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Automated Feature Extraction in Color Retinal
Images by a Model Based Approach
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Abstract—Color retinal photography is an important tool to de-
tect the evidence of various eye diseases. Novel methods to extract
the main features in color retinal images have been developed in
this paper. Principal component analysis is employed to locate optic
disk; A modified active shape model is proposed in the shape de-
tection of optic disk; A fundus coordinate system is established to
provide a better description of the features in the retinal images;
An approach to detect exudates by the combined region growing
and edge detection is proposed. The success rates of disk local-
ization, disk boundary detection, and fovea localization are 99%,
94%, and 100%, respectively. The sensitivity and specificity of exu-
date detection are 100% and 71%, correspondingly. The success of
the proposed algorithms can be attributed to the utilization of the
model-based methods. The detection and analysis could be applied
to automatic mass screening and diagnosis of the retinal diseases.

Index Terms—ASM, biomedical image processing, exudate, fea-
ture extraction, fovea, optic disk, PCA, retinal image.

I. INTRODUCTION

RETINAL photography is an essential mean to document
and diagnose various eye diseases in clinics. Color retinal

images are widely used to mass screen systemic diseases such
as diabetic retinopathy. Early detection and treatment of these
diseases are crucial to avoid preventable vision loss. In the tra-
ditional way of diagnosis, the ophthalmologists will examine
retinal images, search the possible anomalies and give the diag-
nostic results. The automatic processing and analysis of retinal
images could save workloads and may give objective detection
to the ophthalmologists. Feature extraction, which is the funda-
mental step in an automated analyzing system, is investigated in
this paper. Efforts have been made to extract the normal and ab-
normal structures in retinal images automatically and robustly.
Applying computer image processing techniques to the analysis
of color retinal image was reported as early as 1974 [1]. Devel-
oping automatic retinal image analyzing and diagnostic system
has attracted the interests of many researchers since then. The
difficulties are mainly due to the noises, uneven illumination,
and variation between individuals.

Bottom-up processing techniques were applied to locate optic
disk by many research groups. The optic disk was located by the
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largest region that consists of pixels with the highest gray levels
in [2] and [3]. The area with the highest intensity variation of ad-
jacent pixels was identified as optic disk in [4]. These methods
could obtain satisfactory result in normal retinal images where
optic disk is obvious and brightest. Only in [5], images with
small lesions were considered. These methods will lead to the
wrong disk localization when there are large areas of bright le-
sions similar to optic disk in an image. The geometrical rela-
tionship between optic disk and blood vessels was utilized in the
identification of optic disk in [6] and [7], which are top-down
methods. The main blood vessels were fitted to an ellipse and the
end of the long axis of the ellipse was identified as optic disk in
[6]. In [7], the optic disk was located by tracing the blood vessel
trees back to their root. The idea of these two methods sounds
reasonable. While the implementation becomes difficult as the
vessel detection itself is a more complicated task.

The contour of optic disk was estimated as a circle or an
ellipse in [2], [3], and [5], because the shape of optic disk is
round or vertically slightly oval. In one approach, Hough trans-
form was employed to obtain the estimated circle of optic disk
based on the result of edge detection [2], [3]. In another ap-
proach, optic disk contours were estimated by the Hausdorff-
based matching between the detected edges and the template of
circle with different sizes [5]. Estimation the shape of optic disk
as a circle or an ellipse cannot provide enough information to the
ophthalmologists. As the shape of optic disk is important to di-
agnose eye diseases, the exact boundary detection of optic disk
has been investigated. “Snakes” was applied to detect the exact
contour of optic disk in [8]–[10]. The major advantage of these
algorithms is their ability to bridge discontinuities in the image
feature being located. However, the algorithms were sensitive to
the preprocessing and the methods proposed in the above papers
were not fully automatic due to the requirement of manual ini-
tialization. The main difficulty to apply these methods to disk
boundary detection is how to remove the influence of blood
vessels.

Exudates are one of the most common occurring lesions in di-
abetic retinopathy. Three strategies have been employed to the
exudate detection: thresholding [3], [11], [12], edge detection
[7], [13], and classification [14], [15]. Thresholding method is
the most straightforward approach of exudate detection. The au-
tomatic selection of the threshold is difficult due to the uneven
intensity of the exudates and the low contrast between exudates
and retinal background. Methods based on the edge detection
or classification can make the detection fully automatic. How to
distinguish the edge of exudates from the edge of vessels and
other lesions is the main concern of the methods based on edge
detection. Statistical classification [15] and neural network [14]
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were also attempted, which are cataloged into classification ap-
proach. There has been no report of the complete success in the
clinical trial of the available techniques.

Novel methods to localize optic disk and fovea, extract the
shape of optic disk, set up fundus coordinate system, and detect
exudates are proposed in this paper. The success of our approach
can be attributed to the utilization of model-based methods,
which make use of the a priori knowledge of the retinal images.
Details of the proposed algorithms are presented in Section II;
Experimental results are shown in Section III, and Section IV
gives a brief conclusion of this paper.

II. METHODOLOGY

A. Localization of Optic Disk by PCA

Optic disk is the entrance region of blood vessels and optic
nerves to the retina. It is a significant anatomic landmark for the
detection of other features and its dimensions are often studied
for a clue of some diseases as well. The method of optic disk
localization by finding the largest cluster of brightest pixels is
simple, fast and works well in the normal retinal images, but it
could not locate optic disk correctly in the images where the area
of bright lesions is large or optic disk is obscured by blood ves-
sels. Principal component analysis (PCA) [16], [17] is proposed
to localize optic disk in this paper. PCA, which takes the advan-
tage of the top-down strategy, can extract the common charac-
teristics among the training images. These common characteris-
tics are then used to detect the similar object in an input image.
PCA will only be employed to the candidate regions to reduce
the computation time. The localization procedure is performed
on the intensity image.

The pixels with the highest 1% gray levels in intensity image
are selected. They are mainly from the areas in optic disk or
bright lesions based on the test drawn from a large number
of retinal images. These selected pixels are clustered by the
single pass method [18] to determine the candidate regions. If
the number of the pixels in a cluster is less than 0.04% of the
total pixel number in the retinal image, the cluster is abandoned.
Those abandoned clusters are most likely due to noises or small
bright lesions, as 0.04% is a small portion compared to the area
of optic disk. For all the remaining clusters, a candidate region
is defined as a square with the cluster’s centroid as its center.
The side of the square is chosen as 1.4 times of the average disk
diameter.

The proposed PCA approach includes three steps: obtaining
disk space, projection on disk space, and calculating the distance
from disk space. In order to obtain a training image, a square
image around the optic disk is cropped manually from a retinal
image. The cropped subimages are resized to pixels to
perform scale normalization, where is the average disk diam-
eter. Their intensities are rescaled to the same range of
by a simple linear quantization, which is the intensity normal-
ization. The training set consists of these normalized subim-
ages. An training image can also be treated as a vector
in an -dimensional space. PCA transform is performed on
the training vectors. In our application, ten subimages are em-
ployed as the training set and the first six eigenvectors corre-
sponding to the largest six eigenvalues are selected to represent

the training set. The first six eigenvectors can represent 90% of
the total variance in the training set. The subspaces defined by
these eigenvectors are referred to as disk space. For each pixel
in the candidate regions, an subimage with the pixel as
the center is obtained automatically. Intensity normalization of
the subimage is carried out, similarly to that in the training im-
ages. The subimage is projected onto the disk space by the PCA
transformation. The distance from disk space is simply defined
as the Euclidian distance between the subimage and its recon-
struction onto the disk space, which measures the likeliness of
optic disk.

Though optic disk usually measures about 1.5 mm in diam-
eter, it may show some variation. Thus the performance of the
localization drops when the size of the optic disk in a practical
image is not close to that of the eigendisks. The multi-scale
eigendisks are used here, in which an input subimage is com-
pared with the eigendisks at a number of scales. The image will
be near only to the disk space of the closest scaled eigendisks.
PCA method with different scales ( ) is applied to
each pixel in the candidate regions of a retinal image. The pixel
( ) with the minimum distance in all the candidate regions
and among all the scales is located as the center of optic disk.
The approximate size of the optic disk in a testing image can
also be obtained.

B. Boundary Detection of Optic Disk by a Modified ASM

Change in the shape, color or depth of optic disk is an in-
dicator of various ophthalmic pathologies especially for glau-
coma. The accurate detection of the optic disk boundary can be
used to assess the progress of eye disease and the treatment re-
sults. Some parts of the disk boundary are not well defined and
some parts are partly obscured by the blood vessels in retinal
images, which make the detection of disk shape complicated. A
modified active shape model (ASM) is proposed to detect the
disk boundary in retinal images.

ASM [19] consists of building a point distribution model
(PDM) from a training set and an iterative searching procedure
to locate instance of such shapes in a new image. In the
application of disk boundary detection, a shape instance is
represented by the position of ( ) landmark points. A
retinal image and its corresponding shape instance are shown
in Fig. 1. Fourteen points (point , ) are selected
on the main blood vessels inside optic disk to constrain the
representation of the shape model. The other points (
and ) are chosen evenly on the disk boundary. Eight
such shapes are employed to train the PDM in our application.
The training shapes are aligned to a common coordinates
by a transformation that includes translation, rotation and
scaling. The parameters of the transformation are obtained by
minimizing the Euclidian distance between the shapes using a
routine least square approach. PCA is next performed on the
aligned training shapes. A shape model can be represented by

(1)

where is the mean shape of the aligned training set,
is a vector of shape parameters,

is the set of the eigenvectors
corresponding to the largest eigenvalues of the covariance
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Fig. 1. A retinal image and its corresponding shape instance of optic disk.

matrix of the training shapes. The first four eigenvectors are
used ( ), which represent 93.22% of the total variance of
the training shapes. (1) is a statistical description of disk shape
and its variations. The model thus obtained is called point
distribution model (PDM).

The space defined by the input image is referred to as image
space and the space described by (1) is termed as shape space.
The variables in the shape space are denoted by lowercases and
those in the image space are represented by uppercases in this
paper. Denoting the shape model in the shape space as and in
the image space as , respectively, the transformation between
the shape space and the image space is defined by

(2)

where , denotes the position of the th landmark point of the
shape model in shape space, , represents the position of the
model center in the image space. is the pose pa-
rameter vector that determines the transformation. The strategy
of ASM mainly composes of initialization, matching point de-
tection, and pose and shape parameter update. The location of
optic disk ( ) and the mean shape are utilized to initialize
the shape model in image space according to (2), where ,

, , , . To each landmark point on the
model in the image space, its matching point is searched along
the normal profile of the model. The first derivative of the inten-
sity distribution along the normal profile is employed to find the
matching points. The presence of blood vessel is identified by
a negative pulse followed by a positive pulse within the width
range of vessels, while there is a single negative pulse where
disk edge appears. The transformation between the shape model

in the shape space and the new matching points set in the
image space is similar to (2). Its pose parameter
can be obtained by minimizing the following expression:

(3)

Thus pose parameter is updated. The inverse
transformation is used to transform the matching points
in the image space back to in the shape space. The shape
parameter is updated by projecting the matching points
onto the shape space

(4)

The constriction of is applied to so that a new
shape will be similar to those in the training set, where is the
th largest eigenvalue. With the newly obtained shape parameter
and pose parameter vector , the shape model

in the shape space is updated according to (1) and the shape
model in the image space is updated as (2). The procedure
of matching point detection and parameter ( and ) update is
iterated until the shape model is converged.

Some matching points may be misplaced in the detection due
to weak edges or noises, which make the shape obtained not
properly fit the boundary in the image. Two aspects are pro-
posed to improve the original ASM algorithm. One improve-
ment includes adding self-adjusting weight in the update of pose
parameter . Weight factor is added to (3) to get a better pose
parameter

(5)

where and are the positions of the th matching point and
the th model point in the image space, respectively, is the
weight factor. In each iteration, the transform for alignment is
performed twice: once with the initialized weight and once
with the adjusted . is initialized according to how its cor-
responding matching point is obtained in that iteration. If a
matching point cannot be detected directly, it is estimated by the
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nearby matching points. It is updated as the landmark point if
the nearby matching points are not available either

is be detected
is estimated by its nearby matching points
is updated by

(6)
is set to zero to eliminate the effect of in the transforma-

tion when cannot be detected and the nearby matching points
cannot be detected either. The shape model is updated by the
transformation with the obtained pose parameter . is ad-
justed by

(7)

where is the Euclidean distance between the matching point
and the updated landmark points in the image space. is

adjusted to be piece-wise reciprocal ratio of , which is a neg-
ative feedback. The pose parameter is refined by minimizing
(5) with the adjusted weight factor.

The mismatched points also affect the shape parameter vector
according to (4). The misplaced matching points are excluded

to get better shape parameters, which is another modification.
The idea is similar to the self-adjusting weight in the sense
that it also includes the concept of feedback. In each iteration,
the shape parameter is obtained in the same way as the orig-
inal ASM first. A matching point is considered to be an out-
lying point or misplaced matching point when between the
matching point and the updated landmark point is larger
than a constant value. Those outlying points will not be used in
the procedure of obtaining shape parameter

(8)

where is the number of misplaced matching points, ,
, , . , ,

correspond to , and in (4), respectively. The final shape
model is estimated from (1) by reconstructing the shape model
in -D landmark space with the same parameter obtained
from (8). These two modifications make the algorithm more fa-
vorable for the cases of weak edges.

C. Foveal Coordinate System Establishment

The locations of lesions are as important as their size and
number to the ophthalmologists [20]. Therefore, not only the
detection but also the means to describe the spatial locations of
the objects need to be investigated. A polar fundus coordinate
system is set up based on the location of fovea in this paper. In
order to establish the foveal fundus coordinate system, the fovea
is localized first. The fovea is a small depression on the fundus,
which is indicated by a deep-red or red-brown color in color
retinal images. It is temporal to and slightly below the optic
disk. The fovea is the darkest part in most of the retinal images,
while it is not obvious in some images due to high illumination
or being covered by the lesions. Its geometrical relation to other
structures is employed to locate the fovea robustly.

The modified ASM introduced in Section II.B is applied to
extract the main courses of blood vessels. The main courses of
blood vessels are represented by 30 landmark points as shown

Fig. 2. An example of landmark points on the main courses of vessel.

in Fig. 2. Eight landmark sets are utilized to derive the PDM.
The eigenvectors with the largest four eigenvalues are chosen,
which represent 94.27% of the variation in the training set. The
mean shape and the location of optic disk are used to initialize
the shape model in the image space in the similar way as the
boundary detection of optic disk. The centerline midpoint of the
blood vessel with the strongest edge along the normal profile is
detected as the matching point. Observing the main courses of
the blood vessels, its shape is roughly a parabolic curve. The
extraction result is fitted to a parabola for the future localization
of fovea. The generalized parabola can be described as

(9)
where is the focal length, ( ) is the vertex, and is the
rotation of the directrix. Four parameters ( ) should
be estimated to decide a parabola in an image. The methods of
quadratic curve fitting can be divided into two broad techniques:
clustering (such as Hough-based methods) and least square fit-
ting. The idea of Hough transform is to map the data into the
appropriately quantized parameter space, and then seek for the
most likely values of the parameters. The maximum peak will
not be much higher than the other peaks when the number of
data is not large enough for the number of unknowns. As only
30 landmark points are available to describe the main courses
of vessels, Hough transform alone is not suitable for fitting the
landmark points to a parabola. While observing the (9), it is
a nonlinear model with respect to the parameters because of
the rotation of the directrix. The ideas of Hough transform and
linear least square fitting are combined in our curve fitting. The
rotation is quantized in the unit of 1 from 45 to 45 to
eliminate the nonlinear relationship between parameters. The
vertex can be approximated at half optic disk radius nasal to
optic disk, thus, the parabolic fitting is simplified as estimating
the only variable by the least square fitting. Two examples of
parabola fitting are illustrated in Fig. 3, where the rotation angles
are 1 and 7 in Fig. 3(a) and (b), respectively, if the direction
of counter clock is defined as positive.

The candidate region of fovea is defined as an area of circle.
Its center is located at 2DD ( ) away from
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Fig. 3. Examples of parabola fitting.

Fig. 4. The scheme of foveal candidate region decision.

the disk center along the main axis of the fitted parabola and the
radius is selected as 1DD. Because the fovea is situated about
2DD temporal to the optic disk in the retinal images [21], the
candidate region is such defined in order to ensure that the fovea
is within the region. The definition of the foveal candidate area is
illustrated in Fig. 4. The threshold is selected at the value below
which the number of the pixels in the candidate region is the
same as the area of optic disk, because the fovea is about the
same size as optic disk [21]. The pixels with intensity below the
threshold in the candidate region are clustered by the single pass
method [18]. The lowest mean intensity is compared with the
second lowest mean intensity to avoid mistaking the peripheral
area where the illumination is relatively dark as fovea, because
the fovea is not obvious in some images. The centroid of the
cluster with the lowest mean intensity is located as the center of
fovea when the difference is obvious and the number of pixels
in the cluster is greater than 1/6 disk area. The fovea is estimated
at the center of candidate region when the difference is small.

To computer engineers, the images have pixels in Cartesian
coordinates. While ophthalmologists usually use polar coordi-
nates centered on the optic disk or the fovea. A polar coordinate
system centered on the fovea is selected in our work. The coor-
dinate system is set up based on the Early Treatment Diabetic
Retinopathy Study Report Number10 [20]. A retinal image is

Fig. 5. Polar fundus coordinates centered on fovea.

divided into ten subfields as presented in Fig. 5. The radii of
the three fovea-centered circles from the innermost to the out-
ermost correspond to DD, 1DD, and 2DD, respectively.
The ten subfields are defined as: 1) central subfield within the
inner circle; 2) four inner subfields (superior, nasal, inferior, and
temporal) between the inner and middle circles; 3) four outer
subfields (superior, nasal, inferior, and temporal) between the
middle and outer circles; 4) far temporal subfield, temporal to
the outer circle and between 7:30 and 10:30 meridians for the
right eyes or between 1:30 and 4:30 meridians for the left eyes.

D. Exudate Detection

The detection and quantification of exudates will contribute
to the mass screening and assessing of the diabetic retinopathy.
Exudate detection without user interaction is not a simple task,
because there is no a priori knowledge about its presence or its
distribution. The shape, brightness and location of exudates vary
a lot among different patients. The intensity of some exudates
is much lower than that of other exudates in the same retinal
image though those exudates are brighter than the immediate
surroundings.

RGB, Lab, Luv, and hvc color spaces are assessed and Luv is
selected as the suitable color space for exudate detection [22].
As the illumination in the retinal image is not homogeneous, a
retinal image is divided into 64 subimages. Exudate detection is
performed in each subimage. The color difference image of an
object can be defined as

(10)

where and are the color of pixel ( ) in the com-
ponent and , respectively. and are the reference color
of the object. The reference color is determined as the gravity
center of the object, which is described in detail in [22]

average
average

object region

(11)
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where denotes the number of pixels at ( ) in the
two-dimensional histogram. Mean squared Wiener filter in two
dimensions [23], which is a pixel-wise adaptive filter, is per-
formed to remove noises. Since the information of chroma and
intensity is already included in the color difference image, the
edge information is combined here to segment the exudates. A
combined method of region growing and edge detection is em-
ployed here to detect the exudates. In the proposed algorithm,
seeds in a subimage are selected first. The pixels adjacent to a
seed are tested, and the region is allowed to grow from the seed
until reaching an edge or large gradient. It is noted that some
local minima are from the retinal background as the retinal back-
ground is uneven. Local minima below a certain threshold are
chosen as the seeds. The edges in a subimage are detected by the
Canny edge detector [24]. The thresholds of the Canny edge de-
tector are determined automatically in each subimage. The high
threshold is set to the value, below which the number of the
pixels occupies seventy percent of the total pixel number in the
subimage. The low threshold is set to 40% of the high threshold.
As some weak edges still cannot be detected, other features are
examined besides checking if the region has reached an edge.
Three criteria are employed in the region growing:

1) The gradient of the pixel is lower than a threshold ;
2) The difference between the pixel value and the mean

value of the region is lower than a threshold ;
3) The difference between the pixel value and the value of

the seed is lower than a threshold .

T1, T2, and T3 are set to 3, 4, and 4, respectively, in our program
based on the test drawn on a large number of images. Under-
segmentation and over-segmentation situation may occur if the
thresholds are not set properly. The detection results of the exu-
dates in different subimages are merged if the exudates are con-
nected. The presence of the exudate is identified if any exudate
is detected in the retinal image.

III. RESULTS AND DISCUSSION

Eighty-nine color retinal images were tested by the pro-
posed algorithm of disk localization. Thirty-five images were
provided by the Singapore National Eye Center (SNEC), ten
of which were used to get the training set. Thirty images are
from another hospital. Another 18 images were captured by our
Canon CR6–45NM retinal camera, and the other six images
were downloaded from the Internet. All the images were saved
in the format of 24-bit bitmap. As the testing images are from
different sources, the sizes of the images are different. The
sizes of the images were resized to 512 512 pixels if they
are squares, otherwise the height of an image was resized to
512 pixels while its width was resized according to the same
scale. Even though the ten training images are all obtained
from the images provided by SNEC, satisfactory results could
be achieved when the testing image are from other sources.
The average minimal distance of all the testing images is 889,
which is very near to the mean distance (924) of the testing
images from SNEC. Compared with the localization of optic
disk by the centroid of the largest cluster of the brightest
pixels [2], [3], the proposed algorithm achieves more accurate

Fig. 6. Comparison of the optic disk localization with another method.

Fig. 7. Boundary detected by the modified ASM compared with ASM.

result. An example is shown in Fig. 6, where “ ” indicates
the localization by PCA, “ ” represents the localization by
the centroid of the largest cluster of the brightest pixels. The
method in [2], [3] gives the wrong localization when processing
the retinal images with large areas of light lesions, while
PCA-based method can obtain the correct localization. The
proposed algorithm failed only in one of the testing images,
because there is a large area of lesions around the optic disk in
that image and there is no such case in the training set. More
constraints such as checking the convergence of blood vessel
network could be added to validate the localization of optic
disk. The success rate of optic disk locating process is, thus,
99% based on the eighty-nine images tested.

The 35 images from SNEC were used as the testing images
for the other proposed algorithms, as verification from ophthal-
mologists is only available for this batch of images. In the disk
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Fig. 8. Results of exudate detection in two retinal images.

boundary detection, the accuracy of the obtained shape is eval-
uated by comparison with a reference shape labeled manually.
Mean absolute distance (MAD) [25] is employed here to in-
dicate the difference of the two shapes. An example of disk
boundary detection can be shown in Fig. 7. The initialization po-
sition is suitable as presented in Fig. 7(a). The matching points
detected by the original ASM are shown in Fig. 7(b) and the
boundary obtained by ASM method is illustrated in Fig. 7(c).
It can be noticed that the boundary at the upper part cannot be
detected correctly by the original ASM. The edge at that part is
weak and several matching points are located incorrectly such
that they affect the final result. The detection result by the mod-
ified ASM method is demonstrated in Fig. 7(d), which shows
that the proposed modified ASM algorithm could eliminate the
bad influence of the misplaced matching points. MAD is 5.0193
pixels and 3.6984 pixels for the shape instances obtained by the
original ASM and the modified ASM, respectively. The perfor-
mance of the modified ASM and the original ASM was com-
pared. The modified ASM detected the boundary of optic disk
successfully in 33 images, while the original ASM failed in
seven of them. In the 26 images where both methods succeeded,
the modified ASM also achieved better or at least as good as the
results of ASM. The modified ASM needs less iterations in all
the images except two cases. Both of the modified ASM and the
original ASM failed in two cases, where the disk edge cannot be
identified even by human eyes due to a large area of lesion near
the optic disk in one case and in another case the blood vessels
obscure most part of the disk edge. The results by the modified
ASM are nevertheless better than those of ASM in these two im-
ages even though the obtained results are not satisfactory. The
comparison shows that the modified ASM can give more robust
result than the original ASM especially when there are several
misplaced matching points. Experiments show that the modified
ASM also converges faster than the original ASM.

The fovea is detected directly by the centroid of the darkest
cluster in 21 of the images. It is estimated in the other 14 images,
as the fovea is not obvious in those images. The localization of
the fovea is within the region of fovea in all these 35 images.
But the localization deviates slightly from the apparent center
in three of the images when evaluated by the human eyes. The
localization of fovea is estimated in all of these three images.
The reason of the deviation between the localization and the
foveal center is that the estimation of two disk diameters away
from disk center may not be precise.

TABLE I
LOCATION OF EXUDATES IN FIG. 8(A)

TABLE II
LOCATION OF EXUDATES IN FIG. 8(B)

Two examples of exudate detection results are given in Fig. 8.
The detected exudates are represented by the white color in the
figure, where foveal fundus coordinates are overlaid. It can be
seen from the figures that most of the exudates can be identified
successfully in these two retinal images. The locations of the
exudates in these two images are described in Tables I and II,
respectively. The exudates within the inner circle will affect the
vision of patients more than the exudates in the other locations.
Though the total number and area of exudates in Fig. 8(a) are
both larger than those in Fig. 8(b), the exudates in Fig. 8(b) have
more harm to the vision than those in Fig. 8(a). Clinically, the
ophthalmologists will treat the case in Fig. 8(b) by laser and
watch the progress of the case in Fig. 8(a). It can be noted that
the distribution of exudates need to be analyzed to indicate the
severity of the retinal diseases.

Thirty-five images from SNEC were tested by the exudate
detection algorithm. In these 35 images, seven images were
identified to have no exudates by ophthalmologists. While the
presence of exudates were verified in the other 28 images. The
presence of exudates is successfully detected in all the 28 im-
ages. However, exudates were detected by our algorithm in two
images in which no exudate is present according to the verifi-
cation from the doctor. The sensitivity and specificity is 100%
and 71%, respectively.

The whole processing result is illustrated in Fig. 9, where
“ ” and “ ” indicate the localization of optic disk and fovea,
respectively, the extracted optic disk boundary is represented
by the white dots, the detected exudates are highlighted by
white color, and the fundus coordinates are demonstrated by
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TABLE III
PERFORMANCE OF THE PROPOSED ALGORITHMS

Fig. 9. Processing result of a retinal image.

black color in the image. The performance of the proposed
algorithms is presented in Table III. The automatic feature
detection in combination with the establishment of the fundus
coordinate system could make the automatic analyzing system
become more reliable.

IV. CONCLUSION

The algorithms for the automatic and robust extraction of fea-
tures in color retinal images were developed in this paper. PCA
based model is proposed to localize optic disk in the candidate
regions. The boundary of optic disk is extracted by a modified
ASM method. A fundus coordinate system is established to pro-
vide a better description of the features in the retinal images. An
approach to detect exudates by the combined region growing
and edge detection based on the color difference is proposed.
Substantial experiments have been performed, which show the
relative simplicity and advantages of the proposed algorithms.
The success of the proposed algorithms can be attributed to the
utilization of the model-based methods. Further tests should be
carried out on the proposed algorithms when more suitable data
are available clinically. Such tests could contribute to further
improvements on the algorithms, resulting in more robust and
more accurate detection that eventually can be accepted for the
clinical purposes.
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