
23 Matrix methods of structural analvsis 

23.1 Introduction 

This chapter describes and applies the matrix displacement method to various problems in 
structural analysis. The matrix displacement method first appeared in the aircraft industry in the 
1940s7, where it was used to improve the strength-to-weight ratio of aircraft structures. 

In today's terms, the structures that were analysed then were relatively simple, but despite this, 
teams of operators of mechanical, and later electromechanical, calculators were required to 
implement it. Even in the 1950s, the inversion of a matrix of modest size, often took a few weeks 
to determine. Nevertheless, engineers realised the importance of the method, and it led to the 
invention of the finite element method in 1956', whlch is based on the matrix displacement 
method. Today, of course, with the progress made in digital computers, the matrix displacement 
method, together with the finite element method, is one of the most important forms of analysis 
in engineering science. 

The method is based on the elastic theory, where it can be assumed that most structures behave 
like complex elastic springs, the load-displacement relationship of which is linear. Obviously, the 
analysis of such complex springs is extremely difficult, but if the complex spring is subdivided into 
a number of simpler springs, whch can readily be analysed, then by considering equilibrium and 
compatibility at the boundaries, or nodes, of these simpler elastic springs, the entire structure can 
be represented by a large number of simultaneous equations. Solution of the simultaneous 
equations results in the displacements at these nodes, whence the stresses in each individual spring 
element can be determined through Hookean elasticity. 

In this chapter, the method will first be applied to pin-jointed trusses, and then to continuous 
beams and rigid-jointed plane frames. 

23.2 Elemental stiffness matrix for a rod 

A pin-jointed truss can be assumed to be a structure composed of line elements, called rods, which 
possess only axial stiffness. The joints connecting the rods together are assumed to be in the form 
of smooth, fnctionless hinges. Thus these rod elements in fact behave llke simple elastic springs, 
as described in Chapter 1. 

Consider now the rod element of Figure 23.1, which is described by two nodes at its ends, 
namely, node 1 and node 2. 

'Levy, S., Computation of Influence Coefficients for Aircraft Structures with Discontinuities and Sweepback, 
J. Aero. Sei., 14,547-560, October 1947. 

'Turner, M.J., Clough, R.W., Martin, H.C. and Topp, L.J., Stiffness and Deflection Analysis of Complex Structures, 
J. Aero. Sei., 23,805-823, 1956. 
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Figure 23.1 Simple rod element. 

Let 
X, = axial force at node 1 

X2 = axial force at node 2 

u, = axial deflection at node 1 

u2 = axial deflection at node 2 

A = cross-sectional area of the rod element 

1 = elemental length 

E = Young's modulus of elasticity 

Applying Hooke's law to node 1 ,  

(I - = E  
& 

but 

(I = X,IA 

and 

E = (uI - u*y1 

so that 

X, = AE (u, - l d z y l  (23.1) 

From equilibrium considerations 

X, = -XI = AE (., - 1 4 1 y /  (23.2) 
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Rewriting equations (23.1) and (23.2), into matrix form, the following relationship is obtained: 

{;} = 5E[ -1  1 - 1 ] { 5 ]  1 u* 
(23.3) 

or in short form, equation (23.3) can be written 

( P I }  = lkl { U I }  (23.4) 

where, 

( P I }  = 6) = a vector of loads 

(uI}  = [ ::} = a vector of nodal displacements 

Now, as Force = stiffhess x displacement 

1 -1 

[k] = g [ 
(23.5) I 

-1 1 

= the stifmess matrix for a rod element 

23.3 System stiffness matrix [K] 

A structure such as pin-jointed truss consists of several rod elements; so to demonstrate how to 
form the system or structural stiffness matrix, consider the structure of Figure 23.2, which is 
composed of two in-line rod elements. 

Figure 23.2 Two-element structure. 
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Consider element 1-2. Then from equation (23.5), the stiffness matrix for the rod element 1-2 is 

(23.6) 

The element is described as 1-2, which means it points from node 1 to node 2, so that its start node 
is 1 and its finish node is 2. The displacements u,  and u2 are not part of the stiffness matrix, but 
are used to describe the coefficients of stiffness that correspond to those displacements. 

Consider element 2-3. Substituting the values A,, E2 and I, into equation (23.5), the elemental 
stiffness matrix for element 2-3 is given by 

u2 u3 

1 -1 

-1 1 
(23.7) 

Here again, the displacements u2 and u, are not part of the stiffness matrix, but are used to describe 
the components of stiffness corresponding to these displacements. 

The system stiffness matrix [K] is obtained by superimposing the coefficients of stiffness of 
the elemental stiffness matrices of equations (23.6) and (23.7), into a system stiffness matrix of 
pigeon holes, as shown by equation (23.8): 

[KI = -A,El Il l  AIEl I l l+ -  A2E2 112 - A2E2 112 
(23.8) 

It can be seen from equation (23.8), that the components of stiffness are added together with 
reference to the displacements u,, u2 and uj. This process, effectively mathematically joins together 
the two springs at their common node, namely node 2. 
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Let 

(23.9) 

= a vector of known externally applied loads at the nodes, 1,2 and 3, respectively 

(23.10) 

= a vector of unknown nodal displacements, due to { q } ,  at nodes 1, 2 and 3 
respectively 

Now for the entire structure, 

force = stiffness x displacement, or 

where [K] is the system or structural stiffness matrix. 
Solution of equation (23.11) cannot be carried out, as [K] is singular, i.e. the structure is 

floating in space and has not been constrained. To constrain the structure of Figure 23.2, let us 
assume that it is firmly fKed at (say) node 3, so that u3 = 0. 

Equation (23.1 1) can now be partitioned with respect to the free displacements, namely u,  and 
u2, and the constrained displacement, namely u3, as shown by equation (23.12): 

k} = 

where 

(4.) = 

(23.12) 

(23.13) 

a vector of known nodal forces, corresponding to the free displacements, 
namely u,  and u2 
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= a vector of free displacements, which have to be determined 

(23.14) 

(23.15) 

= that part of the system stiffness matrix that corresponds to the free 
displacements, which in this case is u,  and u2 

{ R }  = a vector of reactions corresponding to the constrained displacements, which in 
this case is u3 

[K,J = [o - 4 E2 1 I , ]  
in this case 

WI21 = [ - i 2  E2 1 / 2 1  

Expanding the top part of equation (23.12): 

(23.1 6) 

Once {uF}  is determined, the initial stresses can be determined through Hookean elasticity. 

equation (23.12) becomes 
For some cases u3 may not be zero but may have a known value, say u,. For these cases, 

(23.17) 

(23.18) 
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and 
{ R }  = [K21]{.F)+[KZZ]{%} (23.19) 

23.4 Relationship between local and global co-ordinates 

The rod element of Figure 23.1 is not very useful element because it lies horizontally, when in fact 
a typical rod element may lie at some angle to the horizontal, as shown in Figures 23.3 and 23.4, 
where the x-yo axes are the global axes and the x-y axes are the local axes. 

Figure 23.3 Plane pin-jointed truss. 

Figure 23.4 Rod element, shown in local and global systems. 

From Figure 23.4, it can be seen that the relationships between the local displacements u and 
v, and the global displacements uo and vo, are given by equation (23.20): 
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u = uocosa + v"sina 

v = -uosina + vOcosa 

whch, when written in matrix form, becomes: 

cosa sina {j = [-sku c o s j  

For node 1, 

where, 

c = cosa 

s = sina 

S d a r l y ,  for node 2 

Or, for both nodes, 

(23.20) 

(23.2 1) 

(23.22) 

(23.23) 

where, 
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[%I = 

c s  

[(I = 

-s c 

0 0  

-0 0 

Equation (23.23) can be written in the form: 

where, 

[Dc] = ['"I 
0, 6 

= a matrix of directional cosines 

From equation (23.25), it can be seen that [DC] is orthogonal, i.e. 

[DC].' = [DCIT 

:. {ui " }  = [DCIT {u,} 

573 

(23.24) 

(23.25) 

(23.26) 
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Similarly, it can be shown that 
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{P,} = [DCI {P lO}  

and {P, " }  = [DCIT (P,} 

where 

(23.27) 

and 

23.5 Plane rod element in global co-ordinates 

For this case, there are four degrees of freedom per element, namely u I  O ,  v ,  O ,  u20 and v20. Thus, 
the elemental stiffness matrix for a rod in local co-ordinates must be written as a 4 x 4 matrix, as 
shown by equation (23.28): 

AE 
[kl = I- 

UI VI u2 v2 

1 0 - I  0 
0 0  0 0  

- 1 0  1 0  

0 0 0 0  

(23.28) 

The reason why the coefficients of the stiffness matrix under vI and v2 are zero, is that the rod only 
possesses axial stiffness in the local x-direction, as shown in Figure 23.1. 
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For the inclined rod of Figure 23.4, although the rod only possesses stiffness in the x-direction, 

The elemental stiffness matrix for a rod in global co-ordinates is obtained, as follows. From 
it has components of stiffness in the global x o -  and yo-directions. 

equation (23.4): 

( P I }  = [kl (u,} 

but 
, 

( P I }  = [DCI { P I " }  

(23.29) 

(23.30) 

and 

(u,} = P-1 {%"} (23.31) 

Substituting equations (23.30) and (23.3 1) into equation (23.29), the following is obtained: 

[DCI { P I 0 }  = [kl [DCI { u l " }  (23.32) 

Premultiplying both sides by [DC].', 

{PI"}  = Pc1-l [kl [DCI { U l O }  

but from equation (22.28), 

[DC]-' = [DCIT 

.. {PIo} = [DCIT [k] [DC] {u,"} 

Now, 

force = stiffness x deflection 

:. {P , " }  = [k"] { u t o }  

(23.33) 

(23.34) 



c2  cs -c2  - C S U I O  

[ko] = E CS S 2  -CS - S 2  

I 
- C 2  -cs c2  cs 

-cs - s2  cs s 2  

Solution 

This truss has two free degrees of freedom, namely, the unknown displacements u,  O and v, O .  

Element 1-2 

This element points from 1 to 2, so that its start node is 1 and its end node is 2, as shown: 

V I o  (23.3 6) 

u20 

V 2 O  
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a = 135" :. c = -0.707, s = 0.707, 1 = 1.414 m 

Substituting the above information into equation (23.36), and removing the rows and columns 
corresponding to the zero displacements, namely uzo and vzo, the elemental stiffness matrix for 
element 1-2 is given by 

0 0 0 0  

u1 V I  u2 v2 

0.5 -0.5 u1 O 

V1 O 

u2 o 

' V Z O  

- -0.5 0.5 
(23.37) 

AE [k1-201 = 1.414 

Element 1-3 

This member points from 1 to 3, so that its start node is 1 and its end node is 3, as shown below. 



A E  
[kl-30] = -i- 

a = 210" 

or a = -150" 

c = -0.866 

s = -0.5 

I =  2 

Substituting the above information into equation (23.36), and removing the rows and columns 
corresponding to the zero displacements, which in this case are u40 and v,", the elemental stiffness 
matrix is given by 

0 0  u1 O 

VI o 

143 O 

(23.38) 
0 1 
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(23.39) 

The system stiffness matrix corresponding to the free displacements, namely uI O and v ,  O ,  is given 
by adding together the appropriate coefficients of equations (23.37) to (23.39), as shown by 
equation (23.40): 

[KIII = AE 

or 

UI O 

0.354 + 0 

+0.375 

-0.354 + 0 

+0.2 17 

VI O 

-0.354 + 0 
UI O 

+0.2 17 

0.354 + 1 
V I  O 

+0.125 

UI O VI O 

0.729 -0.137 

-0.137 1.479 

(23.40) 

(23.41) 

NB [K, is of order two, as it corresponds to the two free displacements u I o  and vI O ,  which 
are unknown. 

The vector of external loads { q F } ,  corresponds to the two free displacements I(, O and v ,  O ,  and can 
readily be shown to be given by equation (23.42), ie 

(23.42) 

where the load value 2 is in the u,  direction, and the load value - 3 is in the v ,  O direction. 
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Substituting equations (23.41) and (23.42) into equation (23.16) 

1 [ 1.479 0.1371 {-;} 
- AE 0.137 0.729 - 

(0.729 x 1.479 - 0.137 x 0.137) 

- - 1 [ 1.396 0.1291 { 2} 

A E  0.129 0.688 -3 

i.e. 

Thes displacements are in global ~ _ha te s ,  

(23.43) 

3 it will be necessary to resolve these 
displacements along the length of each rod element, to discover how much each rod extends or 
contacts along its length, and then through the use of Hookean elasticity to obtain the internal 
forces in each element. 

Element I -  2 

Now, 
c = -0.707, s = 0.707 and 1 = 1.414m 

Hence, from equation (23.23), 

= [-0.707 0.7071 - 

U ,  = -2.977lAE 
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From Hmke's law, 

F , ,  = force in element 1-2 

AE 
I 

= - (u* - ul) 

- 2.977 - -  
1.414 

F,-.2 = 2.106 MN (tension) 

Element 1-3 

c = O ,  s = l  and I = l m  

From equation (23.23), 

= [o 11 & [ 2.405] 

- 1.806 

U ,  = -1 .806/AE 

From Hooke's law, 

F,-3 = force in element 1-3 

AE 
I = - (u3 - u1) 

F,-3 = 1.806 MN (tension) 

581 

Element 4-1 

c = -0.866, s = 0.5 and 1 = 2 m  

From equation (23.23), 
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9 = [c SI 13 
= [-0.866 0.51 - 

A E  1 r - 2.4051 1.806 
U, = -1.1797 1 A E  

From Hooke's law, 

F4-, = force in element 1 4  

A E  
I = - (111 - u4) 

- A E  (-1.1797 - 0) 
2 A E  

F4-I = -0.59 MN (compression) 

- -  

Problem 23.2 Using the matrix displacement method, determine the forces in the members 
of the plane pin-jointed truss below, which is free to move horizontally at node 
3 ,  but not vertically. It may also be assumed that the truss is f m l y  pinned at 
node 1, and that the material and geometrical properties of its members are 
given in the table below. 
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0.25 0.433 - 0.25 

0.433 0.75 - 0.437 

-0.25 - 0.433 d.25 

- 

583 

u2 

v2 

u3 

v3 

Solution 

Element 1-2 

a = O ,  c = 1 ,  s = O  and 1 = 2 m  

2.6 4.5 -2 .6 

Substituting the above values into equation (23.36), 

v20 

2AE 
[kl-2"] = 2 

Element 2-3 

a =  

r 

to" ,  c = -O.-., s = -0.866 and I = 1 m 

3 A x  2 E  
Lk,-,"] = 

= A E  

-1 .5  -2.6 1.5 

(23.44) 

(23.45) 
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-1.5 

-2.6 

1-1.5 -2.6 2.8 

Element 3-1 

CL = 150°, c = -0.866, s = 0.5 

u2' 

v20 

-u30 

A x 3E 
[k3-101 = 1.732 

u 3 O  

= [MI u3" 

0 0 0 0  

u3 v3 Ul  Vl 

0.75 

and1 = 1.732m 

(23.46) 

The system stiffness matrix [K,,] is obtained by adding together the appropriate components of 
stiffness, from the elemental stiffness matrices of equations (23.44) to (23.46), with reference to 
the free degrees of freedom, namely, u20, vzo and u30, as shown by equation (23.47): 

u* O 

1 + 1.5 

0 + 2.6 
~~~ 

- 1.5 

0 0  

u2 VI 

2.5 2.6 

2.6 4.5 

v2 O 

0 + 2.6 

0 + 4.5 

- 2.6 

u3 

- - *  . I . .. . ^  

u3 O 

- 1.5 

- 2.6 

1.5 + 1.3 

^ ^  

(23.47) 

(23.48) 

. -  I he vector of loads {qF} ,  correspondmg to the free degrees of freedom, namely, u2", v2" and uj" 
is given by: 
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( S F }  = 1;) 0 (23.49) 

Substituting equations (23.48) and (23.49) into equation (23.16) and solving, the vector of free 
displacements { uF} is given by fl) = & (0.1251 -2.27 

- 1.332 

(23.50) 

The member forces will be obtained by resolving these displacements along the length of each rod 
element, and then by finding the amount that each rod extends or contracts, to determine the force 
in each member through Hookean elasticity. 

Element 1-2 

c = 1 ,  s = O  and 1 = 2 m  

From equation (23.23), 

-2.27 

u2 = -2.27fAE 

From Hooke's law, 

FI-2 = force in element 1-2 

= - ( - = - o )  2AE 2.27 
2 

F,-2 = -2.27 MN (compression) 
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Element 2-3 

c = -0.5, s = -0.866 and I 1 m 

From equation (23.23), 

u2 = 

= [-0.5 -0.8661 - 

u, = 1.243fAE 

Similarly, from equation (23.23), 

uj  = 

= [-0.5 -0.8661 

u3 = 0.666fAE 

From Hooke's law, 

F2-, = force in element 2-3 

(-0.577) 
= 6AE x - 

AE 

F2-3 = -3.46 MN (compression) 
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Element 3-1 

587 

c = -0.866, s = 0.5 and I = 1.732 m 

= [-0.866 0.51 - 
AE 

u3 = 1.154/AE 

From Hooke's law, 

F,-l = force in element 1-3 

A x 3E 1.154 
1.732 

F3-I = -2 MN (compression) 

23.6 Pin-jointed space trusses 

In three dimensions, the relationships between forces and displacements for the rod element of 
Figure 23.5 are given by equation (23.51): 

(23.51) 

where, 



588 Matrix methods of structural analysis 

XI = load in the x direction at node 1 

= AE(u1 -uJA 

Y, = load in they duection at node 1 

= o  
= load in the z direction at node 1 

= o  
= load in the x direction at node 2 

2, 

X,  

= A E ( ~ ,  - U j n  

Y, = load in they direction at node 2 

= o  
= load in the z dlrection at node 2 

= o  
2, 

Figure 23.5 Threedimensional rod in local co-ordinates. 

Figure 23.6 Rod in three dimensions. 
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For the case of the three dimensional rod in the global co-ordinate system of Figure 23.6, it can be 
shown through resolution that the relationship between local loads and global loads is given by: 

where 

(23.52) 

(23.53) 

x, y, z = localaxes 

x o ,  yo ,  zo = global axes 

C,,, Cr,, C,,? etc = the directional cosines of x with x o ,  x with yo ,  x with zo, 
respectively, etc. 

O = force in x o  direction at node 1 

y, O = force in y o  direction at node 1 

z, O 
= force inz" direction at node 1 

x2 O 
= force in x o  direction at node 2 

y2 O = force in yo  direction at node 2 

2 2  O 
= force in zo direction at node 2 
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Now from equation (23.35) the elemental stiffness matix for a rod in global co-ordinates is given 
by: 

[k"] = [DCIT [k] [DC] 

a -a 

[k"] = 

-a a 

where 

By Pythagoras' theorem in three dimensions: 

I 

1 = [k2"- XJ2 + cy2"-  y,")2 + (z2"- z,")z]T 

The dnectional cosines' can readily be shown to be given by equation (23.57): 

Cx,"= (xzo - x , " ) / l  

cxso= cy2" - Y , " ) / l  

(23.54) 

(23.55) 

(23.56) 

(23.5 7) 

Cx,"= (zz" - z , " ) / l  

Problem 23.3 A tripod, with pinned joints, is constructed from three uniform section 
members, made from the same material. If the tipod is f d y  secured to the 
ground at nodes 1 to 3, and loaded at node 4, as shown below, determine the 
forces in the members of the tripod, using the matrix displacement method. 

'Ross, C T F, Advnnced Applied Element Methods, Horwood, 1998. 
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Solution 

Element 1-4 

The element points from 1 to 4, so that the start node is 1 and the finish node is 4. From the figure 
below it can readily be seen that: 

XI0 = 0, y , O  = 0. Z , O  = 0, 

z," = 5 m, y," = 5 m, zg0 = 7.07 m 

(b) Front view of tripod. 
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Substituting the above into equation (23.56), 

Matrix methods of structural analysis 

1 

1 = [(5 - 0)' + (5 - 0)' + (7.07 - 0)'p 

AE 
[kl-do] = - 

10 

I = 1 0 m  

- 

u10 
v10 

4 
0.25 0.25 v4" 

WI 

0.25 

- 0.354 0.354 0.5 W4" 

Substituting the above into equation (23.57), 

- - -  - 5 - 0  - 0.5 
X4O - X10 

CXJO = 
1 10 

- - -  - - 0.5 Y4O - YI0 - CXYD = 
I 10 

Substituting the above values into equation (23.54), and removing the coefficients of the stiffness 
matrix corresponding to the zero displacements, which in h s  case are uIo, vIo and wl0, the 
stiffness matrix for element 1 4  is given by equation 23.58): 

(23.58) 

Element 2-4 

The member points from 2 to 4, so that the start node is 2 and the finish node is 4. From the above 
figure, 

X2O = 10, Y 2 O  = 0, Z 2 O  = 0 
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Substituting the above and x,", y4" and zq0 into equation (23.56), 

I = 15 - lo)* + (5 - 0)2 + (7.07 - 0),12 
I - 

I = 10m 

From equation (23.57), 

Substituting the above values into equation (23.54), and removing the rows and columns 
corresponding to the zero displacements, whch in th~s case are u,", v," and w,", the stiffness 
matrix for element 2 4  is given by equation (23.59): 

AE [ k , 4  = 10 

Element 4-3 

yo V 2 O  w," u4" v," W4O 

0.25 
- 0.25 0.25 
- 0.354 0.354 O.? 

(23.59) 

The member points from 4 to 3, so that the start node is 4 and the finish node is 3. From the figure 
at the start of h s  problem, 

X , O  = 5 y," = 12.07 z30 = 0 
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Substituting the above and x4", y4" and z," into equation (23.56), 
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1 - 
I = 15 - 5)2 + (12.07 - 5)' + (0 - 7.07)2]2 

I = 1 0 m  

From equation (23.57), 

Substituting the above into equation (23.54), and removing the rows and columns corresponding 
to the zero displacements, which in this case are ujo, v 3 "  and w3", the stiffness matrix for element 
4-3 is given by equation (23.60): 

0 0  

u 4  v 4  W4O 

0 
0 0.5 
0 - 0.5 0.5 

AE 
[IC,-,'] = - 10 

(23.60) 

To obtain [K, ,I, the system stiffness matrix corresponding to the free displacements, namely u,", 
v," and w,", the appropriate coefficients of the elemental stiffness matrices of equations (23.58) 
to (23.60) are added together, with reference to these free displacements, as shown by equation 
(23.6 1): 
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[ K I I O I  = AE 
10 

AE 
10 
- - - 

u40 

0.25 
+ 0.25 
+ O  

0.25 
- 0.25 
+ O  

0.354 
- 0.354 
+ O  

0.25 
+ 0.25 
+ 0.5 

0 0 

u4 v4 

0.5 0 

0 

0 0.208 

0.354 
+ 0.354 
- 0.5 

0 

w4 

w40 

0.5 
+ 0.5 
+ 0.5 

u40 

w40 
(23.61) 

(23.62) 

The vector of loads is obtained by considering the loads in the directions of the free displacements, 
namely u40, v40 and w,", as shown by equation (23.63): 

2 

b l  = 

u4 O 

t V40 

w4 O 

(23.63) 

Substituting equations (23.62) and (23.63) into (23.16), the following three simultaneous equations 
are obtained: 

2 = ($) x 0.5 u40 (2 3.64a) 

0 = (z) ( Y 4 O  + 0.208 w4") 

- 3  = ($) (0.208 v40 + 1.5 w40) 

(23.64b) 

(23.64~) 
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From (23.64a) 

u40 = 40lAE 

Hence, from (20.64b) and (23.64~)~ 

v4' = 4.284lAE 

w," = -20.594lAE 

so that, 

(23.65) 

To determine the forces in the members, the displacements of equation (23.65) must be resolved 
along the length of each rod, so that the amount the rod contracts or extends can be determined. 
Then through the use of Hookean elasticity, the internal forces in each member can be obtained. 

Element 1-4 

C,," = 0.5, C,," = 0.5, C,,' = 0.707, I = 10 m 

From equation (23.52): 

= [OS 0.5 0.7071 - 1 44:8 1 
AE 

-20.59 

u4 = 7.568lAE 



Pin-jointed space trusses 

From Hooke's law, 

F,, = force in member 1-4 

AE 7568 
u4-u1  =-x- 

AE 

=--( 10 10 AE 

F,,  = 0.757 MN (tension) 

Element 2-4 

C,,' = -0.5, Cxyo = 0.5, C,,' = 0.707, 1 = lorn 

From equation ( 2 3 . 2 ) :  

= [-0.5 0.5 0.7071 - 
-20.59 

u4 = -32.417lAE 

From Hooke's law, 

F,, = force in member 2-4 

AE AE 
10 

= (u4 - u2) = - x ( -32.417/AE) 
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F,, = 3.242 MN (tension) 
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Element 4-3 

C,,' = 0, Cx,yo = 0.707, C,,' = -0.707, I = 1 0 m  

u4 = [CXJ0 Cxy' cxzo] E:) 
u4 = [0 0.707 -0.7071 - 1 { ,"p, 1 

AE 
-20.59 

u4 = 17.58fAE 

From Hooke's law, 

F,, = force in member 4-3 

AE 
I 

AE 
10 

(u3 - u4) - -  

= - (0 - 17.58/AE) 

F,, = - 1.758 MN (compression) 

23.7 Beam element 

The stiffness matrix for a beam element can be obtained by considering the beam element of Figurf 
23.7. 

Figure 23.7 Beam element. 



Beam element 

From equation ( 13.4), 

E l  - d2v = M = Y,X + M ,  
dx2 

Y,x 
E l -  c f v -  - - + M , x  + A 

dx 2 

Y,x3 M,x2 
EIv = - + - + A x + B  

6 2 
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(23.66) 

(23.67) 

(23.68) 

where 

Y,  = vertical reaction at node 1 

Y, = vertical reaction at node 2 

MI = clockwise couple at node 1 

M, = clockwise couple at node 2 

v ,  = vertical deflection at node 1 

v, = vertical deflection at node 2 

9, = rotational displacement (clockwise) at node 1 

8, = rotational displacement (clockwise) at node 2 

There are four unknowns in equation (23.68), namely Y, ,  M,, A and B ;  therefore, four boundary 
values will have to be substituted into equations (23.67) and (23.68) to determine these four 
unknowns, through the solution of four linear simultaneous equations. 

These four boundary values are as follows: 

Substituting these four boundary conditions into equations (23.67) and (23.68), the following are 
obtained: 
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6EI 12EI 
Y ,  = -- (ei + e2) + - (v, - v2) 

I 2  1 3  

6EI EI 
M, = - (v2 - v,) + - (4e1 + 28,) 

I 2  I 

6EI 12EI 
Y, = - (e, + e2) - - (vi - v2) 

I 2  i3 

2EI 4EI 6EI 
M, = - e, + - e, - - (vi - v2) 

I I I 2  

Equations (23.69) to (23.72) can be put in the form: 

( P I }  = [kl + I }  

where, 

= the elemental stiffness matrix for a beam 

[ 4 )  = f 1 = a vector of generalised loads 

M2 

[ u t )  = 1; 1 = a vector of generalised displacements 

e* 

(23.69) 

(23.70) 

(23.71) 

(23.72) 

(23.73) 

(23.74) 

(23.75) 
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Determine the nodal displacements and bending moments for the uniform 
section beam below, which can be assumed to be fully fixed at its ends. 

Problem 23.4 

[k,-2] = E l  

-VI 

8, (23.76) 
0.444 0.667 v2 

0.667 1.333 
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- 
1.5 -1.5 

-1.5 1.5 
I. 

I -  

Matrix methods of structural analysis 

v2 

02 

v3 

[k2-3] = El  

The system stiffness me 

0.444 0.667 
+ 1.5 - 1.5 

0.667 1.332 
[K,,1 = E/ 

- 1.5 + 2.0 

v,o 

e , O  

(23.77) 

ix, whch corresponds to the free displacements v, anc , is obtained by 
adding together the appropriate components of the elemental stiffness matrices of equations (23.76) 
and (23.77), as shown by equation (23.78): 

e 2  

(23.78) 

(23.79) 

The vector of generalised loads is obtained by considering the loads in the directions of the fiee 
displacements v, and e,, as follows: 

From equation (23. I l), 

1.944 -0.833 

-0.833 3.333 
{:} = E [ [  

~~ 1 [ 3.333 0.8331 { -4} 

- - EI 0.833 1.944 0 

(1.944 x 3.333 - 0.8332) 



Beam element 

- - 1 [ 0.576 0.1441 { - 4 }  

El 0.144 0.336 0 
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(23.80) 

(23.81) 

NB VI = e, = v, = e2 = o 

To obtain the nodal bending moments, these values of displacement must be substituted into the 
slope-deflection equations (23.70) and (23.72), as follows. 

Element 1-2 

Substituting v,, e,, v, and 8, into equations (23.70) and (23.72): 

M, = ~ ( T - O ) + ~ ( 4 x O -  -2.304 2 x 0.576 
9 EI 

= -1.536 - 0.384 

M, = -1.92 kNm 

and, 

2EI 4EI -0.576 2.304 M2 = - x o + - x  - 
3 3 I E/ ) -Y(O+?) 

= -0.768 - 1.536 

M, = -2.304 kNm 

Element 2-3 

Substituting v,, e,, v, ando, into equations (23.70) and (23.72), and remembering that the first node 
is node 2 and the second node is node 3, the following is obtained for M, and M,: 

2 4 

= -1.152 + 3.456 

M, = 2.304 kNm 
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and, 

Matrix methods of structural analysis 

M = 2EZ -0.576 
2 

- ( - - ) + O - - & - O )  6EZ -2.304 
3 

= -0.576 + 3.456 

M3 = 2.88 kNm 

Problem 23.5 Determine the nodal displacements and bending moments for the encastrk 
beam: 

Solution 

Now the matrix displacement method is based on applying the loads at the nodes, but for the above 
beam, the loading on each element is between the nodes. It will therefore be necessary to adopt 
the following process, which is based on the principle of superposition: 

1. Fix the beam at its nodes and determine the end furing forces, as shown in the following 
figure at (a) and (b) and as calculated below. 

The beam in condition (1) is not in equilibrium at node 2, hence, it will be necessary to 
subject the beam to the negative resultants of the end fixing forces at node 2 to achieve 
equilibrium, as shown in the figure at (c). It should be noted that, as the beam is firmly 
fured at nodes 1 and 3, any load or couple applied to these ends will in fact be absorbed 
by these walls. 

Using the matrix displacement method, determine the nodal displacements due to the 
loads of the figure at (c) and, hence, the resulting bending moments. 

To obtain the final values of nodal bending moments, the bending moments of condhon 
(1) must be superimposed with those of condition (3). 

2. 

3. 

4, 
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End-fixing forces 

Element 1-2 

' x 32 - -0.75 kNm W l 2  - M [ 2  = - - - - - -  
12 12 

M;l = - w12 - - 0.75 kNm 

Yl -2  = Y2- ,  = - l X 3  

12 

- - 1 .5kN 
2 

Element 2-3 

- -  2 x 22 - -0.667 kNm ML3 = -- = - W l  2 

12 12 

ML2 = - w12 - - 0.667 kNm 
12 

Y2-3 = Y3-2 = - wl - - - 2 x 2  = 2 k N  
2 2 
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From the figure above, at (c), the vector of generalised loads is obtained by considering the free 
degrees of freedom, which in this case, are v, and 8,. 

From equation (23.80), 

0.576 0.144 

[K1lrl = [0.144 0.336l 

and from equation (23.16), 

0.576 0.1441 [ -3.5 ] 
0.144 0.336 -0.0833 

(23.82) 

(23.83) 

To determine the nodal bending moments, the nodal bending moments obtained fromthe equations 
(23.70) and (20.72) must be superimposed with the end-fixing bending moment of the figure 
above, as follows. 

Element 1-2 

Substituting equation (23.83) into equation (23.70) and adding the end-fixing bending moment 
from the figure above (b), 

-2.028 
9 E1 

= -1.352 - 0.355 - 0.75 

M ,  = -2.457 kNm 
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[k] = EI 

Similarly, substituting equation (23.83) into equation (23.72) and adding the end-fixing bending 
moment of the above figure at (b), 

- 
- ( A l l I )  0 0 (74111)  0 0 

0 1 2 1 1 ~  - 6 1 1 ~  o - 1 2 1 1 ~  - 6 1 1 ~  

0 -611’ 411 0 6112 211 
(23.84) 

( -AI lZ )  0 0 ( A I Z I )  0 0 

0 - 1 2 / 1 3  611’ 0 1 2 1 1 ~  611‘ 

- 0 -6112 211 0 611’ 411 - 

= -1.352 - 0.709 + 0.75 

M, = 1.311 kNlm 

Element 2-3 

Substituting equation (23.83) into equations (23.70) and (23.72) and remembering that.node 2 is 
the first node and node 3 is the second node, and adding the end fixing moments from the above 
figure at (b), 

M 2 = 6EI (El 2.028 + 0) + 5 ( - 4  xi:32) - 0.667 

= 3.042 - 1.064 - 0.667 

M2 = 1.311 kNm 

M 3 = 6EI [y 2.028 + 0) + [ - 2  xi;532) + 0.667 

= 3.042 - 0.532 + 0.667 

M3 = 3.177 kNm 

23.8 Rigid-jointed plane frames 

The elemental stiffness matrix for a rigid-jointed plane frame element in local co-ordinates, can 
be obtained by superimposing the elemental stiffness matrix for the rod element of equation 
(23.28) with that of the beam element of equation (23.73), as shown by equation (23.84): 
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Now the stiffness matrix of equation (23.84) is of little use in that form, as most elements for a 
rigid-jointed plane f i m e  will be inclined at some angle to the horizontal, as shown by Figure 23.8. 

I c s o  
- k0' 

-s c 0 03 y,  O 

0 0 1  4 O 

c s 0 X2" 

y2 O 

03 -s c 0 F b = #  0 0 1 M2" 0 

(23.85) 



[rl = 

Rigid-jointed plane frames 

c s o  

-s c 0 

0 0 1  

Now, fiom equation (23.35): 

[k"] = [DCIT [k] [DC] 

= pro] + [bo] 

where, 

AE [k,"] = - 
I 

M I 0  V I 0  e, u2" v20 e, 
c 2  cs 0 - c 2  -cs 0 

cs s 2  0 -cs -s2  0 

0 0 0 0  0 0 

-c2 -cs 0 c 2  cs 0 

-cs - s 2  0 cs s 2  0 

0 0 0 0  0 0 

609 

(23.86) 

(23.87) 
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c = cosa 

s = s i n a  

A = cross-sectional area 

I = second moment of area of the element's cross-section 

I = elemental length 

E = Young's modulus of elasticity 

Problem 23.6 Using the matrix displacement method, determine the nodal bendmg moments 
for the rigid-jointed plane frame shown in the figure below. It may be assumed 
that the axial stiffness of each element is very large compared to the flexural 
stiffness,sothatv," = v," = 0, andu," = u,'. 

Solution 

As the axial stiffness of the elements are large compared with their flexural stiffness, the effects 
of [Is"] can be ignored. 

Element 1-2 

a = 90" c = o  s = l  I = 3 m  

Substituting the above into equation (23.88), and removing the rows and columns corresponding 
to the zero displacements, which in this case are u,  O ,  v ,  ", 8, and vzo,  the elemental stiffness matrix 
for member 1-2 becomes 



[ kI-,'] = EI 

Rigid-jointed plane frames 

u , o  V I "  e, u20 v20 e, 

- 

- 

61 1 

(23.89) 

Element 2-3 

a = 0, c = 1, s = 0, I = 4 m  

Substituting the above into equation (23.88), and removing the columns and rows correspondmg 
to zero Isplacements, whch in thls case are v," and v, O ,  the elemental stiffness matrix for member 
2-3 is given by 

[kz-3'] = EI 

U,O V,O e, u30 v30 e, 

%?O 

1 
0 

0.5 0 

Element 3-4 

a = -90", c = 0, s = -1 , l  = 3 m  

(23.90) 

Substituting the above into equation (23.88), and removing the columns and rows corresponding 
to zero displacements, namely v,", u,", v," and e,, the elemental stiffness matrix for member 3 4  
is given by 
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0.444 -0.667 0 0 

-0.667 2.333 0 0.5 

0 0 0.444 -0.667 

0 0.5 -0.667 2.333 

Matrix methods of structural analysis 

-uz0 

u30 

9, 

u30 v30 9, U4O V 4 O  e4 
0.444 

-0.667 1.333 

- 

(23.91) 

Superimposing the stiffness influence coefficients, corresponding to the free displacements, u20, 
e,, u30 and e,, the system stiffness matrix [K,,] is obtained, as shown by equation (23.92): 

[K,,"] = EI 

[K1,"]= EI 

UZ0 

0.444 

+ O  

- 0.667 

+ O  

U3O 

1.333 

+ I  

0.5 

0.444 

- 0.667 1+1.333 

u20 

0 2  

u30 

0 3  
(23.92) 

(23.93) 
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The vector of loads corresponding to these free displacements is given by 

(23.94) 

Rewriting equations (23.93) and (23.94) in the form of four linear simultaneous equations, and 
noting that the 5 kN load is shared between members 1-2 and 3-4, the following is obtained: 

2.5 = E I ( O . W ~ , O  -0.6678,) 

0 = EI(-0.667u2" +2.3338, +0.58,) 

2.5 = E I ( O . W ~ , ~  -0.6678,) 

0 = EI(O.58, - 0 . 6 6 7 ~ ~ "  +2.3338,) 

Now for this case 

8, = 8, 

and 

U2O = U 3 O  

Hence, equation (23.95) can be reduced to the form shown in equation (23.97): 

2.5 = 0.444 EIuZo - 0.667 EI8, 

0 = -0.667 EIu2' + 2.833 EI8, 

(23.95) 

(23.96) 

(23.97) 

Solving the above 

u20 = u,O = 8.707/EI 

and 

0, = 0, = 2.049lEI (23.98) 

To determine the nodal bending moments, the displacements in the local v and 0 directions will 
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have to be calculated, prior to using equations (23.70) and (23.72). 

Element 1-2 

c = o ,  s = 1 ,  I = 3 m  

From equation (23.23): 

v* = [-s 4 F} 
V? 

v2 = -8.7071El 

By inspection, 

v, = 8, = 0 and 8, = 2.049lEI 

Substituting the above values into the slope-deflection equations (23.70) and (23.72) 

2EI 2.049 6El ( + 8.707 ) 
= 0 + - x - 

3 El 9 

= 1.366 - 5.805 

MI.? = -4.43 kNm 

4El 2.049 E ( + 8.707 El ) M I - ,  = 0 + - x - - 
3 E l  9 

= 2.732 - 5.805 

M2- l  = -3.07 kNm 

Element 2-3 

1 = 4 m  

By inspection, 

v2 = v, = 0 
and 
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0, = 0, = 2.049lEI 

615 

Substituting the above values into the slope-deflection equations (23.70) an (23.72): 

4EI 2.049 2EI 2.049 
4 EI 4 EI 

M2-3 = - X - + - X -  

M2-3 = 3.07 kNm 

Element 3-4 

c = 0, s = -1, 

From equation (23.23): 

I = 3 m  

8.707 

= [ I  01;[ o }  

v3 = 8.707lEI 

By inspection, 

v, = e, = o and 0, = 2.049lEI 

Substituting the above values into equations (23.70) and (23.72), 

4EI 2.049 6EI 8.707 M3-4 = - x - + o - -  - 
3 EI 9 ( EI - O) 

= 2.732 - 5.805 

M3-4 = -3.07 kNm 

2 EI 6EI 8.707 M4-3 = - x 2.049 + 0 - - - 
3 9 ( El  - O) 

= 1.366 - 5.805 

M4.3 = -4.44 kNm 
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Problem 23.7 

Matrix methods of structural analysis 

Using the matrix displacement method, determine the nodal bending moments 
for the rigid-jointed plane frame shown below. 

Solution 

As this frame has distributed loading between some of the nodes, it will be necessary to treat the 
problem in a manner similar to that described in the solution of Problem 23.5. 

There are four degrees of freedom for this structure, namely, u2", e,, ujo and e,, hence {qF} will 
be of order 4 x 1. 

To determine {qF},  it will be necessary to fur the structure at its nodes, and calculate the end 
furing forces, as shown and calculated below. 



Rigid-jointed plane frames 

Endf i ing  forces 

617 

32 - -1.5 kNm W l  
12 12 

M:, = -- = -- - 

ML, = - w12 - - 1.5 kNm 
12 

wl 2 x 3  
2 2 

Horizontalreactionatnode 1 = - - - - - - 3kN 

wl 2 x 3  
Horizontalreactionatnode2 = - = - 

2 2 

= 3m 

M:2 = -ML3 = 4 kNm 

wl 3 x 4  

2 2 
Verticalreactionatnode2 = - - - - - - 6kN 

wl 3 x 4  Verticalreactionatnode3 = - - - - 
2 2 

= 6kN 

Now, for this problem, as 

u , o  = = = v 2 0  = v30 = u40 = v40 = 0, = 0 

the only components of the end-fixing forces required for calculating {qF} are shown below: 
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3 ' % 

0.444 -0.667 0 0 

[ K , , ]  = E[ -0.667 2.333 0 0.5 

0 0 0.444 -0.667 

0 0.5 -0.667 2.333 

-UZO 

0, (23.100) 

u,O 

- 3  0 
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Now, as the 2.5 IcN load is shared between elements 1-2 and 3 4 ,  equation (23.101a) must be 
added to equation (23.101c), as shown by equation (23.102): 

3 = 0 . 8 8 8 ~ ~ "  I EI - 0.6678, I EI - 0.6678, I EI (23.102) 

Putting u2" = ujo, the simultaneous equations (23.101) now become: 

3 = 0 . 8 8 8 ~ ~ "  lEI  - 0.6670,JEI - 0.6670,JEI 

2.5 = -0.667~~"JEI i2.333 0,lEI +0.50,lEI 

-4 = -0.667~,"/EI+0.58,/EI+2.3330,/EI 

(23.103) 

Solving the above, 

u2" = u3" = 4.61lEI 

0, = 2.593lEI 

0, = -0.953lEI 

To determine the nodal bending moments, the end fixing moments will have to be added to the 
moments obtained from the slope-deflection equations. 

Element 1-2 

c = o  s = l  1 = 3 m  

From equation (23.23) 

v2 = -4.61lEI 

By inspection, 

v, = 0 ,  = 0 and 0, = -0.953EI 
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Substituting the above into the slope-deflection equations (23.70) and (23.72), and adding the end 
futing moments, 

= 0 + x (2.593lEl) - (0 + 4.611EI) - 1.5 
3 9 

= 1.729 - 3.07 - 1.5 

MI-* = -2.84 kNm 

and 

M2-, = - 4Ez x - 2.593 - 3.07 + 1.5 
3 EI 

M2-l = 1.89 kNm 

Element 2-3 

By inspection, 

v, = v, = 0 

and 

e, = 2.5931~1,  e, = - 0 . 9 5 3 ~ 1  

Substituting the above into equations (23.70) and (23.72), adding the end-futing moments for this 
element, and remembering that node 2 is the first node and node 3 the second node, 

M2-, = - x - + - x  4EI 2.593 2EI ( - - 0 z 3 )  - 
4 EI 4 

M2-3 = -1.88 kNm 

2EI 2.593 4EI ( - y 1 5 3 )  + M3-2 = - x - + - x  - 
4 El 4 

M3-2 = 4.34 kNm 



Element 3-4 

c = 0, 

Further problems 

s = 1, 1 = 3 m  

62 1 

From equation (23.23), 

4.61 /EI 

= [1 01[ } 
V,  = 4.61lEI 

By inspection, 

11, = u4 = v, = e, = o 

and 

8, = -0.953lEI 

M3-4 = - 4EI x [ 7) -0.953 + 0 - (4.61/EZ) 
3 

M3-4 = -4.34 kNm 

M4-, = - 2EI x (7) -0.953 + 0 - E (4.61/EI) 
3 9 

M4-3 = -3.71 kNm 

Further problems (answers on page 697) 

23.8 Determine the forces in the members of the framework of the figure below, under the 
following conditions: 

(a) all joints are pinned; 
(b) all joints are rigid (i.e. welded). 
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The following may be assumed: 

A E  = 100 EI 
A = cross-sectional area 
I = second moment of area 
E = Young's modulus 
[k]" = the elemental stiffness matrix 

= [kbO1 + [k,"I 

(Portsmouth, 1987, Standard level) 

Determine the displacements at node 5 for the framework shown below under the 
following conditions: 

(a) all joints are pinned; 
(b) 

It may be assumed, for all members of the framework, 

23.9 

all joints are rigid (i.e. welded). 

A = 1OOEI 

where 

A = cross-sectional area 
I = second moment of area 
E = Young's modulus 
[k]" = the stiffness matiix 

= kO1 + kO1 

(Portsmouth. 1987, Honours level) 
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Determine the nodal displacements and moments for the beams shown below, using the 
matrix displacement method. 

23.1 0 

23.1 1 Determine the nodal bending moments in the continuous beam below, using the matrix 
displacement method. 

23.12 A ship's bulkhead stiffener is subjected to the hydrostatic loadmg shown below. If the 
stiffener is f d y  supported at nodes 2 and 3, and fmed at nodes 1 and 4, determine the 
nodal displacements and moments. 

23.13 Using the matrix displacement method, determine the forces in the pin-jointed space 
trusses shown in the following figures. It may be assumed that AE = a constant. 
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(Portsmouth, 1989) 

(Portsmouth, I983) 
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(a) Plan (b) Front elevation 

(Portsmouth, 1989) 

23.14 Determine the nodal displacements and moments for the uniform section rigid-jointed 
plane frames shown in the two figures below. 

It may be assumed that the axial stiffness of each member is large compared with its 
flexural sti&ess, so that, 

v," = V 3 O  = 0 

and 

U 2 O  = U 3 O  
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