding air, max.	65 °C (149 °F)
Temperature, non-operating	IEC60068-2-1 (Test Ad, Operating Cold), IEC60068-2-2, (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -4085 °C (-40185 °F)
Relative humidity	IEC 60068-2-30 (Test Db, Unpackaged Damp Heat): 595% noncondensing
Vibration	IEC 60068-2-6 (Test Fc, Operating): 2 g @ 10500 Hz
Shock, operating	IEC 60068-2-27 (Test Ea, Unpackaged Shock): 10 g

Attribute	Value
Shock, non-operating	IEC 60068-2-27 (Test Ea, Unpackaged Shock): DIN rail mounting: 25 g Panel mounting: 35 g
ESD Immunity	IEC 61000-4-2: 6kV contact 8 kV air
Radiated RF immunity	IEC 61000-4-3 10 V/M with 1 kHz sine-wave 80%AM from 802000 MHz 10 V/M with 200 Hz sine-wave 50% Pulse 100%AM @ 900 MHz 10 V/M with 200 Hz sine-wave 50% Pulse 100%AM @1890 MHz 10 V/M with 1 kHz sine-wave 80%AM from 20002700 MHz
EFT/B immunity	IEC 61000-4-4: ±2 kV @ 5 kHz on signal ports
Surge transient immunity	IEC 61000-4-5: ± 1 kV line-line(DM) and ± 2 kV line-earth(CM) on signal ports
Conducted RF immunity	IEC 61000-4-6: 10V rms with 1 kHz sine-wave 80%AM from 150 kHz80 MHz

Environmental Specifications – 2080-OW4I

Certifications - 2080-OW4I

Certification (when product is marked) ⁽¹⁾	Value
c-UL-us	UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E322657.
	UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E334470.
CE	European Union 2004/108/EC EMC Directive, compliant with: EN 61326-1; Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity EN 61000-6-4; Industrial Emissions EN 61131-2; Programmable Controllers (Clause 8, Zone A & B) European Union 2006/95/EC LVD, compliant with:EN 61131-2; Programmable Controllers (Clause 11)
C-Tick	Australian Radiocommunications Act, compliant with: AS/NZS CISPR 11; Industrial Emissions
КС	Korean Registration of Broadcasting and Communications Equipment, compliant with: Article 58-2 of Radio Waves Act, Clause 3

 See the Product Certification link at <u>http://www.rockwellautomation.com/products/certification/</u> for Declarations of Conformity, Certificates, and other certification details.

Analog Plug-in Modules

Input Specifications – 2080-IF2, 2080-IF4

Attribute	2080-IF2	2080-IF4
Number of inputs, single ended	2	4
Analog normal operating ranges	Voltage: 010V DC Current: 020 mA	
Resolution, max.	12 bits unipolar, with software selected option for 50 Hz, 60 Hz, 250 Hz, 500 Hz	
Data range	065535	
Input impedance	Voltage Terminal: > 220K Ω , Cu	urrent Terminal: 250 Ω
Overall accuracy ⁽¹⁾	Voltage Terminal: ±1% full scal Current Terminal: ±1% full scal	e @ 25°C e @ 25°C
Non-linearity (in percent full scale)	±0.1%	
Repeatability ⁽²⁾	± 0.1%	
Module error over full temperature range, -2065°C (-4149°F)	Voltage: ± 1.5% Current: ± 2.0%	
Input channel configuration	Through configuration software or the user program	
Field input calibration	Not required	
Update time	180 ms per enabled channel	
Input group to bus isolation	No isolation	
Channel to channel isloation	Non-isolation	
Temperature, operating	IEC 60068-2-1 (Test Ad, Operating Cold), IEC 60068-2-2 (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -2065 °C (-4149 °F)	
Temperature, non-operating	IEC 60068-2-1 (Test Ab, Unpackaged Nonoperating Cold), IEC 60068-2-2 (Test Bb, Unpackaged Nonoperating Dry Heat), IEC 60068-2-14 (Test Na, Unpackaged Nonoperating Thermal Shock): -4085 °C (-40185 °F)	
Relative humidity	IEC 60068-2-30 (Test Db, Unpackaged Damp Heat): 5%95% non-condensing	
Operating altitude	2000 m	
Cable length, max.	10 m	

(1) Includes offset, gain, non-linearity and repeatability error terms.

(2) Repeatability is the ability of the input module to register the same reading in successive measurements for the same input signal.

Output Specifications – 2080-OF2

Attribute	2080-OF2
Number of outputs, single ended	2
Analog normal operating ranges	Voltage: 10V DC Current: 020 mA
Resolution, max.	12 bits unipolar
Output count range	065535
D/A Conversion Rate (all channels), max.	2.5 ms

Attribute	2080-0 F2
Sten Besponse to 63% ⁽¹⁾	5 ms
Current Load In voltage output, max	10 mA
Resistive load on current output	0500Ω (includes wire resistance)
Load range on voltage output	> 1k Ω @ 10V DC
Max. inductive load (current outputs)	0.01 mH
Max. capacitive load (voltage outputs)	0.1 µF
Overall Accuracy ⁽²⁾	Voltage Terminal: ±1% full scale @ 25 °C Current Terminal: ±1% full scale @ 25 °C
Non-linearity (in percent full scale)	± 0.1%
Repeatability ⁽³⁾ (in percent full scale)	± 0.1%
Output error over full temperature range, -2065°C (-4149°F)	Voltage: ± 1.5% Current: ± 2.0%
Open and short-circuit protection	Yes
Output overvoltage protection	Yes
Input group to bus isolation	No isolation
Channel to channel isolation	Non-isolation
Temperature, operating	IEC 60068-2-1 (Test Ad, Operating Cold), IEC 60068-2-2 (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -2065 °C (-4149 °F)
Temperature, non-operating	IEC 60068-2-1 (Test Ab, Unpackaged Nonoperating Cold), IEC 60068-2-2 (Test Bb, Unpackaged Nonoperating Dry Heat), IEC 60068-2-14 (Test Na, Unpackaged Nonoperating Thermal Shock): -4085 °C (-40185 °F)
Relative humidity	IEC 60068-2-30 (Test Db, Unpackaged Damp Heat): 595% non-condensing
Operating altitude	2000 m
Cable length, max.	10 m

Output Specifications – 2080-OF2

(1) Step response is the period of time between when the D/A converter was instructed to go from minimum to full range until the device is at 63% of full range.

(2) Includes offset, gain, non-linearity and repeatability error terms.

(3) Repeatability is the ability of the output module to reproduce output readings when the same controller value is applied to it consecutively, under the same conditions and in the same direction.

Value
UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E322657.
UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E334470.
European Union 2004/108/EC EMC Directive, compliant with: EN 61326-1; Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity EN 61000-6-4; Industrial Emissions EN 61131-2; Programmable Controllers (Clause 8, Zone A & B) European Union 2006/95/EC LVD, compliant with:
EN 61131-2; Programmable Controllers (Clause 11)
Australian Radiocommunications Act, compliant with: AS/NZS CISPR 11; Industrial Emissions

Certifications - 2080-IF2, 2080-IF4, 2080-OF2

 See the Product Certification link at <u>http://www.rockwellautomation.com/products/certification/</u> for Declarations of Conformity, Certificates, and other certification details.

Specialty Plug-in Modules

Specifications – 2080-MEMBAK-RTC

Attribute	Value
Resolution READ_RTC()	1 s
Accuracy	± 5 sec/month @ 25 °C ± 9 sec/month@ -2065 °C
Power off	Battery — 3.5 years from date of manufacture @ 25…65 °C, 2.5 years from date of manufacture @ 0 °C
Temperature, operating	IEC 60068-2-1 (Test Ab, Unpackaged Nonoperating Cold), IEC 60068-2-2 (Test Bb, Unpackaged Nonoperating Dry Heat), IEC 60068-2-14 (Test Na, Unpackaged Nonoperating Thermal Shock): -2065 °C (-4149 °F)
Temperature, nonoperating	IEC 60068-2-1 (Test Ab, Unpackaged Nonoperating Cold), IEC 60068-2-2 (Test Bb, Unpackaged Nonoperating Dry Heat), IEC 60068-2-14 (Test Na, Unpackaged Nonoperating Thermal Shock): -4085 °C (-40185 °F)
Relative humidity	IEC 60068-2-30 (Test Db, Unpackaged Damp Heat): 595% non-condensing
Altitude, operating	2000 m

IMPORTANT Battery life does not include controller ON time. For example, if the Controller is ON for 16 hours every day for 365 days, if the module starts being used after 1 year of manufacturing, battery life is 8.5 years (1 year initial time + 2.5 years of Off time out of 7.5 years).
Attribute	Value
Data range	0255
Number of trimpot	6
Temperature, operating	IEC 60068-2-1 (Test Ad, Operating Cold), IEC 60068-2-2 (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -2065 °C (-4149 °F)
Temperature, nonoperating	IEC 60068-2-1 (Test Ab, Unpackaged Nonoperating Cold), IEC 60068-2-2 (Test Bb, Unpackaged Nonoperating Dry Heat), IEC 60068-2-14 (Test Na, Unpackaged Nonoperating Thermal Shock): -4085 °C (-40185 °F)
Temperature, surrounding air, max	65 °C (149 °F)
Relative humidity	IEC 60068-2-30 (Test Db, Unpackaged Damp Heat): 5%95% non-condensing
Altitude, operating	2000 m

Specifications – 2080-TRIMPOT6

Certifications – 2080-TRIMPOT6

Certification (when product is marked) ⁽¹⁾	Value
c-UL-us	UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E322657.
	UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E334470.
CE	European Union 2004/108/EC EMC Directive, compliant with: EN 61326-1; Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity EN 61000-6-4; Industrial Emissions EN 61131-2; Programmable Controllers (Clause 8, Zone A & B)
C-Tick	Australian Radiocommunications Act, compliant with: AS/NZS CISPR 11; Industrial Emissions

(1) See the Product Certification link at <u>http://www.rockwellautomation.com/products/certification/</u> for Declarations of Conformity, Certificates, and other certification details.

General and Environmental Specifications – 2080-TC2, 2080-RTD2

Attribute	2080-RTD2	2080-TC2	
Mounting torque	0.2 Nm (1.48 lb-in.)		
Terminal screw torque	0.220.25 Nm (1.952.21 lb-in.) using a 2.5 mm (0.10 in.) flat-blade screwdriver		
Wire size	0.141.5 mm ² (2616 AWG) solid copper wire or 0.141.0 mm ² (2617 AWG) stranded copper wire rated @ 90 °C (194 °F) insulation max		
Input impedance	>5 MΩ	> 300 KΩ	
Common mode rejection ratio	100 dB 50/60Hz		
Normal mode rejection ratio	70 dB @ 50/60 Hz		
Resolution	14-bit		

Attribute	2080-RTD2	2080-TC2
CJC error	—	±1.2 °C @ 25 °C (77 °F)
Accuracy	±1.0 °C for TC and RTD @ 25 °C (77 °F)	
Channels	2, non-isolated	
RTD types supported	$\begin{array}{c} 100 \ \Omega \ \ Platinum \ 385 \\ 200 \ \Omega \ \ Platinum \ 385 \\ 500 \ \Omega \ \ Platinum \ 385 \\ 1000 \ \ Platinum \ 385 \\ 100 \ \Omega \ \ Platinum \ 392 \\ 200 \ \Omega \ \ Platinum \ 392 \\ 200 \ \Omega \ \ Platinum \ 392 \\ 1000 \ \Omega \ \ Platinum \ 392 \\ 1000 \ \Omega \ \ Platinum \ 392 \\ 1000 \ \Omega \ \ Platinum \ 392 \\ 1000 \ \Omega \ \ Platinum \ 392 \\ 1000 \ \Omega \ \ Platinum \ 392 \\ 1000 \ \Omega \ \ Platinum \ 392 \\ 1000 \ \Omega \ \ \ Platinum \ 392 \\ 1000 \ \Omega \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Thermocouple types supported	—	J, K, N, T, E, R, S, B
Open circuit detection time	81212 ms	81515 ms
Power consumption	3.3 V, 40 mA	
Temperature, surrounding air, max.	65 °C (149 °F)	
Temperature, operating	IEC60068-2-1 (Test Ad, Operating Cold), IEC60068-2-2, (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -2065 °C (-4149 °F)	
Temperature, nonoperating	IEC60068-2-1 (Test Ad, Operating Cold), IEC60068-2-2, (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -4085 °C (-40185 °F)	
North American temp code	T4	

General and Environmental Specifications – 2080-TC2, 2080-RTD2

Certifications – 2080-TC2, 2080-RTD2

Certification (when product is marked) ⁽¹⁾	Value
c-UL-us	UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E322657.
	UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E334470.
CE	European Union 2004/108/EC EMC Directive, compliant with: EN 61326-1; Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity EN 61000-6-4; Industrial Emissions EN 61131-2; Programmable Controllers (Clause 8, Zone A & B)
C-Tick	Australian Radiocommunications Act, compliant with: AS/NZS CISPR 11; Industrial Emissions

 See the Product Certification link at <u>http://www.rockwellautomation.com/products/certification/</u> for Declarations of Conformity, Certificates, and other certification details.

Attribute	Value			
Dimensions, HxWxD, approx.	62 x 31.5 x 20 mm (2.44 x 1.24 x 0.79 in.)			
Terminal screw torque	0.220.25 Nm (1.952.21 lb-in.) using a 2.5 mm (0.10 in.) flat-blade screwdriver			
Bus current draw	60 mA @ 3	60 mA @ 3.3V DC		
Recommended cable	Individually shielded, twisted-pair cable (or the type recommended by the encoder or sensor manufacturer)			
Wire size				
		Min	Max	
	Solid	0.14 mm ² (26 AWG)	1.5 mm ² (16 AWG)	rated @ 90 °C (194 °F) insulation
	Stranded	0.14 mm ² (26 AWG)	1.0 mm ² (18 AWG)	max
Enclosure type rating	Meets IP20			
Isolation voltage	Input module: 50V (continuous), Basic Insulation Type, Inputs/ Outputs to Backplane Type tested for 60s @ 720V DC, Inputs/Outputs to Backplane			
Wiring Category ⁽¹⁾	2 – on signal ports			
North American Temp Code	T4			

General Specifications – 2080-MOT-HSC

 Use this Conductor Category information for planning conductor routing. Refer to Industrial Automation Wiring and Grounding Guidelines, publication <u>1770-4.1</u>.

Input Specifications – 2080-MOT-HSC

Attribute	Value
Number of inputs	1 Quadrature (ABZ) differential input
Maximum count	48 bits
Input voltage range	030V DC
On state voltage range	2.630V DC
On-state current, min	2.0 mA
Off-state voltage, max	1.0V DC
Off-state leakage current, max	1.5 mA
Input current range	2.09.0 mA
Input impedance, nom	3580 Ω
Pulse width, min	2 µs
Phase separation, min	500 ns ⁽¹⁾
Input frequency, max	250 kHz (50% duty)

(1) Phase separation is the recognition of phase time of A input and B input.

Output Specifications – 2080-MOT-HSC

Attribute	Value
Number of outputs	16 (1 physical output; 15 virtual)
Output voltage range	530V DC
Output on-state current, max	0.5 A
Output on-state current, min	1 mA
On-state voltage drop, max	0.5V DC
Off-state leakage current, max	0.5 mA
Turn ON time, max	2 ms
Turn OFF time, max	2 ms
Reverse polarity protection	None

Temperature Derating

Maximum input voltage – 24V DC operation

Maximum output voltage - 24V DC operation

Maximum output currrent per point – 5V DC operation

Maximum output current per point – 24V DC operation

Attribute	Value	
Temperature, operating	IEC 60068-2-1 (Test Ad, Operating Cold), IEC 60068-2-2 (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -2065 °C (-4149 °F)	
Temperature, nonoperating	IEC 60068-2-1 (Test Ab, Unpackaged Nonoperating Cold), IEC 60068-2-2 (Test Bb, Unpackaged Nonoperating Dry Heat), IEC 60068-2-14 (Test Na, Unpackaged Nonoperating Thermal Shock): -4085 °C (-40185 °F)	
Temperature, surrounding air, max	65 °C (149 °F)	
Relative humidity	IEC 60068-2-30 (Test Db, Unpackaged Damp Heat): 595% noncondensing	
Vibration	IEC 60068-2-6 (Test Fc, Operating): 2 g @ 10500 Hz	
Shock, operating	IEC 60068-2-27 (Test Ea, Unpackaged Shock): 25 g	
Shock, nonoperating	IEC 60068-2-27 (Test Ea, Unpackaged Shock): 25 g 35 g (PANEL mount)	
Emissions	CISPR 11 (IEC 61000-6-4): Class A	
ESD immunity	IEC 61000-4-2: 6 kV contact discharges 8 kV air discharges	
Radiated RF immunity	IEC 61000-4-3: 10V/m with 1 kHz sine-wave 80% AM from 802000 MHz 10V/m with 200 Hz 50% Pulse 100% AM @ 900 MHz 10V/m with 200 Hz 50% Pulse 100% AM @ 1890 MHz 10V/m with 1 kHz sine-wave 80% AM from 20002700 MHz	
EFT/B immunity	IEC 61000-4-4: ±2 kV @ 5 kHz on signal ports	
Surge transient immunity	IEC 61000-4-5: ±2 kV line-earth(CM) on shielded ports	
Conducted RF immunity	IEC 61000-4-6: 10V rms with 1 kHz sine-wave 80% AM from 150 kHz…80 MHz	

Environmental Specifications – 2080-MOT-HSC

Certifications – 2080-MOT-HSC

Certification (when product is marked) ⁽¹⁾	Value
c-UL-us	UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E322657.
	UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E334470.
CE	EN 61326-1; Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity EN 61000-6-4; Industrial Emissions EN 61131-2; Programmable Controllers (Clause 8, Zone A & B)
RCM	Australian Radiocommunications Act, compliant with: AS/NZS CISPR 11; Industrial Emissions
KC	Korean Registration of Broadcasting and Communications Equipment, compliant with: Article 58-2 of Radio Waves Act, Clause 3

 See the Product Certification link at <u>http://www.rockwellautomation.com/products/certification/</u> for Declarations of Conformity, Certificates, and other certification details.

Communication Plug-in Modules

Specifications - 2080-DNET20

Attribute	Value
Screw torque	See <u>Torque Specifications for the 2080-DNET20 Plug-in</u> Module on page 72.
Dimensions, HxWxD	62 x 31.5 x 20 mm (2.44 x 1.24 x 0.78 in.)
Weight	35 g
DeviceNet communication rate, max	125 Kbps – 420 m (1378 ft.) 250 Kbps – 200 m (656 ft.) 500 Kbps – 75 m (246 ft.)
Number of nodes, max	20 nodes for I/O operation
Network Protocol	I/O Slave Messaging: Poll Command
DeviceNet Status indicators	Module status – red/green Network status – red/green
Enclosure type rating	Meets IP20
Backplane power consumption	50 mA @ 24V DC
DeviceNet current	24V DC, 300 mA Class 2
Power dissipation, max	1.44 W
Isolation voltage	50V (continuous) Type tested for 60 s @ 500V AC
Wire size	0.25 2.5 mm ² (2414 AWG) solid or stranded copper wire rated @ 75 °C (167 °F), or greater, 1.2 mm (3/64 in.) insulation max
Wire category	1 – on power ports
North American temp code	T4
Preferred power supply	1606-XLSDNET4

Torque Specifications for the 2080-DNET20 Plug-in Module

ATTENTION: To comply with CE Low Voltage Directive (LVD), this equipment and all connected I/O must be powered from a source compliant with the following: Safety Extra Low Voltage (SELV) or Protected Extra Low Voltage (PELV).

ATTENTION: To comply with UL restrictions, this equipment must be powered from a source compliant with the following: Class 2 or Limited Voltage/Current.

Environmental Specifications – 2080-DNET20

Attribute	Value	
Temperature, operating	IEC 60068-2-1 (Test Ad, Operating Cold), IEC 60068-2-2 (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -2065 °C (-4149 °F)	
Temperature, surrounding air, max.	65 °C (149 °F)	
Temperature, nonoperating	IEC60068-2-1 (Test Ad, Operating Cold), IEC60068-2-2, (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -4085 °C (-40185 °F)	
Relative humidity	IEC 60068-2-30 (Test Db, Unpackaged Damp Heat): 595% noncondensing	
Emissions	CISPR 11 (IEC 61000-6-4): Class A	
ESD Immunity	IEC 61000-4-2: 6 kV contact discharges 8 kV air discharges	
Radiated RF immunity	IEC 61000-4-3: 10V/m with 1 kHz sine-wave 80% AM from 802000 MHz 10V/m with 200 Hz 50% Pulse 100% AM @ 900 MHz 10V/m with 200 Hz 50% Pulse 100% AM @ 1890 MHz 10V/m with 1 kHz sine-wave 80% AM from 20002700 MHz	

Attribute	Value
EFT/B immunity	IEC 61000-4-4: ±4 kV @ 5 kHz on power ports ±2 kV @ 5 kHz on communication ports
Surge transient immunity	IEC 61000-4-5: \pm 1 kV line-line(DM) and \pm 2 kV line-earth(CM) on power ports \pm 2 kV line-earth(CM) on communication ports
Conducted RF immunity	IEC 61000-4-6: 10V rms with 1 kHz sine-wave 80% AM from 150 kHz80 MHz

Environmental Specifications – 2080-DNET20

Certifications	- 2080-DNET20
----------------	---------------

Certification (when product is marked) ⁽¹⁾	Value
c-UL-us	UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E322657.
	UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E334470.
CE	EN 61326-1; Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity EN 61000-6-4; Industrial Emissions EN 61131-2; Programmable Controllers (Clause 8, Zone A & B)
C-Tick	Australian Radiocommunications Act, compliant with: AS/NZS CISPR 11; Industrial Emissions
КС	Korean Registration of Broadcasting and Communications Equipment, compliant with: Article 58-2 of Radio Waves Act, Clause 3
DeviceNet	ODVA conformance tested to DeviceNet specifications.

 See the Product Certification link at <u>http://www.rockwellautomation.com/products/certification/</u> for Declarations of Conformity, Certificates, and other certification details.

General and Environmental Specifications – 2080-SERIALISOL

Attribute	Value			
Mounting torque	0.2 Nm (1.48	0.2 Nm (1.48 lb-in)		
Terminal screw torque	0.220.25 N (using a 2.5 m	lm (1.952.21 ll nm (0.10 in.) flat-	o-in) blade screwdrive	er)
Wire size		141111	IVIAX	
	Solid	0.14 mm ² (26 AWG)	1.5 mm ² (16 AWG)	rated @ 90 °C (194 °F)
	Stranded	0.14 mm ² (26 AWG)	1.0 mm ² (18 AWG)	
Isolated voltage	500V AC			
Temperature, operating	IEC60068-2-1 (Test Ad, Operating Cold), IEC60068-2-2, (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -2065 °C (-4149 °F)			
Temperature, surrounding air, max.	65 °C (149 °F)			
Temperature, non-operating	IEC60068-2-1 (Test Ad, Operating Cold), IEC60068-2-2, (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): -4085 °C (-40185 °F)			
North American temp code	Τ4			

Certification (when product is marked) ⁽¹⁾	Value
c-UL-us	UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E322657.
	UL Listed for Class I, Division 2 Group A,B,C,D Hazardous Locations, certified for U.S. and Canada. See UL File E334470.
CE	European Union 2004/108/EC EMC Directive, compliant with: EN 61326-1; Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity EN 61000-6-4; Industrial Emissions EN 61131-2; Programmable Controllers (Clause 8, Zone A & B)
	European Union 2006/95/EC LVD, compliant with: EN 61131-2; Programmable Controllers (Clause 11)
C-Tick	Australian Radiocommunications Act, compliant with: AS/NZS CISPR 11; Industrial Emissions

Certifications – 2080-SERIALISOL

(1) See the Product Certification link at <u>http://www.rockwellautomation.com/products/certification/</u> Declarations of Conformity, Certificates, and other certification details.

Notes:

Quickstart

This chapter provides the following quickstarts.

Торіс	Page
Add and Configure Plug-ins in Connected Components Workbench	77
Quickstart Project for 2080-DNET20 Plug-in	79
Quickstart Projects for 2080-MOT-HSC Plug-in	84

Add and Configure Plug-ins in Connected Components Workbench

This section shows you an example of how to configure the plug-ins through the Connected Components Workbench software.

TIP For more information about using Connected Components Workbench, you can check out the Connected Components Workbench Online Help (it comes with the software).

The following steps show a Micro820 controller.

1. Launch the Connected Components Workbench software and open your Micro800 project. On the Project Organizer pane, right-click the project name and select Open.

Micro820 Download Upload Secure 2080-LC20-20AWB 000000 m. n-Bra Properties - Controller General Memory Serial Port Ethernet Internet Protocol Port Settings Port Diagnostics Date and Time Interrupts Startup/Faults Modbus Mapping Real Time Clock Embedded I/O Memory Card Remote LCD Data Log Recipe Plug-In Modules < Empty > < Empty >

The Controller Properties page appears.

- 2. To add a Micro800 plug-in, you can do any of the following:
- Right-click the plug-in slot you would like to configure and choose the plug-in, as shown below.

Micro820 Micro820			Remote Mode:
Download Upload Secure	•		
2080-LC20-20AWB		Analog Communication Digital Specialty	2080-IF2 2080-IF4 2080-OF2 2080-RTD2 2080-TC2

• Right-click the plug-in slot in the Controller Properties tree and choose the plug-in you would like to add.

The device configuration window should show the added plug-in modules:

Quickstart Project for 2080-DNET20 Plug-in

Using your 2080-DNET20 plug-in module and user defined function blocks in Connected Components Workbench, the following quickstart project shows you how to turn on all the outputs of a CompactBlock LDX module connected in Node 3.

IMPORTANT	Quickstart Prerequisite	
	For the following quickstart projects, you first need first need to download the DNET UDFBs and sample project from the Sample Code Library:	
	http://www.rockwellautomation.com/go/scmicro800	

Setup and Wiring

1. Insert your 2080-DNET20 module into the designated plug-in slot in your Micro800 controller.

2. Next, wire your 2080-DNET20 plug-in following the diagram shown below.

- **4.** Set the node address for the CompactBlock LDX through the node switches to node 1.
- 5. Set the node address for the PowerFlex drive through the 25-COMM-D to node 2. Set the baud rate to autobaud.

Configuration

- 1. Launch Connected Components Workbench and open the sample project you have downloaded from the Sample Code Library.
- 2. Import the following DNET UDFBs into your project:
 - RA_DNET_MASTER
 - RA_DNET_LDX_DISCRETE
 - RA_PF_DNET_STANDARD

See <u>User Defined Function Blocks on page 45</u> for information on input and output parameters for these UDFBs.

3. Configure the RA_DNET_MASTER UDFB as shown.

4. Configure the PowerFlex UDFB as shown (that is, set the node address, plug-in slot ID, and so on).

5. Configure the CompactBlock LDX UDFB as shown (that is, set the node address, plug-in slot ID, Module1...Module4).

Build and Download

Build and download the project into the controller.

Execute Program

- 1. Set Micro800 controller to RUN mode.
- 2. Enable AutoScan in the DeviceNet Scanner UDFB. This will scan all the active nodes and populate the scan list.

3. Set the Scanner to RUN mode.

Quickstart Projects for 2080-MOT-HSC Plug-in

The following quickstart projects will show you how to write and use three userdefined function blocks to configure and use your Micro800 High Speed Counter plug-in.

IMPORTANT Quickstart Prerequisite For the following quickstart projects, you first need to download the HSC UDFBs and sample project from the Sample Code Library:

http://www.rockwellautomation.com/go/scmicro800

Setup and Wiring

1. Insert the high speed counter plug-in module into the designated slot in your Micro800 controller.

2. Wire your plug-in to your controller as shown in the following diagram.

Back

A	1234	
в	1234	

(View i	nto terminal block)			
Pin A1	0-	Pin	B1	0+
Pin A2	A-	Pin	B2	A-
Pin A3	B-	Pin	B3	B-
Pin A4	Z-	Pin	B4	Z١

Sinking Output Wiring

(CR) - DC(+) 0+ 0-A+ A-B+ B-**Z**+ 7-

DC(-)

Sourcing Output Wiring

NOTE: Output functionality is not currently supported and is dependent on availability of UDFB support.

Configuration for UDFB 1: RA_HSCPlugIn

NOTE: The purpose of this UDFB is to get high speed counter accumulator value and current pulse frequency.

- 1. Launch Connected Components Workbench. Open the sample project you have downloaded from the Sample Code Library.
- 2. Import the RA_HSCPlugIn UDFB you have downloaded into this project. Note that the sample project will have the following input and output parameters.

Input and Output Parameters

Parameter	Туре	Data Type	Description	
FBEN	INPUT	BOOL	Function block Enable input	
SlotID	INPUT	UINT	Plug-in slot number. Slot ID = 15 (starting with the far left slot 1)	
NoiseFilter	INPUT	USINT	00: No filter 01: 250 kHz 02: 200 kHz 03: 80 kHz 04: 40 kHz 05: 13.3 kHz 06: 10 kHz 07: 4 kHz 08: 2 kHz 09: 1 kHz 10: 500 Hz 11: 250 Hz 12: 125 Hz 13: 63.5 Hz 14: 31.25 Hz	
HSCMode	INPUT	USINT	0, 2 , 4, 6, 8, 10, 12	
Start	INPUT	BOOL	Start counter.	
Stop	INPUT	BOOL	Stop the counter and clear "MaxDPos" and "MaxDSpd" value.	
FBENO	OUTPUT	BOOL	Function block Enable output	
IDCHeck	OUTPUT	BOOL	TRUE: HSC plug-in is at selected slot. FALSE: Wrong plug-in or no plug-in at selected slot.	

Input and Output Parameters

Parameter	Туре	Data Type	Description
Initialized	OUTPUT	BOOL	TRUE: HSC plug-in initialization finished and ready to execute. FALSE: HSCplug-in initialization not yet finished.
Accumulator	OUTPUT	LINT	Accumulator value.
Rate	OUTPUT	Real	Current pulse rate. The rate calculation is based on how many pulses have been counted every 10 ms.

Build and Download

Build and download the program into the controller.

Execute the Function Block

Operation Sequence for RA_HSCPlugIn

- A rising edge of FBEN will cause the input Start to initialize steps. When initialization is done, Output Initialized will change to TRUE.
- User can start the feedback process (Start counting) after Initialized output becomes TRUE. A rising edge of Start will trigger the feedback process. Note that if the user wants to know the positioning information the user needs to do the following steps to make sure position information is in sync:
 - Initialize the RA_HSCPlugIn function block
 - Start the counting process when neccessary
- User can stop/pause the process by giving a rising edge of Stop. If you want to disable the function block, set Stop to true first.

- If FBEN is True and the user starts the feedback process from previous Stop state, the function block will not be reinitialized. It will resume count from previous accumulator value.
- IF FBEN is False, then all outputs are cleared and accumulator is cleared. When FBEN goes True again , the HSC will be reinitialized.

Configuration for UDFB 2: RA_EncoderFDBK

NOTE: This UDFB will get the positioning information of a motion axis based on pulses counted from the encoder.

- 1. Launch Connected Components Workbench and open the HSC project you have downloaded from the Sample Code Library.
- 2. Import the downloaded RA_EncoderFDBK into this project. Note that the UDFB comes with the following input and output variables.

Input and Output Parameters

Parameter	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block Enable input
SlotID	INPUT	UINT	Plug-in slot number. Slot ID = 15 (starting with the far left slot 1)
HomePos	INPUT	REAL	Home position. Same value indicated in MC_Home instruction.

Parameter	Туре	Data Type	Description
NoiseFilter	INPUT	USINT	00 - No filter 01 - 250 kHz 02 - 200 kHz 03 - 80 kHz 04 - 40 kHz 05 - 13.3 kHz 06 - 10 kHz 07 - 4 kHz 08 - 2 kHz 09 - 1 kHz 10 - 500 Hz 11 - 250 Hz 12 - 125 Hz 13 - 62.5 Hz 14 - 31.25 Hz
EncMode	INPUT	USINT	Encoder Mode. 1-X1, 2- X2, 4-X4.
ECntPerRev	INPUT	REAL	User input to indicate how many X1 counts will be generated when Encoder disk turns one revolution.
TrvPerRev	INPUT	REAL	The actual distance travelled when motor turns one revolution.
Start	INPUT	BOOL	Start counter.
Stop	INPUT	BOOL	Stop the counter and clear MaxDPos and MaxDSpd value
FBENO	OUTPUT	BOOL	Function block enable output.
IDCheck	OUTPUT	BOOL	TRUE: HSC plug-in is at selected slot. FALSE: Wrong plug-in or no plug-in at selected slot.
Initialized	OUTPUT	BOOL	TRUE: Indicates HSC initialization has finished. FALSE: Indicates HSC initialization has not finished.
CurrentPos	OUTPUT	REAL	Current position.
CurrentSpd	OUTPUT	REAL	Current speed (Unit = user distance per second).
Accumulator	OUTPUT	LINT	Accumulator value.
TpPosition	OUTPUT	REAL	Position recorded when the latest touch probe is triggered.
Direction	OUTPUT	SINT	1 = Forward -1 = Reverse 0 = Not moving

Input and Output Parameters

Build and Download

Build and download the program into the controller.

Execute the Function Block

Operation Sequence

- A rising edge of FBEN will cause the function block Start initialize steps. When initialized done, Output Initialized will change to TRUE.
- You can start the feedback process (Start counting) after Initialized output becomes TRUE. A rising edge of Start will trigger the feedback process. Note that if you want to know the positioning information, you need to do the following to make sure position information is in sync:
 - a. Initialize the RA_FDBKAxis function block.
 - b. Home the PTO axis to be monitored.
 - c. Once home is done, start the feedback process.
- You can stop/pause the process and clear the MaxDPos and MaxDSpd by given a rising edge of Stop. To disable the function block, you first need to set Stop to false.
- If FBEN is True and you start the feedback process from previous Stop state, the function block will not be reinitialized. Count will resume from previous accumulator value.

• IF FBEN is False, then all outputs are cleared and accumulator is cleared and when FBEN goes true again, the HSC will be reinitialized.

Configuration for HSC UDFB 3: RA_ServoFDBK

- 1. Launch Connected Components Workbench and open the sample project you have just downloaded from the Sample Code Library.
- 2. Import the RA_ServoFDBK UDFB into this project. Note that the UDFB comes with the following input and output variables.

Input and Output Parameters

Parameter	Туре	Data Type	Description
FBEN	INPUT	BOOL	Function block Enable input
SlotID	INPUT	UINT	Plug-in slot number. Slot ID = 15 (starting with the far left slot 1)
HomePos	INPUT	REAL	Home position. Same value indicated in MC_Home instruction.

Parameter	Туре	Data Type	Description
NoiseFilter	INPUT	USINT	00 - No filter 01 - 250 kHz 02 - 200 kHz 03 - 80 kHz 04 - 40 kHz 05 - 13.3 kHz 06 - 10 kHz 07 - 4 kHz 08 - 2 kHz 09 - 1 kHz 10 - 500 Hz 11 - 250 Hz 12 - 125 Hz 13 - 62.5 Hz 14 - 31.25 Hz
EncMode	INPUT	USINT	Encoder Mode. 1-X1, 2- X2, 4-X4.
ECntPerRev	INPUT	REAL	User input to indicate how many X1 counts will be generated when Encoder disk turns one revolution.
TrvPerRev	INPUT	REAL	The actual distance travelled when motor turns one revolution.
Start	INPUT	BOOL	Start counter.
Stop	INPUT	BOOL	Stop the counter and clear MaxDPos and MaxDSpd value
FBENO	OUTPUT	BOOL	Function block enable output.
IDCheck	OUTPUT	BOOL	TRUE: HSC plug-in is at selected slot. FALSE: Wrong plug-in or no plug-in at selected slot.
Initialized	OUTPUT	BOOL	TRUE: Indicates HSC initialization has finished. FALSE: Indicates HSC initialization has not finished.
CurrentPos	OUTPUT	REAL	Current position.
CurrentSpd	OUTPUT	REAL	Current speed (Unit = user distance per second).
Accumulator	OUTPUT	LINT	Accumulator value.
TpPosition	OUTPUT	REAL	Position recorded when the latest touch probe is triggered.
Direction	OUTPUT	SINT	1 = Forward -1 = Reverse 0 = Not moving

Input and Output Parameters

Build and Download

Build and download the program into the controller.

Operation Sequence

- A rising edge of FBEN causes the function block to start initializing steps. When Initialized is done, Output Initialized changes to TRUE.
- You can start the feedback process (Start counting) after Initialized is TRUE. A rising edge of Start will trigger the feedback process. Please note that if you want to get positioning information, you need to do following steps to ensure that position information is in sync:
 - a. Initialize the RA_FDBKAxis function block.
 - b. Home the PTO axis to be monitored.
 - c. Once home is done, start the feedback process.
- You can stop/pause the process and clear the MaxDPos and MaxDSpd by giving a rising edge of Stop. If you want to disable the function block, you need set it to Stop state first.
- If FBEN is True and you start the feedback process from previous Stop state, the function block will not be re-initialized. It will resume count from previous accumulator value.

• IF FBEN is false, then all outputs are cleared and accumulator is cleared. When FBEN goes true again, the HSC will be re-initialized.

Error Codes

Troubleshooting	 For troubleshooting your Micro800 controller system, see the User Manual for your controller: Micro830 and Micro850 Programmable Controllers User Manual, publication <u>2080-UM002</u>. Micro820 Programmable Controllers User Manual, publication <u>2080-UM005</u>.
Error Codes for Micro800 Plug-ins	This section lists possible error codes for your plug-in modules, as well as recommended actions for recovery.
-	If an error persists after performing the recommended action, contact your local

If an error persists after performing the recommended action, contact your local Rockwell Automation technical support representative. For contact information, go to <u>http://support.rockwellautomation.com/MySupport.asp</u>

Error Code	Description	Recommended Action
For the following fou	ir error codes, z refers to the slot number of the plug	-in module. If z = 0, then the slot number cannot be identified
0xF0Az	The plug-in I/O module has encountered an error	Perform one of the following:
	during operation.	 Check the condition and operation of the plug-in I/O module.
		Cycle power to the Micro800 controller.
OxF0Bz	The plug-in I/O module configuration does not	Perform one of the following:
	match the actual i/O configuration detected.	 Correct the plug-in I/O module configuration in the user program to match that of the actual hardware configuration.
		 Check the condition and operation of the plug-in I/O module.
		Cycle power to the Micro800 controller.
		Replace the plug-in I/O module.
0xF0Dz	A hardware error has occurred while power was	Perform the following:
	module was removed.	 Correct the plug-in I/O module configuration in the user program.
		Build and download the program using Connected Components Workbench.
		Put the Micro800 controller into Run mode.
OxF0Ez	The plug-in I/O module configuration does not	Perform the following:
	match the actual I/U configuration detected.	 Correct the plug-in I/O module configuration in the user program.
		Build and download the program using Connected Components Workbench.
		Put the Micro800 controller into Run mode.

List of Error Codes for Micro800 Plug-ins

Calling Rockwell Automation for Assistance

If you need to contact Rockwell Automation or local distributor for assistance, it is helpful to obtain the following (prior to calling):

- controller type, series letter, revision letter, and firmware (FRN) number of the controller
- controller indicator status

Numerics 2080-IF2 3, 25 wiring 9 2080-IF4 3, 25 wiring 9 2080-104 wiring 8 2080-IQ40B4 21, 22 wiring 8 2080-IQ40V4 21, 22 wiring 8 2080-MEMBAK-RTC 3, 7 specifications 27 2080-0B4 21, 22 wiring 9 2080-OF2 3, 26 wiring 9 2080-0V4 21, 22 wiring 9 2080-0W4I 23, 24 certifications 25 wiring 9 2080-PS120-240VAC 4 2080-RTD2 3, 15, 16, 34 cable 20 certification 30 data maps 18 specifications 29 2080-SERIALISOL 4 wiring 10 2080-TC2 3, 11, 15, 34 cable 20 certifications 30 data maps 18 features 15 specifications 29 thermocouple sensor types and ranges 15 wiring 11

2080-TRIMPOT6 4 specifications 28

A

AC power supply 4 additional resources iii

C

cable recommended for 2080-TC2, 2080-RTD2 20 cable pinout controller to modem cable 10 calibration error bit (CE) 19 CE 23

channel temperature data 18 CJC open-circuit bit (COC) 19 CJC Sensor 11 CJC thermistor 11 code calibrated bit 18 conducted RF immunity 22 Connected Components Workbench iv, 15, 16, 17, 18, 19, 31 C-Tick 23 c-UL-us 22

D

data illegal bit (DI) 18

Ε

EFT/B immunity 22 emissions 22 enclosure type rating 21 ESD immunity 22 External AC Power Supply 4

Η

hardware features 7

installation 7 isolation voltage 21

K

KC 23

Μ

Micro800 6-channel Trimpot analog input 4 Micro800 memory back-up and high accuracy 3 Micro800 non-isolated RTD 3 Micro800 non-isolated unipolar analog input /output 3, 9 Micro800 Non-isolated unipolar analog output 3 Micro800 plug-ins 1 Micro800 RS232/485 isolated serial port 4 mounting torque 21

Ν

North American temp code 21

0

on-state current 21 on-state voltage 21 open circuit 18 open-circuit 15 overrange 15, 17, 18 overview 15

P

plug-in modules 7 power supply 4 voltage 21

R

radiated RF immunity 22 relative humidity 22 Removal and Insertion Under Power (RIUP) 3, 15 RS-232 cable 10 RTD 15, 19 sensor types 16, 17

S

shock, non-operating 22 shock, operating 22 specifications analog plug-ins 25 status indicators 21 surge transient immunity 22 system overrange bit (SOR) 18 system underrange bit (SUR) 19

Τ

temperature conversion 19 temperature, non-operating 22 temperature, operating 22 temperature, surrounding air, max 22 terminal base screw torque 21 thermistor 15 thermocouple 15, 19 thermocouple sensor types 16 thermocouple type 16

U

underrange 15, 17, 18

V

vibration 22

W

wire category 21 wire size 21 wiring 7

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products. At <u>http://www.rockwellautomation.com/support/</u>, you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnect support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit <u>http://www.rockwellautomation.com/support/</u>.

Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

United States or Canada	1.440.646.3434
Outside United States or Canada	Use the <u>Worldwide Locator</u> at <u>http://www.rockwellautomation.com/support/americas/phone_en.html</u> , or contact your local Rockwell Automation representative.

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

United States	Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.
Outside United States	Please contact your local Rockwell Automation representative for the return procedure.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication <u>RA-DU002</u>, available at <u>http://www.rockwellautomation.com/literature/</u>.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Rockwell Automation Publication 2080-UM004B-EN-E - December 2013