Chapter 25: Amino Acids, Peptides, and Proteins.

monomer unit: α-amino acids
(
α - Amino Acid
Biopolymer: the monomeric amino acids are linked through an amide bond (the carboxylic acids of one AA with the α-amino group of a second)

Peptide or protein (polypeptide)
peptide (<50 amino acids)
protein (> 50 amino acids)
25.1: Classification of Amino Acids. AA's are classified according to the location of the amino group.

There are 20 genetically encoded α-amino acids found in peptides and proteins (Table 20.1, p. 1032-3)
19 are primary amines, 1 (proline) is a secondary amine 19 are "chiral", 1 (glycine) is achiral; the natural configuration of the α-carbon is L. (Ch. 25.2)
D-glyceraldehyde

L-alanine
L-theronine
$(2 S, 3 R)$
$\mathrm{H}_{2} \mathrm{~N} \underset{\mathrm{R}}{\mathrm{CO}_{2} \mathrm{H}} \mathrm{H}$

\[

\]

L-isoleucine

324
(2S,3S)
α-Amino acids are classified by the properties of their sidechains. Nonpolar (hydrophobic):

 Glycine (Gly, G)	$\underset{+\mathrm{NH}_{3}}{\mathrm{CSO}^{-}-(+) \text {-Alanine }(\text { Ala, } \boldsymbol{A})}$	
	 (S)-(-)-Phenylalanine (Phe, F)	
non-ionizable: (S)-(-)-Serine (Ser, S) pKa ~ 13		
(R)-(-)-Cysteine (Cys, C)	 (S)-(-)-Asparagine (Asn, N)	

Acidic:

Basic:

(S)-(+)-Lysine (Lys, K)
pKa~10.5

(S)-(-)-Histidine (His, H) pKa~6.0

(S)-(+)-Arginine (Arg, R)
$\mathrm{pKa} \sim 12.5$

Non-standard (but genetically encoded):

25.2: Stereochemistry of Amino Acids: The natural configuration of the α-carbon is L. D-Amino acids are found in the cell walls of bacteria. The D-amino acids are not genetically encoded, but derived from the epimerization of L-isomers (Ch. 25.6).
25.3: Acid-Base Behavior of Amino Acids. Amino acids exist as a zwitterion: a dipolar ion having both a formal positive and formal negative charge (overall charge neutral).

Amino acids are amphoteric: they can react as either an acid or a base. Ammonium ion acts as an acid, the carboxylate as a base. Isoelectric point (pl): The pH at which the amino acid exists largely in a neutral, zwitterionic form (influenced by the nature of the sidechain)

Table 25.2 (p. 1037) \& 25.3 (p. 1038)

Bronsted Acid: proton donor (H^{+})
weak acids (and bases) do not fully dissociate

$$
\begin{aligned}
\mathrm{H}-\mathrm{A}+\mathrm{H}_{2} \mathrm{O} & \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{H}-\mathrm{A}]} \text { acid dissociation constant } \\
\mathrm{p} K_{\mathrm{a}} & =-\log K_{\mathrm{a}} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right]
\end{aligned}
$$

Henderson-Hasselbalch Equation: Relates pK_{a} with pH

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{H}-\mathrm{A}]} \\
& \text { when }\left[\mathrm{A}^{-}\right]=[\mathrm{H}-\mathrm{A}] \text {, the } \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}
\end{aligned}
$$

For a review see: http://themedicalbiochemistrypage.org/

Electrophoresis: separation of polar compounds based on their mobility through a solid support. The separation is based on charge (pl) or molecular mass. (Fig. 25.2, p. 1039)

25.4: Synthesis of Amino Acids:

Strecker Synthesis: recall reductive amination (Ch. 21.10) and cyanohydrin formation (Ch. 17.7)

Amidomalonate Synthesis: recall the malonic acid synthesis (Ch. 20.6)

25.5: Reactions of Amino Acids. Amino acids will undergo reactions characteristic of the amino (amide formation) and carboxylic acid (ester formation) groups.

25.6: Some Biochemical Reactions of Amino Acids. Many enzymes involved in amino acid biosynthesis, metabolism and catabolism are pyridoxal phosphate (vitamin B_{6}, PLP) dependent. (please read)

25.7: Peptides. Proteins and peptides are polymers made up of amino acid units (residues) that are linked together through the formation of amide bonds (peptide bonds) from the amino group of one residue and the carboxylate of a second residue

By convention, peptide sequences are written left to right from the N -terminus to the C-terminus

The amide (peptide) bond has $\mathrm{C}=\mathrm{N}$ double bond character due to resonance resulting in a planar geometry

The N-H bond of one amide linkage can form a hydrogen bond with the $\mathrm{C}=\mathrm{O}$ of another.

Disulfide bonds: the thiol groups of cysteine can be oxidized to form disulfides (Cys-S-S-Cys) (Ch. 15.2)

25.8: Introduction to Peptide Structure Determination.

Protein Structure:
primary (1°) structure: the amino acid sequence
secondary $\left(2^{\circ}\right)$: frequently occurring substructures or folds
tertiary $\left(3^{\circ}\right)$: three-dimensional arrangement of all atoms in a single polypeptide chain
quaternary $\left(4^{\circ}\right)$: overall organization of non-covalently linked subunits of a functional protein.

1. Determine the amino acids present and their relative ratios
2. Cleave the peptide or protein into smaller peptide fragments and determine their sequences
3. Cleave the peptide or protein by another method and determine their sequences. Align the sequences of the peptide fragments from the two methods
25.9: Amino Acid Analysis. automated method to determine the amino acid content of a peptide or protein

Reaction of primary amines with ninhydrin

$+\mathrm{RCHO}+\mathrm{CO}_{2}$

Different amino acids have different 1972 Nobel Prize in Chemistry chromatographic mobilities (retention times)

William Stein Stanford Moore
25.10: Partial Hydrolysis and End Group Analysis. Acidic hydrolysis of peptides cleave the amide bonds indiscriminately.
Proteases (peptidases): Enzymes that catalyzed the hydrolysis of the amide bonds of peptides and proteins.

Enzymatic cleavage of peptides and proteins at defined sites:

- trypsin: cleaves at the C-terminal side of basic residues, Arg, Lys but not His

- chymotrypsin: cleaves at the C-terminal side of aromatic residues

Phe, Tyr, Trp

Trypsin and chymotrypsin are endopeptidases

Carboxypeptidase: Cleaves the amide bond of the C-terminal amino acid (exopeptidase)
End Group Analysis. The C-terminal AA is identified by treating with peptide with carboxypeptidase, then analyzing by liquid chormatography (AA Analysis).

N -labeling: The peptide is first treated with 1-fluoro-2,4-dinitrobenzene (Sanger's reagent), which selectively reacts with the N -terminal amino group. The peptide is then hydrolyzed to their amino acids and the N -terminal amino acid identified as its N -(2,4-dinitrophenyl) derivative (DNP).

 aromatic + plus other unlabeled amino acids

Trypsin:
$E-A-Y-L-V-C-G-E-R$
$F-V-N-Q-H-L-F-S-H-L-K$
G-C-F-L-P-K
L-G-A

Chymotrypsin:
F-V-N-Q-H-L-F
S-H-L-K-E-A-Y
L-V-C-G-E-R-G-C-F
L-P-K-L-G-A

F-V-N-Q-H-L-F
F-V-N-Q-H-L-F-S-H-L-K
S-H-L-K-E-A-Y
E-A-Y-L-V-C-G-E-R
L-V-C-G-E-R-G-C-F
G-C-F-L-P-K
L-P-K-L-G-A
L-G-A
F-V-N-Q-H-L-F-S-H-L-K-E-A-Y-L-V-C-G-E-R-G-C-F-L-P-K-L-G-A
25.11: Insulin. Insulin has two peptide chains (the A chain has 21 amino acids and the B chain has 30 amino acids) held together by two disulfide linkages. (please read)

Pepsin: cleaves at the C-terminal side of Phe, Tyr, Leu; but not at Val or Ala.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25.12: The Edman Degradation and Automated Peptide Sequencing. Chemical method for the sequential cleavage and identification of the amino acids of a peptide, one at a time starting from the N-terminus. (Mechanism 25.3, p. 1057) Reagent: Ph-N=C=S, phenylisothiocyanate (PITC)

Peptide sequencing by Edman degradation:

- Cycle the pH to control the cleavage of the N-terminal amino acid by PITC.
- Monitor the appearance of the new N-phenylthiohydantoin for each cycle.
- Good for peptides up to ~ 25 amino acids long.
- Longer peptides and proteins must be cut into smaller fragments before Edman sequencing.

Tandem mass spectrometry has largely replaced Edman degradation for peptide sequencing (Fig. 25.9, p. 1058)

Epidermal Growth Factor (EGF): the miracle of mother's spit 53 amino acid, 3 disulfide linkages
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{ASN} 1 \bullet \mathrm{SER} 2 \bullet \mathrm{TYR} 3 \bullet \mathrm{PRO} 4 \bullet \mathrm{GLY} 5 \bullet \mathrm{CYS} 6 \bullet \mathrm{PRO} 7 \bullet \mathrm{SER} 8 \bullet \mathrm{SER} 9 \bullet$ TYR10• ASP11•GLY12•TYR13•CYS14•LEU15•ASN16•GLY17•GLY18•VAL19• CYS20•MET21•HIS22•ILE23•GLU24•SER25•LEU26•ASP27•SER28• TYR29•THR30•CYS31•ASN32•CYS33•VAL34•ILE35•GLY36•TYR37• SER38•GLY39•ASP40•ARG41•CYS42•GLN43•THR44•ARG45•ASP46• LEU4 $7 \bullet$ ARG4 $\bullet^{\bullet} \underline{T R P 49}{ }^{\bullet} \underline{T R P 50} \bullet$ GLU5 $1 \bullet$ LEU5 $2 \bullet$ ARG53 $-\mathrm{CO}_{2} \mathrm{H}$

Trypsin
Chymotrypsin
Cyanogen Bromide

1986 Nobel Prize in Medicine or Physiology : Stanley Cohen \& Rita Levi-Montalcini

25.13: The Strategy for Peptide Synthesis:

Chemical synthesis of peptide: 1. Solution phase synthesis
2. Solid-phase synthesis

The need for protecting groups

Orthogonal protecting group strategy: the carboxylate protecting group must be stable to the reaction conditions for the remeqsal of the α-amino protecting group and (vice versa)

25.14: Amino and Carboxyl Group Protection and

Deprotection. The α-amino group is protected as a carbamate.

benzyloxycarbonyl
(cBz)
removed with mild acid or by hydrogenolysis

fluorenylmethylcarbonyl (FMOC)
removed with mild base (piperidine)

Protected as a benzyl ester; removed by hydrogenolysis

25.15: Peptide Bond Formation. Amide formation from the reaction of an amine with a carboxylic acid is slow. Amide bond formation (peptide coupling) can be accelerated if the carboxylic acid is activated. Reagent: dicyclohexylcarbodiimide (DCC) (Mechanism 25.4, p. 1063)

- In order to practically synthesize peptides and proteins, time consuming purifications steps must be avoided until the very end of the synthesis.
- Large excesses of reagents are used to drive reactions forward and accelerate the rate of reactions.
- How are the excess reagents and by-products from the reaction, which will interfere with subsequent coupling steps, removed without a purification step?
25.16: Solid-Phase Peptide Synthesis: The Merrifield Method. Peptides and proteins up to ~ 100 residues long are synthesized on a solid, insoluble, polymer support. Purification is conveniently accomplished after each step by a simple wash and filtration.

The solid support (Merrifield resin): polystyrene polymer

Solid-phase peptide synthesis

Ribonuclease A- 124 amino acids, catalyzes the hydrolysis of RNA Solid-phase synthesis of RNase A:

Synthetic RNase A: 78 \% activity 0.4 mg was synthesized 2.9 \% overall yield average yield $\sim 97 \%$ per coupling step
lys glu thr ala ala ala lys phe glu arg GLN HIS MET ASP SER SER THR SER ALA ALA SER SER SER ASN TYR CYS ASN GLN MET MET Lys Ser arg asn leu thr lys asp arg cys Lys pro val asn thr phe val his glu ser LeU ALA ASP VAL GLN ALA VAL CYS SER GLN Lys asn val ala cys lys asn gly gln thr ASN CYS TYR GLN SER TYR SER THR MET SER ILE THR ASP CYS ARG GLU THR GLY SER SER LYS TYR PRO ASN CYS ALA TYR LYS THR THR gln ala asn lys his ile ile val ala cys GLU GLY ASN PRO TYR VAL PRO VAL HIS PHE

pdb code: 1AFL ASP ALA SER VAL
R. Bruce Merrifield, Rockefeller University, 1984 Nobel Prize in Chemistry:
"for his development of methodology for chemical synthesis on a solid matrix."
25.17: Secondary Structures of Peptides and Proteins.
β-sheet: Two or more extended peptide chain, in which the amide backbones are associated by hydrogen bonded
anti-parallel

25.18: Tertiary Structure of Polypeptides and Proteins.

Fibrous. Polypeptides strands that "bundle" to form elongated fibrous assemblies; insoluble.
Globular. Proteins that fold into a "spherical" conformation.
Factors that contribute to 3° structure (Table 25.4, p. 1070)
Disulfide bonds between cysteine

Hydrogen bonds

Salt bridges (ion pairs)

Van der Waal forces (hydrophobic effect). Proteins will fold so that hydrophobic amino acids are on the inside (shielded from water) and hydrophilic amino acids are on the outside (exposed to water)

Enzymes: proteins that catalyze biochemical reactions.

- by bringing the reactive atoms together in the optimal geometry for the reaction.
- lowering the activation energy (ΔG^{\ddagger}) by stabilizing the transition state and/or high energy intermediate.
- many enzymes use the functional groups of the amino acid sidechain to carry out the reactions
Proteases (peptidases): catalyzes the hydrolysis of peptide bonds

Four classes of proteases:
Serine (trypsin): aspartate-histidine-serine Aspartyl (HIV protease, renin): two aspartates Cysteine (papain, caspase): histidine-cysteine Metallo (Zn^{2+}) (carboxypeptidase, ACE): glutamate

Mechanism of carboxylpeptidase, metalloprotease (Mechanism 25.5, p. 1072)
Mechanism of a serine protease (trypsin, chymotrypsin):

$\mathrm{Asp}_{102}-\mathrm{CO}_{2}$

25.19: Coenzymes. Some reactions require additional organic molecules or metal ions. These are referred to as cofactors or coenzymes.

25.20: Protein Quaternary Structure: Hemoglobin. (please read) 25.21: G-Coupled Protein Receptors. (please read)

Chapter 26: Nucleosides, Nucleotides, and Nucleic Acids. Nucleic acids are the third class of biopolymers (polysaccharides and proteins being the others).

Two major classes of nucleic acids
deoxyribonucleic acid (DNA): carrier of genetic information ribonucleic acid (RNA): an intermediate in the expression of genetic information and other diverse roles

The Central Dogma (F. Crick):

$$
\underset{\text { DNA }}{\text { Denome) }} \underset{\text { (transcriptome) }}{\longrightarrow} \text { mRNA } \longrightarrow \begin{gathered}
\text { Protein } \\
\text { (proteome) }
\end{gathered}
$$

The monomeric units for nucleic acids are nucleotides. Nucleotides are made up of three structural subunits

1. Sugar: ribose in RNA, 2-deoxyribose in DNA
2. Heterocyclic base
3. Phosphodiester
