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The Exponential Distribution

From Discrete-Time to Continuous-Time:

In Chapter 6 of the text we will be considering Markov processes in con-

tinuous time. In a sense, we already have a very good understanding of

continuous-time Markov chains based on our theory for discrete-time

Markov chains. For example, one way to describe a continuous-time

Markov chain is to say that it is a discrete-time Markov chain, except

that we explicitly model the times between transitions with contin-

uous, positive-valued random variables and we explicity consider the

process at any time t, not just at transition times.

The single most important continuous distribution for building and

understanding continuous-time Markov chains is the exponential dis-

tribution, for reasons which we shall explore in this lecture.
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The Exponential Distribution:

A continuous random variable X is said to have an Exponential(λ)

distribution if it has probability density function

fX(x|λ) =

{
λe−λx for x > 0

0 for x ≤ 0
,

where λ > 0 is called the rate of the distribution.

In the study of continuous-time stochastic processes, the exponential

distribution is usually used to model the time until something hap-

pens in the process. The mean of the Exponential(λ) distribution is

calculated using integration by parts as

E[X ] =

∫ ∞

0

xλe−λxdx

= λ

[
−xe−λx

λ

∣∣∣∣∞
0

+
1

λ

∫ ∞

0

e−λxdx

]
= λ

[
0 +

1

λ

−e−λx

λ

∣∣∣∣∞
0

]
= λ

1

λ2
=

1

λ
.

So one can see that as λ gets larger, the thing in the process we’re

waiting for to happen tends to happen more quickly, hence we think

of λ as a rate.

As an exercise, you may wish to verify that by applying integration by

parts twice, the second moment of the Exponential(λ) distribution is

given by

E[X2] =

∫ ∞

0

x2λe−λx = . . . =
2

λ2
.
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From the first and second moments we can compute the variance as

Var(X) = E[X2]− E[X ]2 =
2

λ2
− 1

λ2
=

1

λ2
.

The Memoryless Property:

The following plot illustrates a key property of the exponential distri-

bution. The graph after the point s is an exact copy of the original

function. The important consequence of this is that the distribution

of X conditioned on {X > s} is again exponential.

The Exponential Function
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Figure 21.1: The Exponential Function e−x
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To see how this works, imagine that at time 0 we start an alarm clock

which will ring after a time X that is exponentially distributed with

rate λ. Let us call X the lifetime of the clock. For any t > 0, we

have that

P (X > t) =

∫ ∞

t

λe−λxdx = λ
−e−λx

λ

∣∣∣∣∞
t

= e−λt.

Now we go away and come back at time s to discover that the alarm

has not yet gone off. That is, we have observed the event {X > s}.
If we let Y denote the remaining lifetime of the clock given that

{X > s}, then

P (Y > t|X > s) = P (X > s + t|X > s)

=
P (X > s + t,X > s)

P (X > s)

=
P (X > s + t)

P (X > s)

=
e−λ(s+t)

e−λs

= e−λt.

But this implies that the remaining lifetime after we observe the alarm

has not yet gone off at time s has the same distribution as the original

lifetime X. The really important thing to note, though, is that this

implies that the distribution of the remaining lifetime does not depend

on s. In fact, if you try setting X to have any other continuous

distribution, then ask what would be the distribution of the remaining

lifetime after you observe {X > s}, the distribution will depend on s.
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This property is called the memoryless property of the exponential

distribution because I don’t need to remember when I started the

clock. If the distribution of the lifetime X is Exponential(λ), then if

I come back to the clock at any time and observe that the clock has

not yet gone off, regardless of when the clock started I can assert that

the distribution of the time till it goes off, starting at the time I start

observing it again, is Exponential(λ). Put another way, given that the

clock has currently not yet gone off, I can forget the past and still

know the distribution of the time from my current time to the time

the alarm will go off. The resemblance of this property to the Markov

property should not be lost on you.

It is a rather amazing, and perhaps unfortunate, fact that the exponen-

tial distribution is the only one for which this works. The memoryless

property is like enabling technology for the construction of continuous-

time Markov chains. We will see this more clearly in Chapter 6. But

the exponential distribution is even more special than just the memo-

ryless property because it has a second enabling type of property.

Another Important Property of the Exponential:

Let X1, . . . , Xn be independent random variables, with Xi having an

Exponential(λi) distribution. Then the distribution of min(X1, . . . , Xn)

is Exponential(λ1 + . . . + λn), and the probability that the minimum

is Xi is λi/(λ1 + . . . + λn).

Proof:

P (min(X1, . . . , Xn) > t) = P (X1 > t, . . . , Xn > t)

= P (X1 > t) . . . P (Xn > t)

= e−λ1t . . . e−λnt

= e−(λ1+...+λn)t.
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The preceding shows that the CDF of min(X1, . . . , Xn) is that of an

Exponential(λ1 + . . .+λn) distribution. The probability that Xi is the

minimum can be obtained by conditioning:

P (Xi is the minimum)

= P (Xi < Xj for j 6= i)

=

∫ ∞

0

P (Xi < Xj for j 6= i|Xi = t)λie
−λitdt

=

∫ ∞

0

P (t < Xj for j 6= i)λie
−λitdt

=

∫ ∞

0

λie
−λit

∏
j 6=i

P (Xj > t)dt

=

∫ ∞

0

λie
−λit

∏
j 6=i

e−λjtdt

= λi

∫ ∞

0

e−(λ1+...+λn)tdt

= λi
−e−(λ1+...+λn)t

λ1 + . . . + λn

∣∣∣∣∞
0

=
λi

λ1 + . . . + λn
,

as required. �

To see how this works together with the the memoryless property,

consider the following examples.
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Example: (Ross, p.332 #20). Consider a two-server system in

which a customer is served first by server 1, then by server 2, and

then departs. The service times at server i are exponential random

variables with rates µi, i = 1, 2. When you arrive, you find server

1 free and two customers at server 2 — customer A in service and

customer B waiting in line.

(a) Find PA, the probability that A is still in service when you move

over to server 2.

(b) Find PB, the probability that B is still in the system when you

move over to 2.

(c) Find E[T ], where T is the time that you spend in the system.

Solution:

(a) A will still be in service when you move to server 2 if your service at

server 1 ends before A’s remaining service at server 2 ends. Now

A is currently in service at server 2 when you arrive, but because

of memorylessness, A’s remaining service is Exponential(µ2), and

you start service at server 1 that is Exponential(µ1). Therefore,

PA is the probability that an Exponential(µ1) random variable is

less than an Exponential(µ2) random variable, which is

PA =
µ1

µ1 + µ2
.

(b) B will still be in the system when you move over to server 2 if

your service time is less than the sum of A’s remaining service

time and B’s service time. Let us condition on the first thing to

happen, either A finishes service or you finish service:
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P (B in system) = P (B in system|A finishes before you)
µ2

µ1 + µ2

+ P (B in system|you finish before A)
µ1

µ1 + µ2

Now P (B in system|you finish before A) = 1 since B will still be

waiting in line when you move to server 2. On the other hand,

if the first thing to happen is that A finishes service, then at

that point, by memorylessness, your remaining service at server

1 is Exponential(µ1), and B will still be in the system if your

remaining service at server 1 is less than B’s service at server 2,

and the probability of this is µ1/(µ1 + µ2). That is,

P (B in system|A finishes before you) =
µ1

µ1 + µ2
.

Therefore,

P (B in system) =
µ1µ2

(µ1 + µ2)2
+

µ1

µ1 + µ2
.

(c) To compute the expected time you are in the system, we first

divide up your time in the system into

T = T1 +R,

where T1 is the time until the first thing that happens, and R

is the rest of the time. The time until the first thing happens is

Exponential(µ1 + µ2), so that

E[T1] =
1

µ1 + µ2
.

To compute E[R], we condition on what was the first thing to

happen, either A finished service at server 2 or you finished service
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at server 1. If the first thing to happen was that you finished

service at server 1, which occurs with probability µ1/(µ1 + µ2),

then at that point you moved to server 2, and your remaining

time in the system is the remaining time of A at server 2, the

service time of B at server 2, and your service time at server

2. A’s remaining time at server 2 is again Exponential(µ2) by

memorylessness, and so your expected remaining time in service

will be 3/µ2. That is,

E[R|first thing to happen is you finish service at server 1] =
3

µ2
,

and so

E[R] =
3

µ2

µ1

µ1 + µ2
+ E[R|first thing is A finishes]

µ2

µ1 + µ2
.

Now if the first thing to happen is that A finishes service at server

2, we can again compute your expected remaining time in the

system as the expected time until the next thing to happen (either

you or B finishes service) plus the expected remaining time after

that. To compute the latter we can again condition on what was

that next thing to happen. We will obtain

E[R|first thing is A finishes] =
1

µ1 + µ2
+

2

µ2

µ1

µ1 + µ2

+

(
1

µ1
+

1

µ2

)
µ2

µ1 + µ2

Plugging everything back gives E[T ]. �

As an exercise you should consider how you might do the preceding

problem assuming a different service time distribution, such as a Uni-

form distribution on [0, 1] or a deterministic service time such as 1

time unit.
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The Poisson Process: Introduction

We now begin studying our first continuous-time process – the Poisson

Process. Its relative simplicity and significant practical usefulness make

it a good introduction to more general continuous time processes. To-

day we will look at several equivalent definitions of the Poisson Process

that, each in their own way, give some insight into the structure and

properties of the Poisson process.
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Stationary and Independent Increments:

We first define the notions of stationary increments and independent

increments. For a continuous-time stochastic process {X(t) : t ≥ 0},
an increment is the difference in the process at two times, say s and

t. For s < t, the increment from time s to time t is the difference

X(t)−X(s).

A process is said to have stationary increments if the distribution of

the increment X(t) − X(s) depends on s and t only through the

difference t − s, for all s < t. So the distribution of X(t1) −X(s1)

is the same as the distribution of X(t2)−X(s2) if t1− s1 = t2− s2.

Note that the intervals [s1, t1] and [s2, t2] may overlap.

A process is said to have independent increments if any two increments

involving disjoint intervals are independent. That is, if s1 < t1 < s2 <

t2, then the two increments X(t1) − X(s1) and X(t2) − X(s2) are

independent.

Not many processes we will encounter will have both stationary and

independent increments. In general they will have neither stationary

increments nor independent increments. An exception to this we have

already seen is the simple random walk. If ξ1, ξ2, . . . is a sequence of

independent and identically distributed random variables with P (ξi =

1) = p and P (ξi = −1) = q = 1 − p, the the simple random walk

{Xn : n ≥ 0} starting at 0 can be defined as X0 = 0 and

Xn =

n∑
i=1

ξi.

From this representation it is not difficult to see that the simple random

walk has stationary and independent increments.
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Definition 1 of a Poisson Process:

A continuous-time stochastic process {N(t) : t ≥ 0} is a Poisson

process with rate λ > 0 if

(i) N(0) = 0.

(ii) It has stationary and independent increments.

(iii) The distribution of N(t) is Poisson with mean λt, i.e.,

P (N(t) = k) =
(λt)k

k!
e−λt for k = 0, 1, 2, . . ..

This definition tells us some of the structure of a Poisson process

immediately:

• By stationary increments the distribution ofN(t)−N(s), for s < t

is the same as the distribution of N(t− s)−N(0) = N(t− s),

which is a Poisson distribution with mean λ(t− s).

• The process is nondecreasing, for N(t)−N(s) ≥ 0 with probabil-

ity 1 for any s < t since N(t)−N(s) has a Poisson distribution.

• The state space of the process is clearly S = {0, 1, 2, . . .}.
We can think of the Poisson process as counting events as it progresses:

N(t) is the number of events that have occurred up to time t and at

time t+ s, N(t+ s)−N(t) more events will have been counted, with

N(t + s)−N(t) being Poisson distributed with mean λs.

For this reason the Poisson process is called a counting process. Count-

ing processes are a more general class of processes of which the Pois-

son process is a special case. One common modeling use of the

Poisson process is to interpret N(t) as the number of arrivals of

tasks/jobs/customers to a system by time t.
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Note that N(t) → ∞ as t → ∞, so that N(t) itself is by no means

stationary, even though it has stationary increments. Also note that, in

the customer arrival interpetation, as λ increases customers will tend

to arrive faster, giving one justification for calling λ the rate of the

process.

We can see where this definition comes from, and in the process try to

see some more low level structure in a Poisson process, by considering

a discrete-time analogue of the Poisson process, called a Bernoulli

process, described as follows.

The Bernoulli Process: A Discrete-Time “Poisson Process”:

Suppose we divide up the positive half-line [0,∞) into disjoint inter-

vals, each of length h, where h is small. Thus we have the intervals

[0, h), [h, 2h), [2h, 3h), and so on. Suppose further that each interval

corresponds to an independent Bernoulli trial, such that in each inter-

val, independently of every other interval, there is a successful event

(such as an arrival) with probability λh. Define the Bernoulli process

to be {B(t) : t = 0, h, 2h, 3h, . . .}, where B(t) is the number of

successful trials up to time t.

The above definition of the Bernoulli process clearly corresponds to

the notion of a process in which events occur randomly in time, with

an intensity, or rate, that increases as λ increases, so we can think of

the Poisson process in this way too, assuming the Bernoulli process

is a close approximation to the Poisson process. The way we have

defined it, the Bernoulli process {B(t)} clearly has stationary and

independent increments. As well, B(0) = 0. Thus the Bernoulli

process is a discrete-time approximation to the Poisson process with

rate λ if the distribution of B(t) is approximately Poisson(λt).
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For a given t of the form nh, we know the exact distribution of B(t).

Up to time t there are n independent trials, each with probability λh

of success, so B(t) has a Binomial distribution with parameters n and

λh. Therefore, the mean number of successes up to time t is nλh =

λt. So E[B(t)] is correct. The fact that the distribution of B(t) is

approximately Poisson(λt) follows from the Poisson approximation to

the Binomial distribution (p.32 of the text), which we can re-derive

here. We have, for k a nonnegative integer and t > 0, (and keeping

in mind that t = nh for some positive integer n),

P (B(t) = k) =

(
n

k

)
(λh)k(1− λh)n−k

=
n!

(n− k)!k!

(
λt

n

)k (
1− λt

n

)n−k

=
n!

(n− k)!nk

(
1− λt

n

)−k
(λt)k

k!

(
1− λt

n

)n

≈ n!

(n− k)!nk

(
1− λt

n

)−k
(λt)k

k!
e−λt,

for n very large (or h very small). But also, for n large(
1− λt

n

)−k
≈ 1

and

n!

(n− k)!nk
=
n(n− 1) . . . (n− k + 1)

nk
≈ 1.

Therefore, P (B(t) = k) ≈ (λt)k/k!e−λt (this approximation gets

exact as h→ 0).
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Thinking intuitively about how the Poisson process can be expected

to behave can be done by thinking about the conceptually simpler

Bernoulli process. For example, given that there are n events in the

interval [0, t) (i.e. N(t) = n), the times of those n events should

be uniformly distributed in the interval [0, t) because that is what we

would expect in the Bernoulli process. This intuition is true, and we’ll

prove it more carefully later.

Thinking in terms of the Bernoulli process also leads to a more low-

level (in some sense better) way to define the Poisson process. This

way of thinking about the Poisson process will also be useful later

when we consider continuous-time Markov chains. In the Bernoulli

process the probability of a success in any given interval is λh and the

probability of two or more successes is 0 (that is, P (B(h) = 1) = λh

and P (B(h) ≥ 2) = 0). Therefore, in the Poisson process we have

the approximation that P (N(h) = 1) ≈ λh and P (N(h) ≥ 2) ≈ 0.

We write this approximation in a more precise way by saying that

P (N(n) = 1) = λh + o(h) and P (N(h) ≥ 2) = o(h).

The notation “o(h)” is called Landau’s o(h) notation, read “little o of

h”, and it means any function of h that is of smaller order than h. This

means that if f (h) is o(h) then f (h)/h → 0 as h → 0 (f (h) goes

to 0 faster that h goes to 0). Notationally, o(h) is a very clever and

useful quantity because it lets us avoid writing out long, complicated,

or simply unknown expressions when the only crucial property of the

expression that we care about is how fast it goes to 0. We will make

extensive use of this notation in this and the next chapter, so it is

worthwhile to pause and make sure you understand the properties of

o(h).
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Landau’s “Little o of h” Notation:

Note that o(h) doesn’t refer to any specific function. It denotes any

quantity that goes to 0 at a faster rate than h, as h→ 0:

o(h)

h
→ 0 as h→ 0.

Since the sum of two such quantities retains this rate property, we get

the potentially disconcerting property that

o(h) + o(h) = o(h)

as well as

o(h)o(h) = o(h)

c× o(h) = o(h),

where c is any constant (note that c can be a function of other variables

as long as it remains constant as h varies).

Example: The function hk is o(h) for any k > 1 since

hk

h
= hk−1 → 0 as h→ 0.

h however is not o(h). The infinite series
∑∞

k=2 ckh
k, where |ck| < 1,

is o(h) since

lim
h→0

∑∞
k=2 ckh

k

h
= lim

h→0

∞∑
k=2

ckh
k−1

=

∞∑
k=2

ck lim
h→0

hk−1 = 0,

where taking the limit inside the summation is justified because the

sum is bounded by 1/(1− h) for h < 1. �



194 22. THE POISSON PROCESS: INTRODUCTION

Definition 2 of a Poisson Process:

A continuous-time stochastic process {N(t) : t ≥ 0} is a Poisson

process with rate λ > 0 if

(i) N(0) = 0.

(ii) It has stationary and independent increments.

(iii) P (N(h) = 1) = λh + o(h),

P (N(h) ≥ 2) = o(h), and

P (N(h) = 0) = 1− λh + o(h).

This definition can be more useful than Definition 1 because its con-

ditions are more “primitive” and correspond more directly with the

Bernoulli process, which is more intuitive to imagine as a process evolv-

ing in time.

We need to check that Definitions 1 and 2 are equivalent (that is,

they define the same process). We will show that Definition 1 implies

Definition 2. The proof that Definition 2 implies Definition 1 is shown

in the text in Theorem 5.1 on p.292 (p.260 in the 7th Edition), which

you are required to read.

Proof that Definition 1 ⇒ Definition 2: (Problem #35, p.335)

We just need to show part(iii) of Definition 2. By Definition 1, N(h)

has a Poisson distribution with mean λh. Therefore,

P (N(h) = 0) = e−λh.

If we expand out the exponential in a Taylor series, we have that

P (N(h) = 0) = 1− λh +
(λh)2

2!
− (λh)3

3!
+ . . .

= 1− λh + o(h).
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Similarly,

P (N(h) = 1) = λhe−λh

= λh

[
1− λh +

(λh)2

2!
− (λh)3

3!
+ . . .

]
= λh− λ2h2 +

(λh)3

2!
− (λh)4

3!
+ . . .

= λh + o(h).

Finally,

P (N(h) ≥ 2) = 1− P (N(h) = 1)− P (N(h) = 0)

= 1− (λh + o(h))− (1− λh + o(h))

= −o(h)− o(h) = o(h).

Thus Definition 1 implies Definition 2. �

A third way to define the Poisson process is to define the distribution

of the time between events. We will see in the next lecture that

the times between events are independent and identically distributed

Exponential(λ) random variables. For now we can gain some insight

into this fact by once again considering the Bernoulli process.

Imagine that you start observing the Bernoulli process at some arbitrary

trial, such that you don’t know how many trials have gone before and

you don’t know when the last successful trial was. Still you would know

that the distribution of the time until the next successful trial was h

times a Geometric random variable with parameter λh. In other words,

you don’t need to know anything about the past of the process to know

the distribution of the time to the next success, and in fact this is the

same as the distribution until the first success. That is, the distribution

of the time between successes in the Bernoulli process is memoryless.
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When you pass to the limit as h→ 0 you get the Poisson process with

rate λ, and you should expect that you will retain this memoryless

property in the limit. Indeed you do, and since the only continuous

distribution on [0,∞) with the memoryless property is the Exponential

distribution, you may deduce that this is the distribution of the time

between events in a Poisson process. Moreover, you should also inherit

from the Bernoulli process that the times between successive events

are independent and identically distributed.

As a final aside, we remark that this discussion also suggests that the

Exponential distribution is a limiting form of the Geometric distribu-

tion, as the probability of success λh in each trial goes to 0. This is

indeed the case. As we mentioned above, the time between successful

trials in the Bernoulli process is distributed as Y = hX, where X is

a Geometric random variable with parameter λh. One can verify that

for any t > 0, we have P (Y > t) → e−λt as h→ 0:

P (Y > t) = P (hX > t)

= P (X > t/h)

= (1− λh)dt/he

= (1− λh)t/h(1− λh)dt/he−t/h

=

(
1− λt

t/h

)t/h

(1− λh)dt/he−t/h

→ e−λt as h→ 0,

where dt/he is the smallest integer greater than or equal to t/h. In

other words, the distribution of Y converges to the Exponential(λ)

distribution as h→ 0.

Note that the above discussion also illustrates that the Geometric

distribution is a discrete distribution with the memoryless property.
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Properties of the Poisson Process

Today we will consider the distribution of the times between events in a

Poisson process, called the interarrival times of the process. We will see

that the interarrival times are independent and identically distributed

Exponential(λ) random variables, where λ is the rate of the Poisson

process. This leads to our third definition of the Poisson process.

Using this definition, as well as our previous definitions, we can de-

duce some further properties of the Poisson process. Today we will

see that the time until the nth event occurs has a Gamma(n,λ) dis-

tribution. Later we will consider the sum, called the superposition,

of two independent Poisson processes, as well as the thinned Poisson

process obtained by independently marking, with some fixed probabil-

ity p, each event in a Poisson process, thereby identifying the events

in the thinned process.
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Interarrival Times of the Poisson Process:

We can think of the Poisson process as a counting process with a given

interarrival distribution That is, N(t) is the number of events that have

occurred up to time t, where the times between events, called the

interarrival times, are independent and identically distributed random

variables.

Comment: We will see that the interarrival distribution for a Poisson

process with rate λ is Exponential(λ), which is expected based on the

discussion at the end of the last lecture. In general, we can replace

the Exponential interarrival time distribution with any distribution on

[0,∞), to obtain a large class of counting processes. Such processes

(when the interarrival time distribution is general) are called Renewal

Processes, and the area of their study is called Renewal Theory. We

will not study this topic in this course, but for those interested this

topic is covered in Chapter 7 of the text. However, we make the

comment here that if the interarrival time is not Exponential, then the

process will not have stationary and independent increments. That is,

the Poisson process is the only Renewal process with stationary and

independent increments.
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Proof that the Interarrival Distribution is Exponential(λ):

We can prove that the interarrival time distribution in the Poisson

process is Exponential directly from Definition 1. First, consider the

time until the first event, say T1. Then for any t > 0, the event

{T1 > t} is equivalent to the event {N(t) = 0}. Therefore,

P (T1 > t) = P (N(t) = 0) = e−λt.

This shows immediately that T1 has an Exponential distribution with

rate λ.

In general let Ti denote the time between the (i − 1)st and the ith

event. We can use an induction argument in which the nth propo-

sition is that T1, . . . , Tn are independent and identically distributed

Exponential(λ) random variables:

Proposition n : T1, . . . , Tn are i.i.d. Exponential(λ).

We have shown that Proposition 1 is true. Now assume that Propo-

sition n is true (the induction hypothesis). Then we show this implies

Proposition n+ 1 is true. To do this fix t, t1, . . . , tn > 0. Proposition

n+ 1 will be true if we show that the distribution of Tn+1 conditioned

on T1 = t1, . . . , Tn = tn does not depend on t1, . . . , tn (which shows

that Tn+1 is independent of T1, . . . , Tn), and P (Tn > t) = e−λt. So

we wish to consider the conditional probability

P (Tn+1 > t|Tn = tn, . . . , T1 = t1).

First, we will re-express the event {Tn = tn, . . . , T1 = t1} which

involves the first n interarrival times into an equivalent event which

involves the first n arrival times. Let Sk = T1 + . . . + Tk be the kth
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arrival time (the time of the kth event) and let sk = t1 + . . .+ tk, for

k = 1, . . . , n. Then

{Tn = tn, . . . , T1 = t1} = {Sn = sn, . . . , S1 = s1},

and we can rewrite our conditional probability as

P (Tn+1 > t|Tn = tn, . . . , T1 = t1) = P (Tn+1 > t|Sn = sn, . . . , S1 = s1)

The fact that the event {Tn+1 > t} is independent of the event

{Sn = sn, . . . , S1 = s1} is because of independent increments, though

it may not be immediately obvious. We’ll try to see this in some detail.

If the event {Sn = sn, . . . , S1 = s1} occurs then the event {Tn+1 > t}
occurs if and only if there are no arrivals in the interval (sn, sn + t],

so we can write

P (Tn+1 > t|Sn = sn, . . . , S1 = s1)

= P (N(sn + t)−N(sn) = 0|Sn = sn, . . . , S1 = s1).

Therefore, we wish to express the event {Sn = sn, . . . , S1 = s1} in

terms of increments disjoint from the increment N(sn + t)−N(sn).

At the cost of some messy notation we’ll do this, just to see how it

might be done at least once. Define the increments

I
(k)
1 = N(s1 − 1/k)−N(0)

I
(k)
i = N(si − 1/k)−N(si−1 + 1/k) for i = 2, . . . , n,

for k > M , whereM is chosen so that 1/k is smaller than the smallest

interarrival time, and also define the increments

B
(k)
i = N(si + 1/k)−N(si − 1/k) for i = 1, . . . , n− 1

B(k)
n = N(sn)−N(sn − 1/k),
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for k > M . The increments I
(k)
1 , B

(k)
1 , . . . , I

(k)
n , B

(k)
n are all disjoint

and account for the entire interval [0, sn]. Now define the event

Ak = {I1 = 0}
⋂

. . .
⋂
{In = 0}

⋂
{B1 = 1}

⋂
. . .

⋂
{Bn = 1}.

Then Ak implies Ak−1 (that is, Ak is contained in Ak−1) so that the

sequence {Ak}∞k=M is a decreasing sequence of sets, and in fact

{Sn = sn, . . . , S1 = s1} =

∞⋂
k=M

Ak,

because one can check that each event implies the other.

However (and this is why we constructed the events Ak), for any k the

event Ak is independent of the event {N(sn+t)−N(sn) = 0} because

the increment N(sn+ t)−N(sn) is independent of all the increments

I
(k)
1 , . . . , I

(k)
n , B

(k)
1 , . . . , B

(k)
n , as they are all disjoint increments. But

if the event {N(sn + t)−N(sn) = 0} is independent of Ak for every

k, it is independent of the intersection of the Ak. Thus, we have

P (Tn+1 > t|Sn = sn, . . . , S1 = s1)

= P (N(sn + t)−N(sn) = 0|Sn = sn, . . . , S1 = s1)

= P
(
N(sn + t)−N(sn) = 0

∣∣∣ ∞⋂
k=M

Ak

)
= P ((N(sn + t)−N(sn) = 0)

= P (N(t) = 0) = e−λt,

and we have shown that Tn+1 has an Exponential(λ) distribution and is

independent of T1, . . . , Tn. We conclude from the induction argument

that the sequence of interarrival times T1, T2, . . . are all independent

and identically distributed Exponential(λ) random variables. �
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Definition 3 of a Poisson Process:

A continuous-time stochastic process {N(t) : t ≥ 0} is a Poisson

process with rate λ > 0 if

(i) N(0) = 0.

(ii) N(t) counts the number of events that have occurred up to time

t (i.e. it is a counting process).

(iii) The times between events are independent and identically dis-

tributed with an Exponential(λ) distribution.

We have seen how Definition 1 implies (i), (ii) and (iii) in Definition 3.

One can show that Exponential(λ) interarrival times implies part(iii)

of Definition 2 by expanding out the exponential function as a Taylor

series, much as we did in showing that Definition 1 implies Definition

2. One can also show that Exponential interarrival times implies sta-

tionary and independent increments by using the memoryless property.

As an exercise, you may wish to prove this. However, we will not do

so here. That Definition 3 actually is a definition of the Poisson pro-

cess is nice, but not necessary. It suffices to take either Definition 1

or Definition 2 as the definition of the Poisson process, and to see

that either definition implies that the times between events are i.i.d.

Exponential(λ) random variables.

Distribution of the Time to the nth Arrival:

If we let Sn denote the time of the nth arrival in a Poisson process,

then Sn = T1 + . . . + Tn, the sum of the first n interarrival times.

The distribution of Sn is Gamma with parameters n and λ. Before

showing this, let us briefly review the Gamma distribution.
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The Gamma(α, λ) Distribution:

A random variable X on [0,∞) is said to have a Gamma distribution

with parameters α > 0 and λ > 0 if its probability density function is

given by

fX(x|α, λ) =

{
λα

Γ(α)x
α−1e−λx for x ≥ 0

0 for x < 0
,

where Γ(α), called the Gamma function, is defined by

Γ(α) =

∫ ∞

0

yα−1e−ydy.

We can verify that the density of the Gamma(α,λ) distribution inte-

grates to 1, by writing down the integral∫ ∞

0

λα

Γ(α)
xα−1e−λxdx

and making the substitution y = λx. This gives dy = λdx or dx =

(1/λ)dy, and x = y/λ, and so∫ ∞

0

λα

Γ(α)
xα−1e−λxdx =

∫ ∞

0

λα

Γ(α)

(y
λ

)α−1

e−λy/λ
1

λ
dy

=
1

Γ(α)

∫ ∞

0

yα−1e−ydy = 1,

by looking again at the definition of Γ(α).
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The Γ(α) function has a useful recursive property. For α > 1 we

can start to evaluate the integral defining the Gamma function using

integration by parts:∫ b

a

udv = uv|ba −
∫ b

a

vdu.

We let

u = yα−1 and dv = e−ydy,

giving

du = (α− 1)yα−2dy and v = −e−y,

so that

Γ(α) =

∫ ∞

0

yα−1e−ydy

= −yα−1e−y
∣∣∞
0

+ (α− 1)

∫ ∞

0

yα−2e−ydy

= 0 + (α− 1)Γ(α− 1).

That is, Γ(α) = (α − 1)Γ(α − 1). In particular, if α = n, a positive

integer greater than or equal to 2, then we recursively get

Γ(n) = (n− 1)Γ(n− 1) = . . . = (n− 1)(n− 2) . . . (2)(1)Γ(1)

= (n− 1)!Γ(1).

However,

Γ(1) =

∫ ∞

0

e−ydy = −e−y
∣∣∞
0

= 1,

is just the area under the curve of the Exponential(1) density. There-

fore, Γ(n) = (n − 1)! for n ≥ 2. However, since Γ(1) = 1 = 0! we

have in fact that Γ(n) = (n− 1)! for any positive integer n.
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So for n a positive integer, the Gamma(n,λ) density can be written

as

fX(x|n, λ) =

{
λn

(n−1)!x
n−1e−λx for x ≥ 0

0 for x < 0
.

An important special case of the Gamma(α, λ) distribution is the

Exponential(λ) distribution, which is obtained by setting α = 1. Get-

ting back to the Poisson process, we are trying to show that the sum

of n independent Exponential(λ) random variables has a Gamma(n,λ)

distribution, and for n = 1, the result is immediate. For n > 1, the

simplest way to get our result is to observe that the time of the nth

arrival is less than or equal to t if and only if the number of arrivals in

the interval [0, t] is greater than or equal to n. That is, the two events

{Sn ≤ t} and {N(t) ≥ n}

are equivalent. However, the probability of the first event {Sn ≤ t}
gives the CDF of Sn, and so we have a means to calculate the CDF:

FSn(t) ≡ P (Sn ≤ t) = P (N(t) ≥ n) =

∞∑
j=n

(λt)n

n!
e−λt.

To get the density of Sn, we differentiate the above with respect to t,

giving

fSn(t) = −
∞∑
j=n

λ
(λt)j

j!
e−λt +

∞∑
j=n

λ
(λt)j−1

(j − 1)!
e−λt

= λ
(λt)n−1

(n− 1)!
e−λt =

λn

(n− 1)!
tn−1e−λt.

Comparing with the Gamma(n,λ) density above we have our result.
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Further Properties of the Poisson Process

Today we will consider two further properties of the Poisson process

that both have to do with deriving new processes from a given Poisson

process. Specifically, we will see that

(1) The sum of two independent Poisson processes (called the super-

position of the processes), is again a Poisson process but with rate

λ1 +λ2, where λ1 and λ2 are the rates of the constituent Poisson

processes.

(2) If each event in a Poisson process is marked with probability

p, independently from event to event, then the marked process

{N1(t) : t ≥ 0}, where N1(t) is the number of marked events up

to time t, is a Poisson process with rate λp, where λ is the rate

of the original Poisson process. This is called thinning a Poisson

process.

The operations of taking the sum of two or more independent Poisson

processes and of thinning a Poisson process can be of great practical

use in modeling many systems where the Poisson process(es) represent

arrival streams to the system and we wish to classify different types of

arrivals because the system will treat each arrival differently based on

its type.

207
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Superposition of Poisson Processes:

Suppose that {N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are two indepen-

dent Poisson processes with rates λ1 and λ2, respectively. The sum of

N1(t) and N2(t),

{N(t) = N1(t) +N2(t) : t ≥ 0},
is called the superposition of the two processes N1(t) and N2(t). Since

N1(t) and N2(t) are independent and N1(t) is Poisson(λ1t) and N2(t)

is Poisson(λ2t), their sum has a Poisson distribution with mean (λ1 +

λ2)t. Also, it is clear that N(0) = N1(0) + N2(0) = 0. That is,

properties (i) and (iii) of Definition 1 of a Poisson process are satisfied

by the process N(t) if we take the rate to be λ1 + λ2. Thus, to show

that N(t) is indeed a Poisson process with rate λ1 +λ2 it just remains

to show that N(t) has stationary and independent increments.

First, consider any increment I(t1, t2) = N(t2)−N(t1), with t1 < t2.

Then

I(t1, t2) = N(t2)−N(t1)

= N1(t2) +N2(t2)− (N1(t1) +N2(t1))

= (N1(t2)−N1(t1)) + (N2(t2)−N2(t1))

≡ I1(t1, t2) + I2(t1, t2),

where I1(t1, t2) and I2(t1, t2) are the corresponding increments in the

N1(t) and N2(t) processes, respectively. But the increment I1(t1, t2)

has a Poisson(λ1(t2 − t1)) distribution and the increment I2(t1, t2)

has a Poisson(λ2(t2 − t1)) distribution. Furthermore, I1(t1, t2) and

I2(t1, t2) are independent. Therefore, as before, their sum has a Pois-

son distribution with mean (λ1 +λ2)(t2− t1). That is, the distribution

of the increment I(t1, t2) depends on t1 and t2 only through the dif-

ference t2 − t1, which says that N(t) has stationary increments.
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Second, for t1 < t2 and t3 < t4, let I(t1, t2) = N(t2) − N(t1) and

I(t3, t4) = N(t4) − N(t3) be any two disjoint increments (i.e. the

intervals (t1, t2] and (t3, t4] are disjoint). Then

I(t1, t2) = I1(t1, t2) + I2(t1, t2)

and

I(t3, t4) = I1(t3, t4) + I2(t3, t4).

But I1(t1, t2) is independent of I1(t3, t4) because the N1(t) process

has independent increments, and I1(t1, t2) is independent of I2(t3, t4)

because the processes N1(t) and N2(t) are independent. Similarly, we

can see that I2(t1, t2) is independent of both I1(t3, t4) and I2(t3, t4).

From this it is clear that the increment I(t1, t2) is independent of the

increment I(t3, t4). Therefore, the process N(t) also has independent

increments.

Thus, we have shown that the process {N(t) : t ≥ 0} satisfies the

conditions in Definition 1 for it to be a Poisson process with rate

λ1 + λ2.

Remark 1: By repeated application of the above arguments we can

see that the superposition of k independent Poisson processes with

rates λ1, . . . , λk is again a Poisson process with rate λ1 + . . . + λk.

Remark 2: There is a useful result in probability theory which says

that if we take N independent counting processes and sum them up,

then the resulting superposition process is approximately a Poisson

process. Here N must be “large enough” and the rates of the in-

dividual processes must be “small” relative to N (this can be made

mathematically precise, but here in this remark our interest is in just
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the practical implications of the result), but the individual processes

that go into the superposition can otherwise be arbitrary.

This can sometimes be used as a justification for using a Poisson pro-

cess model. For example, in the classical voice telephone system, each

individual produces a stream of connection requests to a given tele-

phone exchange, perhaps in a way that does not look at all like a

Poisson process. But the stream of requests coming from any given

individual typically makes up a very small part of the total aggregate

stream of connection requests to the exchange. It is also reasonable

that individuals make telephone calls largely independently of one an-

other. Such arguments provide a theoretical justification for modeling

the aggregate stream of connection requests to a telephone exchange

as a Poisson process. Indeed, empirical observation also supports such

a model.

In contrast to this, researchers in recent years have found that arrivals

of packets to gateway computers in the internet can exhibit some

behaviour that is not very well modeled by a Poisson process. The

packet traffic exhibits large “spikes”, called bursts, that do not suggest

that they are arriving uniformly in time. Even though many users

may make up the aggregate packet traffic to a gateway or router, the

number of such users is likely still not as many as the number of users

that will make requests to a telephone exchange. More importantly,

the aggregate traffic at an internet gateway tends to be dominated by

just a few individual users at any given time. The connection to our

remark here is that as the bandwidth in the internet increases and the

number of users grows, a Poisson process model should theoretically

become more and more reasonable.
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Thinning a Poisson Process:

Let {N(t) : t ≥ 0} be a Poisson process with rate λ. Suppose we mark

each event with probability p, independently from event to event, and

let {N1(t) : t ≥ 0} be the process which counts the marked events.

We can use Definition 2 of a Poisson process to show that the thinned

process N1(t) is a Poisson process with rate λp. To see this, first

note that N1(0) = N(0) = 0. Next, the probability that there is one

marked event in the interval [0, h] is

P (N1(h) = 1) = P (N(h) = 1)p +

∞∑
k=2

P (N(h) = k)

(
k

1

)
p(1− p)k−1

= (λh + o(h))p +

∞∑
k=2

o(h)kp(1− p)k−1

= λph + o(h).

Similarly,

P (N1(h) = 0) = P (N(h) = 0) + P (N(h) = 1)(1− p)

+

∞∑
k=2

P (N(h) = k)(1− p)k

= 1− λh + o(h) + (λh + o(h))(1− p)

+

∞∑
k=2

o(h)(1− p)k

= 1− λph + o(h).

Finally, P (N1(h) ≥ 2) can be obtained by subtraction:

P (N1(h) ≥ 2) = 1− P (N1(h) = 0)− P (N1(h) = 1)

= 1− (1− λph + o(h))− (λph + o(h)) = o(h).
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We can show that the increments in the thinned process are stationary

by computing P (I1(t1, t2) = k), where I1(t1, t2) ≡ N1(t2) − N1(t1)

is the increment from t1 to t2 in the thinned process, by conditioning

on the increment I(t1, t2) ≡ N(t2)−N(t1) in the original process:

P (I1(t1, t2) = k) =

∞∑
n=0

P (I1(t1, t2) = k|I(t1, t2) = n)P (I(t1, t2) = n)

=

∞∑
n=k

P (I1(t1, t2) = k|I(t1, t2) = n)P (I(t1, t2) = n)

=

∞∑
n=k

(
n

k

)
pk(1− p)n−k

[λ(t2 − t1)]
n

n!
e−λ(t2−t1)

=
[λp(t2 − t1)]

k

k!
e−λp(t2−t1)

×
∞∑
n=k

[λ(1− p)(t2 − t1)]
n−k

(n− k)!
e−λ(1−p)(t2−t1)

=
[λp(t2 − t1)]

k

k!
e−λp(t2−t1).

This shows that the distribution of the increment I1(t1, t2) depends

on t1 and t2 only through the difference t2− t1, and so the increments

are stationary. Finally, the fact that the increments in the thinned

process are independent is directly inherited from the independence of

the increments in the original Poisson process N(t).

Remark: The process consisting of the unmarked events, call it N2(t),

is also a Poisson process, this time with rate λ(1−p). The text shows

that the two processes N1(t) and N2(t) are independent. Please read

this section of the text (Sec.5.3.4).
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The main practical advantage that the Poisson process model has over

other counting process models is the fact that many of its properties

are explicitly known. For example, it is in general difficult or impossible

to obtain explicitly the distribution of N(t) for any t if N(t) were a

counting process other than a Poisson process. The memoryless prop-

erty of the exponential interarrival times is also extremely convenient

when doing calculations that involve the Poisson process.

(Please read the class notes for material on the filtered Poisson

process and Proposition 5.3 of the text).


